android13/external/libhevc/encoder/ihevce_stasino_helpers.c

924 lines
25 KiB
C

/******************************************************************************
*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
*******************************************************************************
* @file
* ihevce_stasino_helpers.c
*
* @brief
*
* @author
* Ittiam
*
* @par List of Functions:
*
* @remarks
* None
*
*******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* System include files */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
/* User include files */
#include "ihevc_typedefs.h"
#include "itt_video_api.h"
#include "ihevce_api.h"
#include "rc_cntrl_param.h"
#include "rc_frame_info_collector.h"
#include "rc_look_ahead_params.h"
#include "ihevc_defs.h"
#include "ihevc_structs.h"
#include "ihevc_platform_macros.h"
#include "ihevc_deblk.h"
#include "ihevc_itrans_recon.h"
#include "ihevc_chroma_itrans_recon.h"
#include "ihevc_chroma_intra_pred.h"
#include "ihevc_intra_pred.h"
#include "ihevc_inter_pred.h"
#include "ihevc_mem_fns.h"
#include "ihevc_padding.h"
#include "ihevc_weighted_pred.h"
#include "ihevc_sao.h"
#include "ihevc_resi_trans.h"
#include "ihevc_quant_iquant_ssd.h"
#include "ihevc_cabac_tables.h"
#include "ihevce_defs.h"
#include "ihevce_lap_enc_structs.h"
#include "ihevce_multi_thrd_structs.h"
#include "ihevce_me_common_defs.h"
#include "ihevce_had_satd.h"
#include "ihevce_error_codes.h"
#include "ihevce_bitstream.h"
#include "ihevce_cabac.h"
#include "ihevce_rdoq_macros.h"
#include "ihevce_function_selector.h"
#include "ihevce_enc_structs.h"
#include "ihevce_entropy_structs.h"
#include "ihevce_cmn_utils_instr_set_router.h"
#include "ihevce_enc_loop_structs.h"
#include "ihevce_stasino_helpers.h"
/*****************************************************************************/
/* Function Definitions */
/*****************************************************************************/
/**
*******************************************************************************
*
* @brief
* This function calculates the variance of given data set.
*
* @par Description:
* This function is mainly used to find the variance of the block of pixel values.
* The block can be rectangular also. Single pass variance calculation
* implementation.
*
* @param[in] p_input
* The input buffer to calculate the variance.
*
* @param[out] pi4_mean
* Pointer ot the mean of the datset
*
* @param[out] pi4_variance
* Pointer tot he variabce of the data set
*
* @param[in] u1_is_hbd
* 1 if the data is in high bit depth
*
* @param[in] stride
* Stride for the input buffer
*
* @param[in] block_height
* height of the pixel block
*
* @param[in] block_width
* width of the pixel block
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevce_calc_variance(
void *pv_input,
WORD32 i4_stride,
WORD32 *pi4_mean,
UWORD32 *pu4_variance,
UWORD8 u1_block_height,
UWORD8 u1_block_width,
UWORD8 u1_is_hbd,
UWORD8 u1_disable_normalization)
{
UWORD8 *pui1_buffer; // pointer for 8 bit usecase
WORD32 i, j;
WORD32 total_elements;
LWORD64 mean;
ULWORD64 variance;
ULWORD64 sum;
ULWORD64 sq_sum;
/* intialisation */
total_elements = u1_block_height * u1_block_width;
mean = 0;
variance = 0;
sum = 0;
sq_sum = 0;
/* handle the case of 8/10 bit depth separately */
if(!u1_is_hbd)
{
pui1_buffer = (UWORD8 *)pv_input;
/* loop over all the values in the block */
for(i = 0; i < u1_block_height; i++)
{
/* loop over a row in the block */
for(j = 0; j < u1_block_width; j++)
{
sum += pui1_buffer[i * i4_stride + j];
sq_sum += (pui1_buffer[i * i4_stride + j] * pui1_buffer[i * i4_stride + j]);
}
}
if(!u1_disable_normalization)
{
mean = sum / total_elements;
variance =
((total_elements * sq_sum) - (sum * sum)) / (total_elements * (total_elements));
}
else
{
mean = sum;
variance = ((total_elements * sq_sum) - (sum * sum));
}
}
/* copy back the values to the output variables */
*pi4_mean = mean;
*pu4_variance = variance;
}
/**
*******************************************************************************
*
* @brief
* This function calcluates the variance of given data set which is WORD16
*
* @par Description:
* This function is mainly used to find the variance of the block of pixel values.
