android13/external/camera_engine_rkaiq/rk_stream/stream_cfg/RawStreamProcUnit.cpp

954 lines
31 KiB
C++
Executable File

#include "RawStreamProcUnit.h"
#include "MediaInfo.h"
namespace RkRawStream {
int _parse_rk_rawdata(void *rawdata, rkrawstream_rkraw2_t *rkraw2)
{
unsigned short tag = 0;
struct _block_header header;
uint8_t *p = (uint8_t *)rawdata;
bool bExit = false;
int bufsize[3] = {0};
uint8_t *userptr[3] = {NULL};
struct _st_addrinfo_stream _st_addr[3];
uint64_t uptr;
if(rawdata == NULL || rkraw2 == NULL){
return -1;
}
while(!bExit){
tag = *((unsigned short*)p);
LOGD_RKSTREAM("_parse_rk_rawdata tag=0x%04x\n",tag);
switch (tag)
{
case START_TAG:
p = p+TAG_BYTE_LEN;
memset(_st_addr, 0, sizeof(_st_addr));
memset(&rkraw2->_rawfmt, 0, sizeof(struct _raw_format));
memset(&rkraw2->_finfo, 0, sizeof(rk_aiq_frame_info_t));
break;
case NORMAL_RAW_TAG:
{
header = *((struct _block_header *)p);
p = p + sizeof(struct _block_header);
if (header.block_length == sizeof(struct _st_addrinfo_stream)) {
_st_addr[0] = *((struct _st_addrinfo_stream*)p);
}else{
userptr[0] = p;
bufsize[0] = header.block_length;
}
p = p + header.block_length;
break;
}
case HDR_S_RAW_TAG:
{
header = *((struct _block_header *)p);
p = p + sizeof(struct _block_header);
if (header.block_length == sizeof(struct _st_addrinfo_stream)) {
_st_addr[0] = *((struct _st_addrinfo_stream*)p);
}else{
userptr[0] = p;
bufsize[0] = header.block_length;
}
p = p + header.block_length;
break;
}
case HDR_M_RAW_TAG:
{
header = *((struct _block_header *)p);
p = p + sizeof(struct _block_header);
if (header.block_length == sizeof(struct _st_addrinfo_stream)) {
_st_addr[1] = *((struct _st_addrinfo_stream*)p);
}else{
userptr[1] = p;
bufsize[1] = header.block_length;
}
p = p + header.block_length;
break;
}
case HDR_L_RAW_TAG:
{
header = *((struct _block_header *)p);
p = p + sizeof(struct _block_header);
if (header.block_length == sizeof(struct _st_addrinfo_stream)) {
_st_addr[2] = *((struct _st_addrinfo_stream*)p);
}else{
userptr[2] = p;
bufsize[2] = header.block_length;
}
p = p + header.block_length;
break;
}
case FORMAT_TAG:
{
rkraw2->_rawfmt = *((struct _raw_format *)p);
p = p + sizeof(struct _block_header) + rkraw2->_rawfmt.size;
break;
}
case STATS_TAG:
{
rkraw2->_finfo = *((rk_aiq_frame_info_t *)p);
p = p + sizeof(struct _block_header) + rkraw2->_finfo.size;
break;
}
case ISP_REG_FMT_TAG:
{
header = *((struct _block_header *)p);
p += sizeof(struct _block_header);
p = p + header.block_length;
break;
}
case ISP_REG_TAG:
{
header = *((struct _block_header *)p);
p += sizeof(struct _block_header);
p = p + header.block_length;
break;
}
case ISPP_REG_FMT_TAG:
{
header = *((struct _block_header *)p);
p += sizeof(struct _block_header);
p = p + header.block_length;
break;
}
case ISPP_REG_TAG:
{
header = *((struct _block_header *)p);
p += sizeof(struct _block_header);
p = p + header.block_length;
break;
}
case PLATFORM_TAG:
{
header = *((struct _block_header *)p);
p += sizeof(struct _block_header);
p = p + header.block_length;
break;
}
case END_TAG:
{
bExit = true;
break;
}
default:
{
LOGW_RKSTREAM("Not support TAG(0x%04x)\n", tag);
