867 lines
26 KiB
C++
867 lines
26 KiB
C++
// Copyright 2014 PDFium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
|
|
|
|
#include "core/fxcodec/flate/flatemodule.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "core/fxcodec/fx_codec.h"
|
|
#include "core/fxcodec/scanlinedecoder.h"
|
|
#include "core/fxcrt/fx_extension.h"
|
|
#include "core/fxcrt/fx_memory_wrappers.h"
|
|
#include "third_party/base/numerics/safe_conversions.h"
|
|
#include "third_party/base/ptr_util.h"
|
|
#include "third_party/base/span.h"
|
|
|
|
#if defined(USE_SYSTEM_ZLIB)
|
|
#include <zlib.h>
|
|
#else
|
|
#include "third_party/zlib/zlib.h"
|
|
#endif
|
|
|
|
extern "C" {
|
|
|
|
static void* my_alloc_func(void* opaque,
|
|
unsigned int items,
|
|
unsigned int size) {
|
|
return FX_Alloc2D(uint8_t, items, size);
|
|
}
|
|
|
|
static void my_free_func(void* opaque, void* address) {
|
|
FX_Free(address);
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
namespace fxcodec {
|
|
|
|
namespace {
|
|
|
|
static constexpr uint32_t kMaxTotalOutSize = 1024 * 1024 * 1024; // 1 GiB
|
|
|
|
uint32_t FlateGetPossiblyTruncatedTotalOut(z_stream* context) {
|
|
return std::min(pdfium::base::saturated_cast<uint32_t>(context->total_out),
|
|
kMaxTotalOutSize);
|
|
}
|
|
|
|
uint32_t FlateGetPossiblyTruncatedTotalIn(z_stream* context) {
|
|
return pdfium::base::saturated_cast<uint32_t>(context->total_in);
|
|
}
|
|
|
|
bool FlateCompress(unsigned char* dest_buf,
|
|
unsigned long* dest_size,
|
|
const unsigned char* src_buf,
|
|
uint32_t src_size) {
|
|
return compress(dest_buf, dest_size, src_buf, src_size) == Z_OK;
|
|
}
|
|
|
|
z_stream* FlateInit() {
|
|
z_stream* p = FX_Alloc(z_stream, 1);
|
|
p->zalloc = my_alloc_func;
|
|
p->zfree = my_free_func;
|
|
inflateInit(p);
|
|
return p;
|
|
}
|
|
|
|
void FlateInput(z_stream* context, pdfium::span<const uint8_t> src_buf) {
|
|
context->next_in = const_cast<unsigned char*>(src_buf.data());
|
|
context->avail_in = static_cast<uint32_t>(src_buf.size());
|
|
}
|
|
|
|
uint32_t FlateOutput(z_stream* context,
|
|
unsigned char* dest_buf,
|
|
uint32_t dest_size) {
|
|
context->next_out = dest_buf;
|
|
context->avail_out = dest_size;
|
|
uint32_t pre_pos = FlateGetPossiblyTruncatedTotalOut(context);
|
|
int ret = inflate(static_cast<z_stream*>(context), Z_SYNC_FLUSH);
|
|
|
|
uint32_t post_pos = FlateGetPossiblyTruncatedTotalOut(context);
|
|
ASSERT(post_pos >= pre_pos);
|
|
|
|
uint32_t written = post_pos - pre_pos;
|
|
if (written < dest_size)
|
|
memset(dest_buf + written, '\0', dest_size - written);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t FlateGetAvailOut(z_stream* context) {
|
|
return context->avail_out;
|
|
}
|
|
|
|
void FlateEnd(z_stream* context) {
|
|
inflateEnd(context);
|
|
FX_Free(context);
|
|
}
|
|
|
|
// For use with std::unique_ptr<z_stream>.
|
|
struct FlateDeleter {
|
|
inline void operator()(z_stream* context) { FlateEnd(context); }
|
|
};
|
|
|
|
class CLZWDecoder {
|
|
public:
|
|
CLZWDecoder(pdfium::span<const uint8_t> src_span, bool early_change);
|
|
|
|
bool Decode();
|
|
uint32_t GetSrcSize() const { return (src_bit_pos_ + 7) / 8; }
|
|
uint32_t GetDestSize() const { return dest_byte_pos_; }
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> TakeDestBuf() {
|
|
return std::move(dest_buf_);
|
|
}
|
|
|
|
private:
|
|
void AddCode(uint32_t prefix_code, uint8_t append_char);
|
|
void DecodeString(uint32_t code);
|
|
void ExpandDestBuf(uint32_t additional_size);
|
|
|
|
pdfium::span<const uint8_t> const src_span_;
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> dest_buf_;
|
|
uint32_t src_bit_pos_ = 0;
|
|
uint32_t dest_buf_size_ = 0; // Actual allocated size.