* Single pass variance calculation implementation.
*
* @param[in] pv_input
* The input buffer to calculate the variance.
*
*
* @param[in] stride
* Stride for the input buffer
*
* @param[out] pi4_mean
* Pointer ot the mean of the datset
*
* @param[out] pi4_variance
* Pointer tot he variabce of the data set
*
* @param[in] block_height
* height of the pixel block
*
* @param[in] block_width
* width of the pixel block
*
*
* @remarks
* None
*
*******************************************************************************/
void ihevce_calc_variance_signed(
WORD16 *pv_input,
WORD32 i4_stride,
WORD32 *pi4_mean,
UWORD32 *pu4_variance,
UWORD8 u1_block_height,
UWORD8 u1_block_width)
{
WORD16 *pi2_buffer; // poinbter for 10 bit use case
WORD32 i, j;
WORD32 total_elements;
LWORD64 mean;
LWORD64 variance;
LWORD64 sum;
LWORD64 sq_sum;
/* intialisation */
total_elements = u1_block_height * u1_block_width;
mean = 0;
variance = 0;
sum = 0;
sq_sum = 0;
pi2_buffer = pv_input;
for(i = 0; i < u1_block_height; i++)
{
for(j = 0; j < u1_block_width; j++)
{
sum += pi2_buffer[i * i4_stride + j];
sq_sum += (pi2_buffer[i * i4_stride + j] * pi2_buffer[i * i4_stride + j]);
}
}
mean = sum; /// total_elements;
variance = ((total_elements * sq_sum) - (sum * sum)); // / (total_elements * (total_elements) )
/* copy back the values to the output variables */
*pi4_mean = mean;
*pu4_variance = variance;
}
/**
*******************************************************************************
*
* @brief
* This function calculates the variance of a chrominance plane for 420SP data
*
* @par Description:
* This function is mainly used to find the variance of the block of pixel values.
* The block can be rectangular also. Single pass variance calculation
* implementation.
*
* @param[in] p_input
* The input buffer to calculate the variance.
*
* @param[in] stride
* Stride for the input buffer
*
* @param[out] pi4_mean
* Pointer ot the mean of the datset
*
* @param[out] pi4_variance
* Pointer tot he variabce of the data set
*
* @param[in] block_height
* height of the pixel block
*
* @param[in] block_width
* width of the pixel block
*
* @param[in] u1_is_hbd
* 1 if the data is in high bit depth
*
* @param[in] e_chroma_plane
* is U or V
*
* @remarks
* None
*
*******************************************************************************
*/
void ihevce_calc_chroma_variance(
void *pv_input,
WORD32 i4_stride,
WORD32 *pi4_mean,
UWORD32 *pu4_variance,
UWORD8 u1_block_height,
UWORD8 u1_block_width,
UWORD8 u1_is_hbd,
CHROMA_PLANE_ID_T e_chroma_plane)
{
UWORD8 *pui1_buffer; // pointer for 8 bit usecase
WORD32 i, j;
WORD32 total_elements;
LWORD64 mean;
ULWORD64 variance;
LWORD64 sum;
LWORD64 sq_sum;
/* intialisation */
total_elements = u1_block_height * u1_block_width;
mean = 0;
variance = 0;
sum = 0;
sq_sum = 0;