bExit = true;
break;
}
}
}
if(_st_addr[0].fd || _st_addr[0].laddr){
uptr = _st_addr[0].haddr;
uptr = uptr << 32;
uptr = uptr | _st_addr[0].laddr;
rkraw2->plane[0].mode = 0;
rkraw2->plane[0].addr = uptr;
rkraw2->plane[0].fd = _st_addr[0].fd;
rkraw2->plane[0].idx = _st_addr[0].idx;
rkraw2->plane[0].size = _st_addr[0].size;
rkraw2->plane[0].timestamp = _st_addr[0].timestamp;
}
if(userptr[0]){
//sbuf_s->_userptr = _rawbuffer[0];
//memcpy(_rawbuffer[0], userptr[0], bufsize[0]);
rkraw2->plane[0].mode = 1;
rkraw2->plane[0].addr = (uint64_t)userptr[0];
rkraw2->plane[0].size = bufsize[0];
}
if(_st_addr[1].fd || _st_addr[1].laddr){
uptr = _st_addr[1].haddr;
uptr = uptr << 32;
uptr = uptr | _st_addr[1].laddr;
rkraw2->plane[1].mode = 0;
rkraw2->plane[1].addr = uptr;
rkraw2->plane[1].fd = _st_addr[1].fd;
rkraw2->plane[1].idx = _st_addr[1].idx;
rkraw2->plane[1].size = _st_addr[1].size;
rkraw2->plane[1].timestamp = _st_addr[1].timestamp;
}
if(userptr[1]){
//sbuf_m->_userptr = _rawbuffer[1];
//memcpy(_rawbuffer[1], userptr[1], bufsize[1]);
rkraw2->plane[1].mode = 1;
rkraw2->plane[1].addr = (uint64_t)userptr[1];
rkraw2->plane[1].size = bufsize[1];
}
if(_st_addr[2].fd || _st_addr[2].laddr){
uptr = _st_addr[2].haddr;
uptr = uptr << 32;
uptr = uptr | _st_addr[2].laddr;
rkraw2->plane[2].mode = 0;
rkraw2->plane[2].addr = uptr;
rkraw2->plane[2].fd = _st_addr[2].fd;
rkraw2->plane[2].idx = _st_addr[2].idx;
rkraw2->plane[2].size = _st_addr[2].size;
rkraw2->plane[2].timestamp = _st_addr[2].timestamp;
}
if(userptr[2]){
//sbuf_l->_userptr = _rawbuffer[2];
//memcpy(_rawbuffer[2], userptr[2], bufsize[2]);
rkraw2->plane[2].mode = 1;
rkraw2->plane[2].addr = (uint64_t)userptr[2];
rkraw2->plane[2].size = bufsize[2];
}
return 0;
}
// RawStreamProcUnit::RawStreamProcUnit (char *ispdev, char *dev0, char *dev1, char *dev2, bool linked_to_isp)
// : _first_trigger(true)
// , _is_multi_cam_conc(false)
// , user_isp_process_done_cb(NULL)
// , _memory_type(V4L2_MEMORY_DMABUF)
// {
// _raw_proc_thread = new RawProcThread(this);
// _PollCallback = NULL;
// //_rawCap = NULL;
// //short frame
// if (dev0) {
// _dev[0] = new V4l2Device (dev0);//rkisp_rawrd2_s
// _dev[0]->open();
// _dev[0]->set_mem_type(_memory_type);
// }
// //mid frame
// if (dev1) {
// _dev[1] = new V4l2Device (dev1);//rkisp_rawrd0_m
// _dev[1]->open();
// _dev[1]->set_mem_type(_memory_type);
// }
// //long frame
// if (dev2) {
// _dev[2] = new V4l2Device (dev2);//rkisp_rawrd1_l
// _dev[2]->open();
// _dev[2]->set_mem_type(_memory_type);
// }
// for (int i = 0; i < 3; i++) {
// if (linked_to_isp) {
// if (_dev[i].ptr())
// _dev[i]->set_buffer_count(STREAM_ISP_BUF_NUM);
// } else {
// if (_dev[i].ptr())
// _dev[i]->set_buffer_count(STREAM_VIPCAP_BUF_NUM);
// }
// if (_dev[i].ptr())
// _dev[i]->set_buf_sync (true);
// _dev_index[i] = i;
// _stream[i] = new RKRawStream(_dev[i], i, ISP_POLL_RX);
// _stream[i]->setPollCallback(this);
// }
// _isp_core_dev = new V4l2SubDevice(ispdev);
// _isp_core_dev->open();
// dummy_dev = new V4l2Device(NULL);
// }
RawStreamProcUnit::RawStreamProcUnit (const rk_sensor_full_info_t *s_info, uint8_t is_offline)