|
|
uint32_t dest_byte_pos_ = 0; // Size used.
|
|
uint32_t stack_len_ = 0;
|
|
uint8_t decode_stack_[4000];
|
|
const uint8_t early_change_;
|
|
uint8_t code_len_ = 9;
|
|
uint32_t current_code_ = 0;
|
|
uint32_t codes_[5021];
|
|
};
|
|
|
|
CLZWDecoder::CLZWDecoder(pdfium::span<const uint8_t> src_span,
|
|
bool early_change)
|
|
: src_span_(src_span), early_change_(early_change ? 1 : 0) {}
|
|
|
|
void CLZWDecoder::AddCode(uint32_t prefix_code, uint8_t append_char) {
|
|
if (current_code_ + early_change_ == 4094)
|
|
return;
|
|
|
|
codes_[current_code_++] = (prefix_code << 16) | append_char;
|
|
if (current_code_ + early_change_ == 512 - 258)
|
|
code_len_ = 10;
|
|
else if (current_code_ + early_change_ == 1024 - 258)
|
|
code_len_ = 11;
|
|
else if (current_code_ + early_change_ == 2048 - 258)
|
|
code_len_ = 12;
|
|
}
|
|
|
|
void CLZWDecoder::DecodeString(uint32_t code) {
|
|
while (1) {
|
|
int index = code - 258;
|
|
if (index < 0 || static_cast<uint32_t>(index) >= current_code_)
|
|
break;
|
|
|
|
uint32_t data = codes_[index];
|
|
if (stack_len_ >= sizeof(decode_stack_))
|
|
return;
|
|
|
|
decode_stack_[stack_len_++] = static_cast<uint8_t>(data);
|
|
code = data >> 16;
|
|
}
|
|
if (stack_len_ >= sizeof(decode_stack_))
|
|
return;
|
|
|
|
decode_stack_[stack_len_++] = static_cast<uint8_t>(code);
|
|
}
|
|
|
|
void CLZWDecoder::ExpandDestBuf(uint32_t additional_size) {
|
|
FX_SAFE_UINT32 new_size = std::max(dest_buf_size_ / 2, additional_size);
|
|
new_size += dest_buf_size_;
|
|
if (!new_size.IsValid()) {
|
|
dest_buf_.reset();
|
|
return;
|
|
}
|
|
|
|
dest_buf_size_ = new_size.ValueOrDie();
|
|
dest_buf_.reset(FX_Realloc(uint8_t, dest_buf_.release(), dest_buf_size_));
|
|
}
|
|
|
|
bool CLZWDecoder::Decode() {
|
|
uint32_t old_code = 0xFFFFFFFF;
|
|
uint8_t last_char = 0;
|
|
|
|
// In one PDF test set, 40% of Decode() calls did not need to realloc with
|
|
// this size.
|
|
dest_buf_size_ = 512;
|
|
dest_buf_.reset(FX_Alloc(uint8_t, dest_buf_size_));
|
|
while (1) {
|
|
if (src_bit_pos_ + code_len_ > src_span_.size() * 8)
|
|
break;
|
|
|
|
int byte_pos = src_bit_pos_ / 8;
|
|
int bit_pos = src_bit_pos_ % 8;
|
|
uint8_t bit_left = code_len_;
|
|
uint32_t code = 0;
|
|
if (bit_pos) {
|
|
bit_left -= 8 - bit_pos;
|
|
code = (src_span_[byte_pos++] & ((1 << (8 - bit_pos)) - 1)) << bit_left;
|
|
}
|
|
if (bit_left < 8) {
|
|
code |= src_span_[byte_pos] >> (8 - bit_left);
|
|
} else {
|
|
bit_left -= 8;
|
|
code |= src_span_[byte_pos++] << bit_left;
|
|
if (bit_left)
|
|
code |= src_span_[byte_pos] >> (8 - bit_left);
|
|
}
|
|
src_bit_pos_ += code_len_;
|
|
|
|
if (code < 256) {
|
|
if (dest_byte_pos_ >= dest_buf_size_) {
|
|
ExpandDestBuf(dest_byte_pos_ - dest_buf_size_ + 1);
|
|
if (!dest_buf_)
|
|
return false;
|
|
}
|
|
|
|
dest_buf_.get()[dest_byte_pos_] = (uint8_t)code;
|
|
dest_byte_pos_++;
|
|
last_char = (uint8_t)code;
|
|
if (old_code != 0xFFFFFFFF)
|
|
AddCode(old_code, last_char);
|
|
old_code = code;
|
|
continue;
|
|
}
|
|
if (code == 256) {
|
|
code_len_ = 9;
|
|
current_code_ = 0;
|
|
old_code = 0xFFFFFFFF;
|
|
continue;
|
|
}
|
|
if (code == 257)
|
|
break;
|
|
|
|
// Case where |code| is 258 or greater.