/* handle the case of 8/10 bit depth separately */
if(!u1_is_hbd)
{
pui1_buffer = (UWORD8 *)pv_input;
pui1_buffer += e_chroma_plane;
/* loop over all the values in the block */
for(i = 0; i < u1_block_height; i++)
{
/* loop over a row in the block */
for(j = 0; j < u1_block_width; j++)
{
sum += pui1_buffer[i * i4_stride + j * 2];
sq_sum += (pui1_buffer[i * i4_stride + j * 2] * pui1_buffer[i * i4_stride + j * 2]);
}
}
mean = sum / total_elements;
variance = ((total_elements * sq_sum) - (sum * sum)) / (total_elements * (total_elements));
}
/* copy back the values to the output variables */
*pi4_mean = mean;
*pu4_variance = variance;
}
LWORD64 ihevce_inject_stim_into_distortion(
void *pv_src,
WORD32 i4_src_stride,
void *pv_pred,
WORD32 i4_pred_stride,
LWORD64 i8_distortion,
WORD32 i4_alpha_stim_multiplier,
UWORD8 u1_blk_size,
UWORD8 u1_is_hbd,
UWORD8 u1_enable_psyRDOPT,
CHROMA_PLANE_ID_T e_chroma_plane)
{
if(!u1_enable_psyRDOPT)
{
UWORD32 u4_src_variance;
UWORD32 u4_pred_variance;
WORD32 i4_mean;
WORD32 i4_noise_term;
if(NULL_PLANE == e_chroma_plane)
{
ihevce_calc_variance(
pv_src,
i4_src_stride,
&i4_mean,
&u4_src_variance,
u1_blk_size,
u1_blk_size,
u1_is_hbd,
0);
ihevce_calc_variance(
pv_pred,
i4_pred_stride,
&i4_mean,
&u4_pred_variance,
u1_blk_size,
u1_blk_size,
u1_is_hbd,
0);
}
else
{
ihevce_calc_chroma_variance(
pv_src,
i4_src_stride,
&i4_mean,
&u4_src_variance,
u1_blk_size,
u1_blk_size,
u1_is_hbd,
e_chroma_plane);
ihevce_calc_chroma_variance(
pv_pred,
i4_pred_stride,
&i4_mean,
&u4_pred_variance,
u1_blk_size,
u1_blk_size,
u1_is_hbd,
e_chroma_plane);
}
i4_noise_term =
ihevce_compute_noise_term(i4_alpha_stim_multiplier, u4_src_variance, u4_pred_variance);
MULTIPLY_STIM_WITH_DISTORTION(i8_distortion, i4_noise_term, STIM_Q_FORMAT, ALPHA_Q_FORMAT);
return i8_distortion;
}
else
{
return i8_distortion;
}
}
UWORD8 ihevce_determine_cu_noise_based_on_8x8Blk_data(
UWORD8 *pu1_is_8x8Blk_noisy, UWORD8 u1_cu_x_pos, UWORD8 u1_cu_y_pos, UWORD8 u1_cu_size)
{
UWORD8 u1_num_noisy_children = 0;
UWORD8 u1_start_index = (u1_cu_x_pos / 8) + u1_cu_y_pos;
if(8 == u1_cu_size)
{
return pu1_is_8x8Blk_noisy[u1_start_index];
}
u1_num_noisy_children += ihevce_determine_cu_noise_based_on_8x8Blk_data(
pu1_is_8x8Blk_noisy, u1_cu_x_pos, u1_cu_y_pos, u1_cu_size / 2);
u1_num_noisy_children += ihevce_determine_cu_noise_based_on_8x8Blk_data(
pu1_is_8x8Blk_noisy, u1_cu_x_pos + (u1_cu_size / 2), u1_cu_y_pos, u1_cu_size / 2);
u1_num_noisy_children += ihevce_determine_cu_noise_based_on_8x8Blk_data(
pu1_is_8x8Blk_noisy, u1_cu_x_pos, u1_cu_y_pos + (u1_cu_size / 2), u1_cu_size / 2);
u1_num_noisy_children += ihevce_determine_cu_noise_based_on_8x8Blk_data(
pu1_is_8x8Blk_noisy,
u1_cu_x_pos + (u1_cu_size / 2),
u1_cu_y_pos + (u1_cu_size / 2),
u1_cu_size / 2);
return (u1_num_noisy_children >= 2);
}
/*!