: _first_trigger(true)
, _mipi_dev_max(0)
, _is_multi_cam_conc(false)
, user_isp_process_done_cb(NULL)
, _memory_type(V4L2_MEMORY_DMABUF)
{
_raw_proc_thread = new RawProcThread(this);
_PollCallback = NULL;
bool linked_to_isp = s_info->linked_to_isp;
_is_offline_mode = is_offline;
strncpy(_sns_name, s_info->sensor_name.c_str(), 32);
//short frame
if (strlen(s_info->isp_info->rawrd2_s_path)) {
_dev[0] = new V4l2Device (s_info->isp_info->rawrd2_s_path);//rkisp_rawrd2_s
_dev[0]->open();
_dev[0]->set_mem_type(_memory_type);
}
//mid frame
if (strlen(s_info->isp_info->rawrd0_m_path)) {
_dev[1] = new V4l2Device (s_info->isp_info->rawrd0_m_path);//rkisp_rawrd0_m
_dev[1]->open();
_dev[1]->set_mem_type(_memory_type);
}
//long frame
if (strlen(s_info->isp_info->rawrd1_l_path)) {
_dev[2] = new V4l2Device (s_info->isp_info->rawrd1_l_path);//rkisp_rawrd1_l
_dev[2]->open();
_dev[2]->set_mem_type(_memory_type);
}
for (int i = 0; i < 3; i++) {
if (linked_to_isp) {
if (_dev[i].ptr())
_dev[i]->set_buffer_count(STREAM_ISP_BUF_NUM);
} else {
if (_dev[i].ptr())
_dev[i]->set_buffer_count(STREAM_VIPCAP_BUF_NUM);
}
if (_dev[i].ptr())
_dev[i]->set_buf_sync (true);
_dev_index[i] = i;
_stream[i] = new RKRawStream(_dev[i], i, ISP_POLL_RX);
_stream[i]->setPollCallback(this);
}
_isp_core_dev = new V4l2SubDevice(s_info->isp_info->isp_dev_path);
_isp_core_dev->open();
dummy_dev = new V4l2Device(NULL);
_offline_index = 0;
_offline_seq = 0;
is_multi_isp_mode = s_info->isp_info->is_multi_isp_mode;
_rawbuffer[0] = NULL;
_rawbuffer[1] = NULL;
_rawbuffer[2] = NULL;
}
RawStreamProcUnit::~RawStreamProcUnit ()
{
LOGD_RKSTREAM("enter ~RawStreamProcUnit\n");
_dev[0] -> close();
_dev[1] -> close();
_dev[2] -> close();
LOGD_RKSTREAM("exit ~RawStreamProcUnit\n");
}
XCamReturn RawStreamProcUnit::start()
{
//_rawCap = new CaptureRawData(mCamPhyId);
for (int i = 0; i < _mipi_dev_max; i++) {
_stream[i]->start();
}
_msg_queue.resume_pop();
_msg_queue.clear();
_raw_proc_thread->start();
_offline_index = 0;
_offline_seq = 0;
return XCAM_RETURN_NO_ERROR;
}
XCamReturn RawStreamProcUnit::stop ()
{
_msg_queue.pause_pop();
_raw_proc_thread->stop();
for (int i = 0; i < _mipi_dev_max; i++) {
_stream[i]->stopThreadOnly();
}
_buf_mutex.lock();
for (int i = 0; i < _mipi_dev_max; i++) {
cache_list2[i].clear ();
}
_isp_hdr_fid2ready_map.clear();
_buf_mutex.unlock();
//_mipi_trigger_mutex.lock();
//_isp_hdr_fid2times_map.clear();
_sof_timestamp_map.clear();
//_mipi_trigger_mutex.unlock();
//if (_rawCap) {
// delete _rawCap;
// _rawCap = NULL;
// }
if(_is_offline_mode) {
for (int i = 0; i < _mipi_dev_max; i++) {
if(_rawbuffer[i]){
free(_rawbuffer[i]);
}
}
}
for (int i = 0; i < _mipi_dev_max; i++) {
_stream[i]->stopDeviceOnly();
}
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
RawStreamProcUnit::prepare(int idx, uint8_t buf_memory_type, uint8_t buf_cnt)
{
XCamReturn ret = XCAM_RETURN_NO_ERROR;
_memory_type = (enum v4l2_memory)buf_memory_type;
LOGE_RKSTREAM("RawStreamProcUnit::prepare idx:%d buf_memory_type: %d\n",idx, buf_memory_type);
// mipi rx/tx format should match to sensor.