|
|
if (old_code == 0xFFFFFFFF)
|
|
return false;
|
|
|
|
ASSERT(old_code < 256 || old_code >= 258);
|
|
stack_len_ = 0;
|
|
if (code - 258 >= current_code_) {
|
|
if (stack_len_ < sizeof(decode_stack_))
|
|
decode_stack_[stack_len_++] = last_char;
|
|
DecodeString(old_code);
|
|
} else {
|
|
DecodeString(code);
|
|
}
|
|
|
|
FX_SAFE_UINT32 safe_required_size = dest_byte_pos_;
|
|
safe_required_size += stack_len_;
|
|
if (!safe_required_size.IsValid())
|
|
return false;
|
|
|
|
uint32_t required_size = safe_required_size.ValueOrDie();
|
|
if (required_size > dest_buf_size_) {
|
|
ExpandDestBuf(required_size - dest_buf_size_);
|
|
if (!dest_buf_)
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < stack_len_; i++)
|
|
dest_buf_.get()[dest_byte_pos_ + i] = decode_stack_[stack_len_ - i - 1];
|
|
dest_byte_pos_ += stack_len_;
|
|
last_char = decode_stack_[stack_len_ - 1];
|
|
if (old_code >= 258 && old_code - 258 >= current_code_)
|
|
break;
|
|
|
|
AddCode(old_code, last_char);
|
|
old_code = code;
|
|
}
|
|
return dest_byte_pos_ != 0;
|
|
}
|
|
|
|
uint8_t PathPredictor(int a, int b, int c) {
|
|
int p = a + b - c;
|
|
int pa = abs(p - a);
|
|
int pb = abs(p - b);
|
|
int pc = abs(p - c);
|
|
if (pa <= pb && pa <= pc)
|
|
return (uint8_t)a;
|
|
if (pb <= pc)
|
|
return (uint8_t)b;
|
|
return (uint8_t)c;
|
|
}
|
|
|
|
void PNG_PredictLine(uint8_t* pDestData,
|
|
const uint8_t* pSrcData,
|
|
const uint8_t* pLastLine,
|
|
int bpc,
|
|
int nColors,
|
|
int nPixels) {
|
|
const uint32_t row_size = CalculatePitch8(bpc, nColors, nPixels).ValueOrDie();
|
|
const uint32_t BytesPerPixel = (bpc * nColors + 7) / 8;
|
|
uint8_t tag = pSrcData[0];
|
|
if (tag == 0) {
|
|
memmove(pDestData, pSrcData + 1, row_size);
|
|
return;
|
|
}
|
|
for (uint32_t byte = 0; byte < row_size; ++byte) {
|
|
uint8_t raw_byte = pSrcData[byte + 1];
|
|
switch (tag) {
|
|
case 1: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
pDestData[byte] = raw_byte + left;
|
|
break;
|
|
}
|
|
case 2: {
|
|
uint8_t up = 0;
|
|
if (pLastLine) {
|
|
up = pLastLine[byte];
|
|
}
|
|
pDestData[byte] = raw_byte + up;
|
|
break;
|
|
}
|
|
case 3: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
uint8_t up = 0;
|
|
if (pLastLine) {
|
|
up = pLastLine[byte];
|
|
}
|
|
pDestData[byte] = raw_byte + (up + left) / 2;
|
|
break;
|
|
}
|
|
case 4: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
uint8_t up = 0;
|
|
if (pLastLine) {
|
|
up = pLastLine[byte];
|
|
}
|
|
uint8_t upper_left = 0;
|
|
if (byte >= BytesPerPixel && pLastLine) {
|
|
upper_left = pLastLine[byte - BytesPerPixel];
|
|
}
|
|
pDestData[byte] = raw_byte + PathPredictor(left, up, upper_left);
|
|
break;
|
|
}
|
|
default:
|
|
pDestData[byte] = raw_byte;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool PNG_Predictor(int Colors,
|
|
int BitsPerComponent,
|
|
int Columns,
|
|
std::unique_ptr<uint8_t, FxFreeDeleter>* data_buf,
|
|
uint32_t* data_size) {
|
|
// TODO(thestig): Look into using CalculatePitch8() here.
