android13/external/eigen/lapack/cladiv.f

98 lines
2.3 KiB
Fortran

*> \brief \b CLADIV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLADIV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cladiv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cladiv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cladiv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CLADIV( X, Y )
*
* .. Scalar Arguments ..
* COMPLEX X, Y
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLADIV := X / Y, where X and Y are complex. The computation of X / Y
*> will not overflow on an intermediary step unless the results
*> overflows.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] X
*> \verbatim
*> X is COMPLEX
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is COMPLEX
*> The complex scalars X and Y.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
COMPLEX FUNCTION CLADIV( X, Y )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
COMPLEX X, Y
* ..
*
* =====================================================================
*
* .. Local Scalars ..
REAL ZI, ZR
* ..
* .. External Subroutines ..
EXTERNAL SLADIV
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, CMPLX, REAL
* ..
* .. Executable Statements ..
*
CALL SLADIV( REAL( X ), AIMAG( X ), REAL( Y ), AIMAG( Y ), ZR,
$ ZI )
CLADIV = CMPLX( ZR, ZI )
*
RETURN
*
* End of CLADIV
*
END