for (int i = 0; i < 3; i++) {
if (!(idx & (1 << i)))
continue;
if(buf_memory_type)
_dev[i]->set_mem_type(_memory_type);
if(buf_cnt)
_dev[i]->set_buffer_count(buf_cnt);
ret = _dev[i]->prepare();
if (ret < 0)
LOGE_RKSTREAM("mipi tx:%d prepare err: %d\n", i, ret);
_stream[i]->set_device_prepared(true);
if(_is_offline_mode) {
_rawbuffer[i] = (uint8_t *)malloc(_width * _height * 2);
}
}
return ret;
}
void
RawStreamProcUnit::set_working_mode(int mode)
{
_working_mode = mode;
switch (_working_mode) {
case RK_AIQ_ISP_HDR_MODE_3_FRAME_HDR:
case RK_AIQ_ISP_HDR_MODE_3_LINE_HDR:
_mipi_dev_max = 3;
break;
case RK_AIQ_ISP_HDR_MODE_2_FRAME_HDR:
case RK_AIQ_ISP_HDR_MODE_2_LINE_HDR:
_mipi_dev_max = 2;
break;
default:
_mipi_dev_max = 1;
}
LOGD_RKSTREAM("working_mode:0x%x, _mipi_dev_max=%d\n", _working_mode, _mipi_dev_max);
}
void
RawStreamProcUnit::set_rx_format(uint32_t width, uint32_t height, uint32_t pix_fmt, int mode)
{
struct v4l2_format format;
memset(&format, 0, sizeof(format));
for (int i = 0; i < 3; i++) {
if (_dev[i].ptr()){
_dev[i]->get_format (format);
int bpp = pixFmt2Bpp(format.fmt.pix.pixelformat);
int mem_mode = mode;
int ret1 = _dev[i]->io_control (RKISP_CMD_SET_CSI_MEMORY_MODE, &mem_mode);
if (ret1)
LOGE_RKSTREAM("set CSI_MEM_WORD_LITTLE_ALIGN failed !\n");
LOGI_RKSTREAM("set_rx_format: setup fmt %dx%d, 0x%x mem_mode %d\n",width, height, format.fmt.pix.pixelformat, mem_mode);
if (_dev[i].ptr())
_dev[i]->set_format(width,
height,
format.fmt.pix.pixelformat,
V4L2_FIELD_NONE,
0);
}
}
}
void
RawStreamProcUnit::setup_pipeline_fmt(uint32_t width, uint32_t height)
{
int ret;
// set isp sink fmt, same as sensor bounds - crop
struct v4l2_subdev_format isp_sink_fmt;
memset(&isp_sink_fmt, 0, sizeof(isp_sink_fmt));
isp_sink_fmt.pad = 0;
isp_sink_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = _isp_core_dev->getFormat(isp_sink_fmt);
if (ret) {
LOGE_RKSTREAM("set mIspCoreDev fmt failed !\n");
return;
}
isp_sink_fmt.format.width = width;
isp_sink_fmt.format.height = height;
//isp_sink_fmt.format.code = sns_sd_fmt.format.code;
ret = _isp_core_dev->setFormat(isp_sink_fmt);
if (ret) {
LOGE_RKSTREAM("set mIspCoreDev fmt failed !\n");
return;
}
LOGD_RKSTREAM("isp sink fmt info: fmt 0x%x, %dx%d !",
isp_sink_fmt.format.code, isp_sink_fmt.format.width, isp_sink_fmt.format.height);
// set selection, isp needn't do the crop
struct v4l2_subdev_selection aSelection;
memset(&aSelection, 0, sizeof(aSelection));
aSelection.which = V4L2_SUBDEV_FORMAT_ACTIVE;
aSelection.pad = 0;
aSelection.flags = 0;
aSelection.target = V4L2_SEL_TGT_CROP;
aSelection.r.width = width;
aSelection.r.height = height;
aSelection.r.left = 0;
aSelection.r.top = 0;
ret = _isp_core_dev->set_selection (aSelection);
if (ret) {
LOGE_RKSTREAM("set mIspCoreDev crop failed !\n");
return;
}
LOGD_RKSTREAM("isp sink crop info: %dx%d@%d,%d !",
aSelection.r.width, aSelection.r.height,
aSelection.r.left, aSelection.r.top);
// set isp rkisp-isp-subdev src crop