|
|
const int BytesPerPixel = (Colors * BitsPerComponent + 7) / 8;
|
|
const int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
|
|
if (row_size <= 0)
|
|
return false;
|
|
const int row_count = (*data_size + row_size) / (row_size + 1);
|
|
if (row_count <= 0)
|
|
return false;
|
|
const int last_row_size = *data_size % (row_size + 1);
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> dest_buf(
|
|
FX_Alloc2D(uint8_t, row_size, row_count));
|
|
uint32_t byte_cnt = 0;
|
|
uint8_t* pSrcData = data_buf->get();
|
|
uint8_t* pDestData = dest_buf.get();
|
|
for (int row = 0; row < row_count; row++) {
|
|
uint8_t tag = pSrcData[0];
|
|
byte_cnt++;
|
|
if (tag == 0) {
|
|
int move_size = row_size;
|
|
if ((row + 1) * (move_size + 1) > static_cast<int>(*data_size)) {
|
|
move_size = last_row_size - 1;
|
|
}
|
|
memcpy(pDestData, pSrcData + 1, move_size);
|
|
pSrcData += move_size + 1;
|
|
pDestData += move_size;
|
|
byte_cnt += move_size;
|
|
continue;
|
|
}
|
|
for (int byte = 0; byte < row_size && byte_cnt < *data_size;
|
|
++byte, ++byte_cnt) {
|
|
uint8_t raw_byte = pSrcData[byte + 1];
|
|
switch (tag) {
|
|
case 1: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
pDestData[byte] = raw_byte + left;
|
|
break;
|
|
}
|
|
case 2: {
|
|
uint8_t up = 0;
|
|
if (row) {
|
|
up = pDestData[byte - row_size];
|
|
}
|
|
pDestData[byte] = raw_byte + up;
|
|
break;
|
|
}
|
|
case 3: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
uint8_t up = 0;
|
|
if (row) {
|
|
up = pDestData[byte - row_size];
|
|
}
|
|
pDestData[byte] = raw_byte + (up + left) / 2;
|
|
break;
|
|
}
|
|
case 4: {
|
|
uint8_t left = 0;
|
|
if (byte >= BytesPerPixel) {
|
|
left = pDestData[byte - BytesPerPixel];
|
|
}
|
|
uint8_t up = 0;
|
|
if (row) {
|
|
up = pDestData[byte - row_size];
|
|
}
|
|
uint8_t upper_left = 0;
|
|
if (byte >= BytesPerPixel && row) {
|
|
upper_left = pDestData[byte - row_size - BytesPerPixel];
|
|
}
|
|
pDestData[byte] = raw_byte + PathPredictor(left, up, upper_left);
|
|
break;
|
|
}
|
|
default:
|
|
pDestData[byte] = raw_byte;
|
|
break;
|
|
}
|
|
}
|
|
pSrcData += row_size + 1;
|
|
pDestData += row_size;
|
|
}
|
|
*data_buf = std::move(dest_buf);
|
|
*data_size = row_size * row_count -
|
|
(last_row_size > 0 ? (row_size + 1 - last_row_size) : 0);
|
|
return true;
|
|
}
|
|
|
|
void TIFF_PredictLine(uint8_t* dest_buf,
|
|
uint32_t row_size,
|
|
int BitsPerComponent,
|
|
int Colors,
|
|
int Columns) {
|
|
if (BitsPerComponent == 1) {
|
|
int row_bits = std::min(BitsPerComponent * Colors * Columns,
|
|
pdfium::base::checked_cast<int>(row_size * 8));
|
|
int index_pre = 0;
|
|
int col_pre = 0;
|
|
for (int i = 1; i < row_bits; i++) {
|
|
int col = i % 8;
|
|
int index = i / 8;
|
|
if (((dest_buf[index] >> (7 - col)) & 1) ^
|
|
((dest_buf[index_pre] >> (7 - col_pre)) & 1)) {
|
|
dest_buf[index] |= 1 << (7 - col);
|
|
} else {
|
|
dest_buf[index] &= ~(1 << (7 - col));
|
|
}
|