******************************************************************************
* \if Function name : ihevce_psy_rd_cost_croma \endif
*
* \brief
* Calculates the psyco visual cost for RD opt. This is
*
* \param[in] pui4_source_satd
* This is the pointer to the array of 8x8 satd of the corresponding source CTB. This is pre calculated.
* \param[in] *pui1_recon
* This si the pointer to the pred data.
* \param[in] recon_stride
* This si the pred stride
* \param[in] pic_type
* Picture type.
* \param[in] layer_id
* Indicates the temporal layer.
* \param[in] lambda
* This is the weighting factor for the cost.
* \param[in] is_hbd
* This is the high bit depth flag which indicates if the bit depth of the pixels is 10 bit or 8 bit.
* \param[in] sub_sampling_type
* This is the chroma subsampling type. 11 - for 420 and 13 for 422
* \return
* the cost for the psyRDopt
*
* \author
* Ittiam
*
*****************************************************************************
*/
LWORD64 ihevce_psy_rd_cost_croma(
LWORD64 *pui4_source_satd,
void *p_recon,
WORD32 recon_stride_vert,
WORD32 recond_stride_horz,
WORD32 cu_size_luma,
WORD32 pic_type,
WORD32 layer_id,
WORD32 lambda,
WORD32 start_index,
WORD32 is_hbd,
WORD32 sub_sampling_type,
ihevce_cmn_opt_func_t *ps_cmn_utils_optimised_function_list)
{
/* declare local variables to store the SATD values for the pred for the current block. */
LWORD64 psy_rd_cost;
UWORD32 lambda_mod;
WORD32 psy_factor;
/* declare local variables */
WORD32 i;
WORD32 cu_total_size;
WORD32 num_comp_had_blocks;
UWORD8 *pu1_l0_block;
UWORD8 *pu1_l0_block_prev;
UWORD8 *pu1_recon;
WORD32 ht_offset;
WORD32 wd_offset;
WORD32 cu_ht;
WORD32 cu_wd;
WORD32 num_horz_blocks;
WORD16 pi2_residue_had[64];
/* this is used as a buffer with all values equal to 0. This is emulate the case with
pred being zero in HAD fucntion */
UWORD8 ai1_zeros_buffer[64];
WORD32 had_block_size;
LWORD64 source_satd; // to hold source for current 8x8 block
LWORD64 recon_satd; // holds the current recon 8x8 satd
WORD32 index_for_src_satd;
(void)recond_stride_horz;
(void)pic_type;
(void)layer_id;
if(!is_hbd)
{
pu1_recon = (UWORD8 *)p_recon;
}
/**** initialize the variables ****/
had_block_size = 4;
if(sub_sampling_type == 1) // 420
{
cu_ht = cu_size_luma / 2;
cu_wd = cu_size_luma / 2;
}
else
{
cu_ht = cu_size_luma;
cu_wd = cu_size_luma / 2;
}
num_horz_blocks = 2 * cu_wd / had_block_size; //ctb_width / had_block_size;
ht_offset = -had_block_size;
wd_offset = 0; //-had_block_size;
cu_total_size = cu_ht * cu_wd;
num_comp_had_blocks = 2 * cu_total_size / (had_block_size * had_block_size);
index_for_src_satd = start_index;
for(i = 0; i < 64; i++)
{
ai1_zeros_buffer[i] = 0;
}
psy_factor = PSY_STRENGTH_CHROMA;