aSelection.pad = 2;
ret = _isp_core_dev->set_selection (aSelection);
if (ret) {
LOGE_RKSTREAM("set mIspCoreDev source crop failed !\n");
return;
}
LOGD_RKSTREAM("isp src crop info: %dx%d@%d,%d !",
aSelection.r.width, aSelection.r.height,
aSelection.r.left, aSelection.r.top);
// set isp rkisp-isp-subdev src pad fmt
struct v4l2_subdev_format isp_src_fmt;
memset(&isp_src_fmt, 0, sizeof(isp_src_fmt));
isp_src_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
isp_src_fmt.pad = 2;
ret = _isp_core_dev->getFormat(isp_src_fmt);
if (ret) {
LOGE_RKSTREAM("get mIspCoreDev src fmt failed !\n");
return;
}
isp_src_fmt.format.width = aSelection.r.width;
isp_src_fmt.format.height = aSelection.r.height;
ret = _isp_core_dev->setFormat(isp_src_fmt);
if (ret) {
LOGE_RKSTREAM("set mIspCoreDev src fmt failed !\n");
return;
}
LOGD_RKSTREAM("isp src fmt info: fmt 0x%x, %dx%d !",
isp_src_fmt.format.code, isp_src_fmt.format.width, isp_src_fmt.format.height);
}
/*
SmartPtr<V4l2Device>
RawStreamProcUnit::get_rx_device(int index)
{
if (index > _mipi_dev_max)
return nullptr;
else
return _dev[index];
}
void
RawStreamProcUnit::set_rx_format(const struct v4l2_subdev_selection& sns_sd_sel, uint32_t sns_v4l_pix_fmt)
{
// set mipi tx,rx fmt
// for cif: same as sensor fmt
struct v4l2_format format;
memset(&format, 0, sizeof(format));
for (int i = 0; i < 3; i++) {
if (_dev[i].ptr())
_dev[i]->get_format (format);
if (format.fmt.pix.width != sns_sd_sel.r.width ||
format.fmt.pix.height != sns_sd_sel.r.height ||
format.fmt.pix.pixelformat != sns_v4l_pix_fmt) {
if (_dev[i].ptr())
_dev[i]->set_format(sns_sd_sel.r.width,
sns_sd_sel.r.height,
sns_v4l_pix_fmt,
V4L2_FIELD_NONE,
0);
}
}
LOGD_RKSTREAM("set rx fmt info: fmt 0x%x, %dx%d !",
sns_v4l_pix_fmt, sns_sd_sel.r.width, sns_sd_sel.r.height);
}
void
RawStreamProcUnit::set_devices(SmartPtr<V4l2SubDevice> ispdev, CamHwIsp20* handle)
{
_isp_core_dev = ispdev;
_camHw = handle;
}
*/
XCamReturn
RawStreamProcUnit::poll_buffer_ready (SmartPtr<V4l2BufferProxy> &buf, int dev_index)
{
SmartLock locker (_buf_mutex);
// if (!buf_list[dev_index].is_empty()) {
// SmartPtr<V4l2BufferProxy> rx_buf = buf_list[dev_index].pop(-1);
// LOGD_RKSTREAM("%s dev_index:%d index:%d fd:%d\n",
// __func__, dev_index, rx_buf->get_v4l2_buf_index(), rx_buf->get_expbuf_fd());
// }
if (_PollCallback){
_PollCallback->poll_buffer_ready (buf, dev_index);
}
if(user_isp_process_done_cb)
user_isp_process_done_cb(dev_index);
return XCAM_RETURN_NO_ERROR;
}
/*
void
RawStreamProcUnit::set_hdr_frame_readback_infos(int frame_id, int times)
{
if (_working_mode == RK_AIQ_WORKING_MODE_NORMAL)
return;
_mipi_trigger_mutex.lock();
_isp_hdr_fid2times_map[frame_id] = times;
LOGD_RKSTREAM( "rdtimes seq %d \n", frame_id);
// trigger_isp_readback();
_mipi_trigger_mutex.unlock();
}
void
RawStreamProcUnit::match_lumadetect_map(uint32_t sequence, sint32_t &additional_times)
{
std::map<uint32_t, int>::iterator it_times_del;
_mipi_trigger_mutex.lock();