|
index_pre = index;
|
|
col_pre = col;
|
|
}
|
|
return;
|
|
}
|
|
int BytesPerPixel = BitsPerComponent * Colors / 8;
|
|
if (BitsPerComponent == 16) {
|
|
for (uint32_t i = BytesPerPixel; i + 1 < row_size; i += 2) {
|
|
uint16_t pixel =
|
|
(dest_buf[i - BytesPerPixel] << 8) | dest_buf[i - BytesPerPixel + 1];
|
|
pixel += (dest_buf[i] << 8) | dest_buf[i + 1];
|
|
dest_buf[i] = pixel >> 8;
|
|
dest_buf[i + 1] = (uint8_t)pixel;
|
|
}
|
|
} else {
|
|
for (uint32_t i = BytesPerPixel; i < row_size; i++) {
|
|
dest_buf[i] += dest_buf[i - BytesPerPixel];
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TIFF_Predictor(int Colors,
|
|
int BitsPerComponent,
|
|
int Columns,
|
|
std::unique_ptr<uint8_t, FxFreeDeleter>* data_buf,
|
|
uint32_t* data_size) {
|
|
int row_size = (Colors * BitsPerComponent * Columns + 7) / 8;
|
|
if (row_size == 0)
|
|
return false;
|
|
const int row_count = (*data_size + row_size - 1) / row_size;
|
|
const int last_row_size = *data_size % row_size;
|
|
for (int row = 0; row < row_count; row++) {
|
|
uint8_t* scan_line = data_buf->get() + row * row_size;
|
|
if ((row + 1) * row_size > static_cast<int>(*data_size)) {
|
|
row_size = last_row_size;
|
|
}
|
|
TIFF_PredictLine(scan_line, row_size, BitsPerComponent, Colors, Columns);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void FlateUncompress(pdfium::span<const uint8_t> src_buf,
|
|
uint32_t orig_size,
|
|
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
|
|
uint32_t* dest_size,
|
|
uint32_t* offset) {
|
|
dest_buf->reset();
|
|
*dest_size = 0;
|
|
|
|
std::unique_ptr<z_stream, FlateDeleter> context(FlateInit());
|
|
if (!context)
|
|
return;
|
|
|
|
FlateInput(context.get(), src_buf);
|
|
|
|
const uint32_t kMaxInitialAllocSize = 10000000;
|
|
uint32_t guess_size = orig_size ? orig_size : src_buf.size() * 2;
|
|
guess_size = std::min(guess_size, kMaxInitialAllocSize);
|
|
|
|
uint32_t buf_size = guess_size;
|
|
uint32_t last_buf_size = buf_size;
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> guess_buf(
|
|
FX_Alloc(uint8_t, guess_size + 1));
|
|
guess_buf.get()[guess_size] = '\0';
|
|
|
|
std::vector<std::unique_ptr<uint8_t, FxFreeDeleter>> result_tmp_bufs;
|
|
{
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> cur_buf = std::move(guess_buf);
|
|
while (1) {
|
|
uint32_t ret = FlateOutput(context.get(), cur_buf.get(), buf_size);
|
|
uint32_t avail_buf_size = FlateGetAvailOut(context.get());
|
|
if (ret != Z_OK || avail_buf_size != 0) {
|
|
last_buf_size = buf_size - avail_buf_size;
|
|
result_tmp_bufs.push_back(std::move(cur_buf));
|
|
break;
|
|
}
|
|
result_tmp_bufs.push_back(std::move(cur_buf));
|
|
cur_buf.reset(FX_Alloc(uint8_t, buf_size + 1));
|
|
cur_buf.get()[buf_size] = '\0';
|
|
}
|
|
}
|
|
|
|
// The TotalOut size returned from the library may not be big enough to
|
|
// handle the content the library returns. We can only handle items
|
|
// up to 4GB in size.
