1.9 KiB
1.9 KiB
The ModelAccuracyTool-Armnn
The ModelAccuracyTool-Armnn
is a program for measuring the Top 5 accuracy results of a model against an image dataset.
Prerequisites:
- The model is in .armnn format model file. The
ArmnnConverter
can be used to convert a model to this format.
Build option: To build ModelAccuracyTool, pass the following options to Cmake:
- -DFLATC_DIR=/path/to/flatbuffers/x86build/
- -DBUILD_ACCURACY_TOOL=1
- -DBUILD_ARMNN_SERIALIZER=1
Cmd: | ||
---|---|---|
-h | --help | Display help messages |
-m | --model-path | Path to armnn format model file |
-f | --model-format | The model format. Supported values: caffe, tensorflow, tflite |
-i | --input-name | Identifier of the input tensors in the network separated by comma |
-o | --output-name | Identifier of the output tensors in the network separated by comma |
-d | --data-dir | Path to directory containing the ImageNet test data |
-p | --model-output-labels | Path to model output labels file. |
-v | --validation-labels-path | Path to ImageNet Validation Label file |
-l | --data-layout ] | Data layout. Supported value: NHWC, NCHW. Default: NHWC |
-c | --compute | Which device to run layers on by default. Possible choices: CpuRef, CpuAcc, GpuAcc. Default: CpuAcc, CpuRef |
-r | --validation-range | The range of the images to be evaluated. Specified in the form :. The index starts at 1 and the range is inclusive. By default the evaluation will be performed on all images. |
-b | --blacklist-path | Path to a blacklist file where each line denotes the index of an image to be excluded from evaluation. |
Example usage:
./ModelAccuracyTool -m /path/to/model/model.armnn -f tflite -i input -o output -d /path/to/test/directory/ -p /path/to/model-output-labels -v /path/to/file/val.txt -c CpuRef -r 1:100