for (std::map<uint32_t, int>::iterator iter = _isp_hdr_fid2times_map.begin();
iter != _isp_hdr_fid2times_map.end();) {
if (iter->first < sequence) {
it_times_del = iter++;
LOGD_RKSTREAM( "del seq %d", it_times_del->first);
iter = _isp_hdr_fid2times_map.erase(it_times_del);
} else if (iter->first == sequence) {
additional_times = iter->second;
it_times_del = iter++;
LOGD_RKSTREAM( "del seq %d", it_times_del->first);
iter = _isp_hdr_fid2times_map.erase(it_times_del);
break;
} else {
LOGW( "%s missing rdtimes for buf_seq %d, min rdtimes_seq %d !",
__func__, sequence, iter->first);
additional_times = 0;
break;
}
}
_mipi_trigger_mutex.unlock();
}
void
RawStreamProcUnit::match_globaltmostate_map(uint32_t sequence, bool &isHdrGlobalTmo)
{
std::map<uint32_t, bool>::iterator it_del;
_mipi_trigger_mutex.lock();
for (std::map<uint32_t, bool>::iterator iter = _hdr_global_tmo_state_map.begin();
iter != _hdr_global_tmo_state_map.end();) {
if (iter->first < sequence) {
it_del = iter++;
LOGD_RKSTREAM( "del seq %d", it_del->first);
iter = _hdr_global_tmo_state_map.erase(it_del);
} else if (iter->first == sequence) {
isHdrGlobalTmo = iter->second;
it_del = iter++;
LOGD_RKSTREAM( "del seq %d", it_del->first);
iter = _hdr_global_tmo_state_map.erase(it_del);
break;
} else {
LOGW( "%s missing tmo state for buf_seq %d, min rdtimes_seq %d !",
__func__, sequence, iter->first);
break;
}
}
_mipi_trigger_mutex.unlock();
}
void
RawStreamProcUnit::set_hdr_global_tmo_mode(int frame_id, bool mode)
{
_mipi_trigger_mutex.lock();
_hdr_global_tmo_state_map[frame_id] = mode;
_mipi_trigger_mutex.unlock();
}
void
RawStreamProcUnit::notify_sof(uint64_t time, int frameid)
{
_mipi_trigger_mutex.lock();
while (_sof_timestamp_map.size() > 8) {
_sof_timestamp_map.erase(_sof_timestamp_map.begin());
}
_sof_timestamp_map[frameid] = time;
_mipi_trigger_mutex.unlock();
}
*/
XCamReturn
RawStreamProcUnit::match_sof_timestamp_map(sint32_t sequence, uint64_t &timestamp)
{
XCamReturn ret = XCAM_RETURN_NO_ERROR;
std::map<int, uint64_t>::iterator it;
sint32_t search_id = sequence < 0 ? 0 : sequence;
it = _sof_timestamp_map.find(search_id);
if (it != _sof_timestamp_map.end()) {
timestamp = it->second;
} else {
LOGW( "can't find frameid(%d), get sof timestamp failed!\n",
sequence);
ret = XCAM_RETURN_ERROR_FAILED;
}
return ret;
}
bool
RawStreamProcUnit::raw_buffer_proc ()
{
LOGD_RKSTREAM("%s enter", __FUNCTION__);
if (_msg_queue.pop(-1).ptr())
trigger_isp_readback();
LOGD_RKSTREAM("%s exit", __FUNCTION__);
return true;
}
void
RawStreamProcUnit::send_sync_buf2(uint8_t *rkraw_data)
{
rkrawstream_rkraw2_t rkraw2;
_parse_rk_rawdata(rkraw_data, &rkraw2);
_send_sync_buf(&rkraw2);
}
void
RawStreamProcUnit::_send_sync_buf(rkrawstream_rkraw2_t *rkraw2)
{
SmartPtr<SimpleFdBuf> sbuf_s, sbuf_m, sbuf_l;
sbuf_s = new SimpleFdBuf();
sbuf_m = new SimpleFdBuf();
sbuf_l = new SimpleFdBuf();
/*
* Offline frames has no index and seq,
* so we assign them here.