|
|
*dest_size = FlateGetPossiblyTruncatedTotalOut(context.get());
|
|
*offset = FlateGetPossiblyTruncatedTotalIn(context.get());
|
|
if (result_tmp_bufs.size() == 1) {
|
|
*dest_buf = std::move(result_tmp_bufs[0]);
|
|
return;
|
|
}
|
|
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> result_buf(
|
|
FX_Alloc(uint8_t, *dest_size));
|
|
uint32_t result_pos = 0;
|
|
uint32_t remaining = *dest_size;
|
|
for (size_t i = 0; i < result_tmp_bufs.size(); i++) {
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> tmp_buf =
|
|
std::move(result_tmp_bufs[i]);
|
|
uint32_t tmp_buf_size = buf_size;
|
|
if (i == result_tmp_bufs.size() - 1)
|
|
tmp_buf_size = last_buf_size;
|
|
|
|
uint32_t cp_size = std::min(tmp_buf_size, remaining);
|
|
memcpy(result_buf.get() + result_pos, tmp_buf.get(), cp_size);
|
|
result_pos += cp_size;
|
|
remaining -= cp_size;
|
|
}
|
|
*dest_buf = std::move(result_buf);
|
|
}
|
|
|
|
enum class PredictorType : uint8_t { kNone, kFlate, kPng };
|
|
static PredictorType GetPredictor(int predictor) {
|
|
if (predictor >= 10)
|
|
return PredictorType::kPng;
|
|
if (predictor == 2)
|
|
return PredictorType::kFlate;
|
|
return PredictorType::kNone;
|
|
}
|
|
|
|
class FlateScanlineDecoder : public ScanlineDecoder {
|
|
public:
|
|
FlateScanlineDecoder(pdfium::span<const uint8_t> src_span,
|
|
int width,
|
|
int height,
|
|
int nComps,
|
|
int bpc);
|
|
~FlateScanlineDecoder() override;
|
|
|
|
// ScanlineDecoder:
|
|
bool v_Rewind() override;
|
|
uint8_t* v_GetNextLine() override;
|
|
uint32_t GetSrcOffset() override;
|
|
|
|
protected:
|
|
std::unique_ptr<z_stream, FlateDeleter> m_pFlate;
|
|
const pdfium::span<const uint8_t> m_SrcBuf;
|
|
std::unique_ptr<uint8_t, FxFreeDeleter> const m_pScanline;
|
|
};
|
|
|
|
FlateScanlineDecoder::FlateScanlineDecoder(pdfium::span<const uint8_t> src_span,
|
|
int width,
|
|
int height,
|
|
int nComps,
|
|
int bpc)
|
|
: ScanlineDecoder(width,
|
|
height,
|
|
width,
|
|
height,
|
|
nComps,
|
|
bpc,
|
|
CalculatePitch8(bpc, nComps, width).ValueOrDie()),
|
|
m_SrcBuf(src_span),
|
|
m_pScanline(FX_Alloc(uint8_t, m_Pitch)) {}
|
|
|
|
FlateScanlineDecoder::~FlateScanlineDecoder() = default;
|
|
|
|
bool FlateScanlineDecoder::v_Rewind() {
|
|
m_pFlate.reset(FlateInit());
|
|
if (!m_pFlate)
|
|
return false;
|
|
|
|
FlateInput(m_pFlate.get(), m_SrcBuf);
|
|
return true;
|
|
}
|
|
|
|
uint8_t* FlateScanlineDecoder::v_GetNextLine() {
|
|
FlateOutput(m_pFlate.get(), m_pScanline.get(), m_Pitch);
|
|
return m_pScanline.get();
|
|
}
|
|
|
|
uint32_t FlateScanlineDecoder::GetSrcOffset() {
|
|
return FlateGetPossiblyTruncatedTotalIn(m_pFlate.get());
|
|
}
|
|
|
|
class FlatePredictorScanlineDecoder final : public FlateScanlineDecoder {
|
|
public:
|
|
FlatePredictorScanlineDecoder(pdfium::span<const uint8_t> src_span,
|
|
int width,
|
|
int height,
|
|
int comps,
|
|
int bpc,
|
|
PredictorType predictor,
|
|
int Colors,
|
|
int BitsPerComponent,
|
|
int Columns);
|
|
~FlatePredictorScanlineDecoder() override;
|
|
|
|
// ScanlineDecoder:
|
|
bool v_Rewind() override;
|
|
uint8_t* v_GetNextLine() override;
|
|
|
|
private:
|
|