psy_rd_cost = 0;
lambda_mod = lambda * psy_factor;
/************************************************************/
/* loop over for every 4x4 blocks in the CU for Cb */
for(i = 0; i < num_comp_had_blocks; i++)
{
if(i % num_horz_blocks == 0)
{
wd_offset = -had_block_size;
ht_offset += had_block_size;
}
wd_offset += had_block_size;
/* source satd for the current 8x8 block */
source_satd = pui4_source_satd[index_for_src_satd];
if(i % 2 != 0)
{
if(!is_hbd)
{
pu1_l0_block = pu1_l0_block_prev + 1;
}
}
else
{
if(!is_hbd)
{
/* get memory pointers for each of L0 and L1 blocks whose hadamard has to be computed */
pu1_l0_block = pu1_recon + recon_stride_vert * ht_offset + wd_offset;
pu1_l0_block_prev = pu1_l0_block;
}
}
if(had_block_size == 4)
{
if(!is_hbd)
{
recon_satd = ps_cmn_utils_optimised_function_list->pf_chroma_AC_HAD_4x4_8bit(
pu1_l0_block,
recon_stride_vert,
ai1_zeros_buffer,
had_block_size,
pi2_residue_had,
had_block_size);
}
/* get the additional cost function based on the absolute SATD diff of source and recon. */
psy_rd_cost += (lambda_mod * llabs(source_satd - recon_satd));
index_for_src_satd++;
if((i % num_horz_blocks) == (num_horz_blocks - 1))
{
index_for_src_satd -= num_horz_blocks;
index_for_src_satd +=
(MAX_CU_SIZE / 8); /* Assuming CTB size = 64 and blocksize = 8 */
}
} // if had block size ==4
} // for loop for all 4x4 block in the cu
psy_rd_cost = psy_rd_cost >> (Q_PSY_STRENGTH_CHROMA + LAMBDA_Q_SHIFT);
/* reutrn the additional cost for the psy RD opt */
return (psy_rd_cost);
}
/*!
******************************************************************************
* \if Function name : ihevce_psy_rd_cost \endif
*
* \brief
* Calculates the psyco visual cost for RD opt. This is
*
* \param[in] pui4_source_satd
* This is the pointer to the array of 8x8 satd of the corresponding source CTB. This is pre calculated.
* \param[in] *pui1_recon
* This si the pointer to the pred data.
* \param[in] recon_stride
* This si the pred stride
* \param[in] pic_type
* Picture type.
* \param[in] layer_id
* Indicates the temporal layer.
* \param[in] lambda
* This is the weighting factor for the cost.
*
* \return
* the cost for the psyRDopt
*
* \author
* Ittiam
*
*****************************************************************************
*/
LWORD64 ihevce_psy_rd_cost(
LWORD64 *pui4_source_satd,
void *pv_recon,
WORD32 recon_stride_vert,
WORD32 recond_stride_horz,
WORD32 cu_size,
WORD32 pic_type,
WORD32 layer_id,
WORD32 lambda,
WORD32 start_index,
WORD32 is_hbd,
UWORD32 u4_psy_strength,
ihevce_cmn_opt_func_t *ps_cmn_utils_optimised_function_list)
{
/* declare local variables to store the SATD values for the pred for the current block. */
LWORD64 psy_rd_cost; // TODO : check if overflow is there.