*/
if(rkraw2->plane[0].mode == 0){
sbuf_s->_userptr = (uint8_t *)rkraw2->plane[0].addr;
sbuf_s->_fd = rkraw2->plane[0].fd;
sbuf_s->_index = rkraw2->plane[0].idx;
sbuf_s->_seq = rkraw2->_rawfmt.frame_id;
sbuf_s->_ts = rkraw2->plane[0].timestamp;
} else {
memcpy(_rawbuffer[0], (uint8_t *)rkraw2->plane[0].addr, rkraw2->plane[0].size);
sbuf_s->_userptr = _rawbuffer[0];
sbuf_s->_index = _offline_index;
sbuf_s->_seq = _offline_seq;
}
_offline_index ++;
_offline_seq ++;
if(_offline_index == 4)
_offline_index = 0;
_buf_mutex.lock();
for (int i = 0; i < _mipi_dev_max; i++) {
if (i == ISP_MIPI_HDR_S)
cache_list2[ISP_MIPI_HDR_S].push(sbuf_s);
else if (i == ISP_MIPI_HDR_M)
cache_list2[ISP_MIPI_HDR_M].push(sbuf_m);
else if (i == ISP_MIPI_HDR_L)
cache_list2[ISP_MIPI_HDR_L].push(sbuf_l);
}
_isp_hdr_fid2ready_map[sbuf_s->_seq] = true;
_buf_mutex.unlock();
/* this means send sof event. */
//if (_is_offline_mode) {
// int mode = 1;
// rk_aiq_uapi2_sysctl_rawReproc_genIspParams(aiq_ctx, sbuf_s->_seq, &_finfo, mode);
//}
SmartPtr<EmptyClass> ec = new EmptyClass();
_msg_queue.push(ec);
}
void
RawStreamProcUnit::trigger_isp_readback()
{
std::map<uint32_t, bool>::iterator it_ready;
SmartPtr<V4l2Buffer> v4l2buf[3];
SmartPtr<V4l2BufferProxy> buf_proxy;
SmartPtr<SimpleFdBuf> simple_buf;
uint32_t sequence = -1;
sint32_t additional_times = -1;
bool isHdrGlobalTmo = false;
struct isp2x_csi_trigger tg = {
.sof_timestamp = 0,
.frame_timestamp = 0,
.frame_id = sequence,
.times = 0,
.mode = _mipi_dev_max == 1 ? T_START_X1 :
_mipi_dev_max == 2 ? T_START_X2 : T_START_X3,
/* .mode = T_START_X2, */
};
uint64_t sof_timestamp = 0;
SmartLock locker (_buf_mutex);
if (_isp_hdr_fid2ready_map.size() == 0) {
LOGE_RKSTREAM( "%s buf not ready !", __func__);
return;
}
it_ready = _isp_hdr_fid2ready_map.begin();
sequence = it_ready->first;
//rk_aiq_uapi2_sysctl_setAllReadyIspParams(aiq_ctx, sequence);
// if ( _working_mode != RK_AIQ_WORKING_MODE_NORMAL) {
// match_lumadetect_map(sequence, additional_times);
// if (additional_times == -1) {
// // LOGE( "%s rdtimes not ready for seq %d !", __func__, sequence);
// // return;
// additional_times = 0;//add by zyl
// }
// match_globaltmostate_map(sequence, isHdrGlobalTmo);
// //if (isHdrGlobalTmo && !_camHw->getDhazState())
// // additional_times = 0;
// } else {
// additional_times = 0;
// }
additional_times = 0;
_isp_hdr_fid2ready_map.erase(it_ready);
int ret = XCAM_RETURN_NO_ERROR;
// whether to start capturing raw files
//if (_rawCap)
// _rawCap->detect_capture_raw_status(sequence, _first_trigger);
//CaptureRawData::getInstance().detect_capture_raw_status(sequence, _first_trigger);
//_camHw->setIsppConfig(sequence);
for (int i = 0; i < _mipi_dev_max; i++) {
// ret = _dev[i]->get_buffer(v4l2buf[i],
// cache_list[i].front()->get_v4l2_buf_index());
// if (ret != XCAM_RETURN_NO_ERROR) {
// LOGE( "Rx[%d] can not get buffer\n", i);
// goto out;
// } else {
// buf_proxy = cache_list[i].pop(-1);
// buf_list[i].push(buf_proxy);
// if (_dev[i]->get_mem_type() == V4L2_MEMORY_USERPTR)