void GetNextLineWithPredictedPitch();
|
|
void GetNextLineWithoutPredictedPitch();
|
|
|
|
const PredictorType m_Predictor;
|
|
int m_Colors = 0;
|
|
int m_BitsPerComponent = 0;
|
|
int m_Columns = 0;
|
|
uint32_t m_PredictPitch = 0;
|
|
size_t m_LeftOver = 0;
|
|
std::vector<uint8_t, FxAllocAllocator<uint8_t>> m_LastLine;
|
|
std::vector<uint8_t, FxAllocAllocator<uint8_t>> m_PredictBuffer;
|
|
std::vector<uint8_t, FxAllocAllocator<uint8_t>> m_PredictRaw;
|
|
};
|
|
|
|
FlatePredictorScanlineDecoder::FlatePredictorScanlineDecoder(
|
|
pdfium::span<const uint8_t> src_span,
|
|
int width,
|
|
int height,
|
|
int comps,
|
|
int bpc,
|
|
PredictorType predictor,
|
|
int Colors,
|
|
int BitsPerComponent,
|
|
int Columns)
|
|
: FlateScanlineDecoder(src_span, width, height, comps, bpc),
|
|
m_Predictor(predictor) {
|
|
ASSERT(m_Predictor != PredictorType::kNone);
|
|
if (BitsPerComponent * Colors * Columns == 0) {
|
|
BitsPerComponent = m_bpc;
|
|
Colors = m_nComps;
|
|
Columns = m_OrigWidth;
|
|
}
|
|
m_Colors = Colors;
|
|
m_BitsPerComponent = BitsPerComponent;
|
|
m_Columns = Columns;
|
|
m_PredictPitch =
|
|
CalculatePitch8(m_BitsPerComponent, m_Colors, m_Columns).ValueOrDie();
|
|
m_LastLine.resize(m_PredictPitch);
|
|
m_PredictBuffer.resize(m_PredictPitch);
|
|
m_PredictRaw.resize(m_PredictPitch + 1);
|
|
}
|
|
|
|
FlatePredictorScanlineDecoder::~FlatePredictorScanlineDecoder() = default;
|
|
|
|
bool FlatePredictorScanlineDecoder::v_Rewind() {
|
|
if (!FlateScanlineDecoder::v_Rewind())
|
|
return false;
|
|
|
|
m_LeftOver = 0;
|
|
return true;
|
|
}
|
|
|
|
uint8_t* FlatePredictorScanlineDecoder::v_GetNextLine() {
|
|
if (m_Pitch == m_PredictPitch)
|
|
GetNextLineWithPredictedPitch();
|
|
else
|
|
GetNextLineWithoutPredictedPitch();
|
|
return m_pScanline.get();
|
|
}
|
|
|
|
void FlatePredictorScanlineDecoder::GetNextLineWithPredictedPitch() {
|
|
switch (m_Predictor) {
|
|
case PredictorType::kPng:
|
|
FlateOutput(m_pFlate.get(), m_PredictRaw.data(), m_PredictPitch + 1);
|
|
PNG_PredictLine(m_pScanline.get(), m_PredictRaw.data(), m_LastLine.data(),
|
|
m_BitsPerComponent, m_Colors, m_Columns);
|
|
memcpy(m_LastLine.data(), m_pScanline.get(), m_PredictPitch);
|
|
break;
|
|
case PredictorType::kFlate:
|
|
FlateOutput(m_pFlate.get(), m_pScanline.get(), m_Pitch);
|
|
TIFF_PredictLine(m_pScanline.get(), m_PredictPitch, m_bpc, m_nComps,
|
|
m_OutputWidth);
|
|
break;
|
|
default:
|
|
NOTREACHED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void FlatePredictorScanlineDecoder::GetNextLineWithoutPredictedPitch() {
|
|
size_t bytes_to_go = m_Pitch;
|
|
size_t read_leftover = m_LeftOver > bytes_to_go ? bytes_to_go : m_LeftOver;
|
|
if (read_leftover) {
|
|
memcpy(m_pScanline.get(), &m_PredictBuffer[m_PredictPitch - m_LeftOver],
|
|
read_leftover);
|
|
m_LeftOver -= read_leftover;
|
|
bytes_to_go -= read_leftover;
|
|
}
|
|
while (bytes_to_go) {
|
|
switch (m_Predictor) {
|
|
case PredictorType::kPng:
|
|
FlateOutput(m_pFlate.get(), m_PredictRaw.data(), m_PredictPitch + 1);
|
|
PNG_PredictLine(m_PredictBuffer.data(), m_PredictRaw.data(),
|
|
m_LastLine.data(), m_BitsPerComponent, m_Colors,