UWORD32 lambda_mod;
WORD32 psy_factor;
/* declare local variables */
WORD32 i;
WORD32 cu_total_size;
WORD32 num_comp_had_blocks;
UWORD8 *pu1_l0_block;
UWORD8 *pu1_recon;
WORD32 ht_offset;
WORD32 wd_offset;
WORD32 cu_ht;
WORD32 cu_wd;
WORD32 num_horz_blocks;
//WORD16 pi2_residue_had[64];
WORD16 pi2_residue_had_zscan[64];
//WORD16 pi2_residue[64];
/* this is used as a buffer with all values equal to 0. This is emulate the case with
pred being zero in HAD fucntion */
UWORD8 ai1_zeros_buffer[64];
WORD32 had_block_size;
LWORD64 source_satd; // to hold source for current 8x8 block
LWORD64 recon_satd; // holds the current recon 8x8 satd
WORD32 index_for_src_satd;
(void)recond_stride_horz;
(void)pic_type;
(void)layer_id;
/***** initialize the variables ****/
had_block_size = 8;
cu_ht = cu_size;
cu_wd = cu_size;
num_horz_blocks = cu_wd / had_block_size; //ctb_width / had_block_size;
ht_offset = -had_block_size;
wd_offset = 0 - had_block_size;
cu_total_size = cu_ht * cu_wd;
num_comp_had_blocks = cu_total_size / (had_block_size * had_block_size);
index_for_src_satd = start_index;
for(i = 0; i < 64; i++)
{
ai1_zeros_buffer[i] = 0;
}
psy_factor = u4_psy_strength; //PSY_STRENGTH;
psy_rd_cost = 0;
lambda_mod = lambda * psy_factor;
if(!is_hbd)
{
pu1_recon = (UWORD8 *)pv_recon;
}
/**************************************************************/
/* loop over for every 8x8 blocks in the CU */
for(i = 0; i < num_comp_had_blocks; i++)
{
if(i % num_horz_blocks == 0)
{
wd_offset = -had_block_size;
ht_offset += had_block_size;
}
wd_offset += had_block_size;
/* source satd for the current 8x8 block */
source_satd = pui4_source_satd[index_for_src_satd];
if(had_block_size == 8)
{
//WORD32 index;
//WORD32 u4_satd;
//WORD32 dst_strd = 8;
//WORD32 i4_frm_qstep = 0;
//WORD32 early_cbf;
if(!is_hbd)
{
/* get memory pointers for each of L0 and L1 blocks whose hadamard has to be computed */
pu1_l0_block = pu1_recon + recon_stride_vert * ht_offset + wd_offset;
recon_satd = ps_cmn_utils_optimised_function_list->pf_AC_HAD_8x8_8bit(
pu1_l0_block,
recon_stride_vert,
ai1_zeros_buffer,
had_block_size,
pi2_residue_had_zscan,
had_block_size);
}
/* get the additional cost function based on the absolute SATD diff of source and recon. */
psy_rd_cost += (lambda_mod * llabs(source_satd - recon_satd));
index_for_src_satd++;
if((i % num_horz_blocks) == (num_horz_blocks - 1))
{
index_for_src_satd -= num_horz_blocks;
index_for_src_satd +=
(MAX_CU_SIZE / 8); /* Assuming CTB size = 64 and blocksize = 8 */
}
} // if
} // for loop
psy_rd_cost = psy_rd_cost >> (Q_PSY_STRENGTH + LAMBDA_Q_SHIFT);
/* reutrn the additional cost for the psy RD opt */
return (psy_rd_cost);
}
unsigned long ihevce_calc_stim_injected_variance(
ULWORD64 *pu8_sigmaX,
ULWORD64 *pu8_sigmaXSquared,