// v4l2buf[i]->set_expbuf_usrptr(buf_proxy->get_v4l2_userptr());
// else if (_dev[i]->get_mem_type() == V4L2_MEMORY_DMABUF){
// v4l2buf[i]->set_expbuf_fd(buf_proxy->get_expbuf_fd());
// }else if (_dev[i]->get_mem_type() == V4L2_MEMORY_MMAP) {
// if (_dev[i]->get_use_type() == 1)
// {
// memcpy((void*)v4l2buf[i]->get_expbuf_usrptr(),(void*)buf_proxy->get_v4l2_userptr(),v4l2buf[i]->get_buf().m.planes[0].length);
// v4l2buf[i]->set_reserved(buf_proxy->get_v4l2_userptr());
// }
// }
ret = _dev[i]->get_buffer(v4l2buf[i],
cache_list2[i].front()->_index);
if (ret != XCAM_RETURN_NO_ERROR) {
LOGE_RKSTREAM( "Rx[%d] can not get buffer\n", i);
goto out;
} else {
simple_buf = cache_list2[i].pop(-1);
if (_memory_type == V4L2_MEMORY_USERPTR){
LOGD_RKSTREAM("use V4L2_MEMORY_USERPTR\n");
v4l2buf[i]->set_expbuf_usrptr((uint64_t)simple_buf->_userptr);
}
else if (_memory_type == V4L2_MEMORY_DMABUF){
v4l2buf[i]->set_expbuf_fd(simple_buf->_fd);
}
// if (_rawCap) {
// _rawCap->dynamic_capture_raw(i, sequence, buf_proxy, v4l2buf[i],_mipi_dev_max,_working_mode,_dev[0]);
// if (_rawCap->is_need_save_metadata_and_register()) {
// rkisp_effect_params_v20 ispParams;
// _camHw->getEffectiveIspParams(ispParams, sequence);
// SmartPtr<BaseSensorHw> mSensorSubdev = _camHw->mSensorDev.dynamic_cast_ptr<BaseSensorHw>();
// SmartPtr<RkAiqExpParamsProxy> ExpParams = nullptr;
// mSensorSubdev->getEffectiveExpParams(ExpParams, sequence);
// SmartPtr<LensHw> mLensSubdev = _camHw->mLensDev.dynamic_cast_ptr<LensHw>();
// SmartPtr<RkAiqAfInfoProxy> afParams = nullptr;
// if (mLensSubdev.ptr())
// mLensSubdev->getAfInfoParams(afParams, sequence);
// _rawCap->save_metadata_and_register(sequence, ispParams, ExpParams, afParams, _working_mode);
// }
// }
//CaptureRawData::getInstance().dynamic_capture_raw(i, sequence, buf_proxy, v4l2buf[i],_mipi_dev_max,_working_mode,_dev[0]);
}
}
for (int i = 0; i < _mipi_dev_max; i++) {
ret = _dev[i]->queue_buffer(v4l2buf[i]);
if (ret != XCAM_RETURN_NO_ERROR) {
LOGE_RKSTREAM( "Rx[%d] queue buffer failed\n", i);
break;
}
}
tg.frame_id = sequence;
if (_first_trigger)
tg.times = 1;
else
tg.times += additional_times;
if (tg.times > 2)
tg.times = 2;
if (_is_multi_cam_conc && (tg.times < 1))
tg.times = 1;
tg.frame_timestamp = simple_buf->_ts * 1000;
tg.sof_timestamp = tg.frame_timestamp;
// tg.times = 1;//fixed to three times readback
LOGI_RKSTREAM(
"camId:%d frame[%d]: sof_ts %" PRId64 "ms, frame_ts %" PRId64 "ms, globalTmo(%d), readback(%d) fd %d\n",
mCamPhyId,
sequence,
tg.sof_timestamp / 1000 / 1000,
tg.frame_timestamp / 1000 / 1000,
isHdrGlobalTmo,
tg.times,
simple_buf->_fd);
if (ret == XCAM_RETURN_NO_ERROR)
_isp_core_dev->io_control(RKISP_CMD_TRIGGER_READ_BACK, &tg);
else
LOGE_RKSTREAM( "%s frame[%d] queue failed, don't read back!\n",
__func__, sequence);
//if (_rawCap)
// _rawCap->update_capture_raw_status(_first_trigger);
//CaptureRawData::getInstance().update_capture_raw_status(_first_trigger);
_first_trigger = false;
out:
return;
}
}