android13/external/armnn/tests/ModelAccuracyTool-Armnn
liiir1985 7f62dcda9f initial 2024-06-22 20:45:49 +08:00
..
ModelAccuracyTool-Armnn.cpp initial 2024-06-22 20:45:49 +08:00
README.md initial 2024-06-22 20:45:49 +08:00

README.md

The ModelAccuracyTool-Armnn

The ModelAccuracyTool-Armnn is a program for measuring the Top 5 accuracy results of a model against an image dataset.

Prerequisites:

  1. The model is in .armnn format model file. The ArmnnConverter can be used to convert a model to this format.

Build option: To build ModelAccuracyTool, pass the following options to Cmake:

  • -DFLATC_DIR=/path/to/flatbuffers/x86build/
  • -DBUILD_ACCURACY_TOOL=1
  • -DBUILD_ARMNN_SERIALIZER=1
Cmd:
-h --help Display help messages
-m --model-path Path to armnn format model file
-f --model-format The model format. Supported values: caffe, tensorflow, tflite
-i --input-name Identifier of the input tensors in the network separated by comma
-o --output-name Identifier of the output tensors in the network separated by comma
-d --data-dir Path to directory containing the ImageNet test data
-p --model-output-labels Path to model output labels file.
-v --validation-labels-path Path to ImageNet Validation Label file
-l --data-layout ] Data layout. Supported value: NHWC, NCHW. Default: NHWC
-c --compute Which device to run layers on by default. Possible choices: CpuRef, CpuAcc, GpuAcc. Default: CpuAcc, CpuRef
-r --validation-range The range of the images to be evaluated. Specified in the form :. The index starts at 1 and the range is inclusive. By default the evaluation will be performed on all images.
-b --blacklist-path Path to a blacklist file where each line denotes the index of an image to be excluded from evaluation.

Example usage:
./ModelAccuracyTool -m /path/to/model/model.armnn -f tflite -i input -o output -d /path/to/test/directory/ -p /path/to/model-output-labels -v /path/to/file/val.txt -c CpuRef -r 1:100