ULWORD64 *u8_var,
WORD32 i4_inv_wpred_wt,
WORD32 i4_inv_wt_shift_val,
WORD32 i4_wpred_log_wdc,
WORD32 i4_part_id)
{
ULWORD64 u8_X_Square, u8_temp_var;
WORD32 i4_bits_req;
const WORD32 i4_default_src_wt = ((1 << 15) + (WGHT_DEFAULT >> 1)) / WGHT_DEFAULT;
u8_X_Square = (pu8_sigmaX[i4_part_id] * pu8_sigmaX[i4_part_id]);
u8_temp_var = pu8_sigmaXSquared[i4_part_id] - u8_X_Square;
if(i4_inv_wpred_wt != i4_default_src_wt)
{
i4_inv_wpred_wt = i4_inv_wpred_wt >> i4_inv_wt_shift_val;
u8_temp_var = SHR_NEG(
(u8_temp_var * i4_inv_wpred_wt * i4_inv_wpred_wt),
(30 - (2 * i4_inv_wt_shift_val) - i4_wpred_log_wdc * 2));
}
GETRANGE64(i4_bits_req, u8_temp_var);
if(i4_bits_req > 27)
{
*u8_var = u8_temp_var >> (i4_bits_req - 27);
return (i4_bits_req - 27);
}
else
{
*u8_var = u8_temp_var;
return 0;
}
}
unsigned long ihevce_calc_variance_for_diff_weights(
ULWORD64 *pu8_sigmaX,
ULWORD64 *pu8_sigmaXSquared,
ULWORD64 *u8_var,
WORD32 *pi4_inv_wt,
WORD32 *pi4_inv_wt_shift_val,
pu_result_t *ps_result,
WORD32 i4_wpred_log_wdc,
PART_ID_T *pe_part_id,
UWORD8 u1_cu_size,
UWORD8 u1_num_parts,
UWORD8 u1_is_for_src)
{
WORD32 i4_k;
UWORD32 u4_wd, u4_ht;
UWORD8 u1_num_base_blks;
UWORD32 u4_num_pixels_in_part;
UWORD8 u1_index;
WORD32 i4_bits_req;
UWORD8 u1_base_blk_size = 4;
UWORD32 u4_tot_num_pixels = u1_cu_size * u1_cu_size;
ULWORD64 u8_temp_sigmaX[MAX_NUM_INTER_PARTS] = { 0, 0 };
ULWORD64 u8_temp_sigmaXsquared[MAX_NUM_INTER_PARTS] = { 0, 0 };
ULWORD64 u8_z;
const WORD32 i4_default_src_wt = ((1 << 15) + (WGHT_DEFAULT >> 1)) / WGHT_DEFAULT;
for(i4_k = 0; i4_k < u1_num_parts; i4_k++)
{
u4_wd = ps_result[i4_k].pu.b4_wd + 1;
u4_ht = ps_result[i4_k].pu.b4_ht + 1;
u1_num_base_blks = u4_wd * u4_ht;
u4_num_pixels_in_part = u1_num_base_blks * u1_base_blk_size * u1_base_blk_size;
if(u1_is_for_src)
{
u1_index = pe_part_id[i4_k];
}
else
{
u1_index = i4_k;
}
u8_temp_sigmaXsquared[i4_k] = pu8_sigmaXSquared[u1_index] / u4_num_pixels_in_part;
u8_temp_sigmaX[i4_k] = pu8_sigmaX[u1_index];
if(u1_is_for_src)
{
if(pi4_inv_wt[i4_k] != i4_default_src_wt)
{
pi4_inv_wt[i4_k] = pi4_inv_wt[i4_k] >> pi4_inv_wt_shift_val[i4_k];
u8_temp_sigmaX[i4_k] = SHR_NEG(
(u8_temp_sigmaX[i4_k] * pi4_inv_wt[i4_k]),
(15 - pi4_inv_wt_shift_val[i4_k] - i4_wpred_log_wdc));
u8_temp_sigmaXsquared[i4_k] = SHR_NEG(
(u8_temp_sigmaXsquared[i4_k] * pi4_inv_wt[i4_k] * pi4_inv_wt[i4_k]),
(30 - (2 * pi4_inv_wt_shift_val[i4_k]) - i4_wpred_log_wdc * 2));
}
}
}
u8_z = (u4_tot_num_pixels * (u8_temp_sigmaXsquared[0] + u8_temp_sigmaXsquared[1])) -
((u8_temp_sigmaX[0] + u8_temp_sigmaX[1]) * (u8_temp_sigmaX[0] + u8_temp_sigmaX[1]));
GETRANGE64(i4_bits_req, u8_z);
if(i4_bits_req > 27)
{
*u8_var = u8_z >> (i4_bits_req - 27);
return (i4_bits_req - 27);
}
else
{
*u8_var = u8_z;
return 0;
}
}