|
|
m_Columns);
|
|
memcpy(m_LastLine.data(), m_PredictBuffer.data(), m_PredictPitch);
|
|
break;
|
|
case PredictorType::kFlate:
|
|
FlateOutput(m_pFlate.get(), m_PredictBuffer.data(), m_PredictPitch);
|
|
TIFF_PredictLine(m_PredictBuffer.data(), m_PredictPitch,
|
|
m_BitsPerComponent, m_Colors, m_Columns);
|
|
break;
|
|
default:
|
|
NOTREACHED();
|
|
break;
|
|
}
|
|
size_t read_bytes =
|
|
m_PredictPitch > bytes_to_go ? bytes_to_go : m_PredictPitch;
|
|
memcpy(m_pScanline.get() + m_Pitch - bytes_to_go, m_PredictBuffer.data(),
|
|
read_bytes);
|
|
m_LeftOver += m_PredictPitch - read_bytes;
|
|
bytes_to_go -= read_bytes;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// static
|
|
std::unique_ptr<ScanlineDecoder> FlateModule::CreateDecoder(
|
|
pdfium::span<const uint8_t> src_span,
|
|
int width,
|
|
int height,
|
|
int nComps,
|
|
int bpc,
|
|
int predictor,
|
|
int Colors,
|
|
int BitsPerComponent,
|
|
int Columns) {
|
|
PredictorType predictor_type = GetPredictor(predictor);
|
|
if (predictor_type == PredictorType::kNone) {
|
|
return pdfium::MakeUnique<FlateScanlineDecoder>(src_span, width, height,
|
|
nComps, bpc);
|
|
}
|
|
return pdfium::MakeUnique<FlatePredictorScanlineDecoder>(
|
|
src_span, width, height, nComps, bpc, predictor_type, Colors,
|
|
BitsPerComponent, Columns);
|
|
}
|
|
|
|
// static
|
|
uint32_t FlateModule::FlateOrLZWDecode(
|
|
bool bLZW,
|
|
pdfium::span<const uint8_t> src_span,
|
|
bool bEarlyChange,
|
|
int predictor,
|
|
int Colors,
|
|
int BitsPerComponent,
|
|
int Columns,
|
|
uint32_t estimated_size,
|
|
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
|
|
uint32_t* dest_size) {
|
|
dest_buf->reset();
|
|
uint32_t offset = 0;
|
|
PredictorType predictor_type = GetPredictor(predictor);
|
|
|
|
if (bLZW) {
|
|
auto decoder = pdfium::MakeUnique<CLZWDecoder>(src_span, bEarlyChange);
|
|
if (!decoder->Decode())
|
|
return FX_INVALID_OFFSET;
|
|
|
|
offset = decoder->GetSrcSize();
|
|
*dest_size = decoder->GetDestSize();
|
|
*dest_buf = decoder->TakeDestBuf();
|
|
} else {
|
|
FlateUncompress(src_span, estimated_size, dest_buf, dest_size, &offset);
|
|
}
|
|
|
|
bool ret = false;
|
|
switch (predictor_type) {
|
|
case PredictorType::kNone:
|
|
return offset;
|
|
case PredictorType::kPng:
|
|
ret =
|
|
PNG_Predictor(Colors, BitsPerComponent, Columns, dest_buf, dest_size);
|
|
break;
|
|
case PredictorType::kFlate:
|
|
ret = TIFF_Predictor(Colors, BitsPerComponent, Columns, dest_buf,
|
|
dest_size);
|
|
break;
|
|
default:
|
|
NOTREACHED();
|
|
break;
|
|
}
|
|
return ret ? offset : FX_INVALID_OFFSET;
|
|
}
|
|
|
|
// static
|
|
bool FlateModule::Encode(const uint8_t* src_buf,
|
|
uint32_t src_size,
|
|
std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
|
|
uint32_t* dest_size) {
|
|
*dest_size = src_size + src_size / 1000 + 12;
|
|
dest_buf->reset(FX_Alloc(uint8_t, *dest_size));
|
|
unsigned long temp_size = *dest_size;
|
|
if (!FlateCompress(dest_buf->get(), &temp_size, src_buf, src_size))
|
|
return false;
|
|
|
|
*dest_size = (uint32_t)temp_size;
|
|
return true;
|
|
}
|
|
|
|
} // namespace fxcodec
|