android13/external/rust/crates/nix/test/sys/test_socket.rs

1942 lines
67 KiB
Rust

use nix::sys::socket::{AddressFamily, InetAddr, SockAddr, UnixAddr, getsockname, sockaddr, sockaddr_in6, sockaddr_storage_to_addr};
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
use std::mem::{self, MaybeUninit};
use std::net::{self, Ipv6Addr, SocketAddr, SocketAddrV6};
use std::os::unix::io::RawFd;
use std::path::Path;
use std::slice;
use std::str::FromStr;
use libc::{c_char, sockaddr_storage};
#[cfg(any(target_os = "linux", target_os= "android"))]
use crate::*;
#[test]
pub fn test_inetv4_addr_to_sock_addr() {
let actual: net::SocketAddr = FromStr::from_str("127.0.0.1:3000").unwrap();
let addr = InetAddr::from_std(&actual);
match addr {
InetAddr::V4(addr) => {
let ip: u32 = 0x7f00_0001;
let port: u16 = 3000;
let saddr = addr.sin_addr.s_addr;
assert_eq!(saddr, ip.to_be());
assert_eq!(addr.sin_port, port.to_be());
}
_ => panic!("nope"),
}
assert_eq!(addr.to_string(), "127.0.0.1:3000");
let inet = addr.to_std();
assert_eq!(actual, inet);
}
#[test]
pub fn test_inetv4_addr_roundtrip_sockaddr_storage_to_addr() {
let actual: net::SocketAddr = FromStr::from_str("127.0.0.1:3000").unwrap();
let addr = InetAddr::from_std(&actual);
let sockaddr = SockAddr::new_inet(addr);
let (storage, ffi_size) = {
let mut storage = MaybeUninit::<sockaddr_storage>::zeroed();
let storage_ptr = storage.as_mut_ptr().cast::<sockaddr>();
let (ffi_ptr, ffi_size) = sockaddr.as_ffi_pair();
assert_eq!(mem::size_of::<sockaddr>(), ffi_size as usize);
unsafe {
storage_ptr.copy_from_nonoverlapping(ffi_ptr as *const sockaddr, 1);
(storage.assume_init(), ffi_size)
}
};
let from_storage = sockaddr_storage_to_addr(&storage, ffi_size as usize).unwrap();
assert_eq!(from_storage, sockaddr);
let from_storage = sockaddr_storage_to_addr(&storage, mem::size_of::<sockaddr_storage>()).unwrap();
assert_eq!(from_storage, sockaddr);
}
#[test]
pub fn test_inetv6_addr_to_sock_addr() {
let port: u16 = 3000;
let flowinfo: u32 = 1;
let scope_id: u32 = 2;
let ip: Ipv6Addr = "fe80::1".parse().unwrap();
let actual = SocketAddr::V6(SocketAddrV6::new(ip, port, flowinfo, scope_id));
let addr = InetAddr::from_std(&actual);
match addr {
InetAddr::V6(addr) => {
assert_eq!(addr.sin6_port, port.to_be());
assert_eq!(addr.sin6_flowinfo, flowinfo);
assert_eq!(addr.sin6_scope_id, scope_id);
}
_ => panic!("nope"),
}
assert_eq!(actual, addr.to_std());
}
#[test]
pub fn test_inetv6_addr_roundtrip_sockaddr_storage_to_addr() {
let port: u16 = 3000;
let flowinfo: u32 = 1;
let scope_id: u32 = 2;
let ip: Ipv6Addr = "fe80::1".parse().unwrap();
let actual = SocketAddr::V6(SocketAddrV6::new(ip, port, flowinfo, scope_id));
let addr = InetAddr::from_std(&actual);
let sockaddr = SockAddr::new_inet(addr);
let (storage, ffi_size) = {
let mut storage = MaybeUninit::<sockaddr_storage>::zeroed();
let storage_ptr = storage.as_mut_ptr().cast::<sockaddr_in6>();
let (ffi_ptr, ffi_size) = sockaddr.as_ffi_pair();
assert_eq!(mem::size_of::<sockaddr_in6>(), ffi_size as usize);
unsafe {
storage_ptr.copy_from_nonoverlapping((ffi_ptr as *const sockaddr).cast::<sockaddr_in6>(), 1);
(storage.assume_init(), ffi_size)
}
};
let from_storage = sockaddr_storage_to_addr(&storage, ffi_size as usize).unwrap();
assert_eq!(from_storage, sockaddr);
let from_storage = sockaddr_storage_to_addr(&storage, mem::size_of::<sockaddr_storage>()).unwrap();
assert_eq!(from_storage, sockaddr);
}
#[test]
pub fn test_path_to_sock_addr() {
let path = "/foo/bar";
let actual = Path::new(path);
let addr = UnixAddr::new(actual).unwrap();
let expect: &[c_char] = unsafe {
slice::from_raw_parts(path.as_ptr() as *const c_char, path.len())
};
assert_eq!(unsafe { &(*addr.as_ptr()).sun_path[..8] }, expect);
assert_eq!(addr.path(), Some(actual));
}
fn calculate_hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
#[test]
pub fn test_addr_equality_path() {
let path = "/foo/bar";
let actual = Path::new(path);
let addr1 = UnixAddr::new(actual).unwrap();
let mut addr2 = addr1;
unsafe { (*addr2.as_mut_ptr()).sun_path[10] = 127 };
assert_eq!(addr1, addr2);
assert_eq!(calculate_hash(&addr1), calculate_hash(&addr2));
}
#[cfg(any(target_os = "android", target_os = "linux"))]
#[test]
pub fn test_abstract_sun_path_too_long() {
let name = String::from("nix\0abstract\0tesnix\0abstract\0tesnix\0abstract\0tesnix\0abstract\0tesnix\0abstract\0testttttnix\0abstract\0test\0make\0sure\0this\0is\0long\0enough");
let addr = UnixAddr::new_abstract(name.as_bytes());
assert!(addr.is_err());
}
#[cfg(any(target_os = "android", target_os = "linux"))]
#[test]
pub fn test_addr_equality_abstract() {
let name = String::from("nix\0abstract\0test");
let addr1 = UnixAddr::new_abstract(name.as_bytes()).unwrap();
let mut addr2 = addr1;
assert_eq!(addr1, addr2);
assert_eq!(calculate_hash(&addr1), calculate_hash(&addr2));
unsafe { (*addr2.as_mut_ptr()).sun_path[17] = 127 };
assert_ne!(addr1, addr2);
assert_ne!(calculate_hash(&addr1), calculate_hash(&addr2));
}
// Test getting/setting abstract addresses (without unix socket creation)
#[cfg(target_os = "linux")]
#[test]
pub fn test_abstract_uds_addr() {
let empty = String::new();
let addr = UnixAddr::new_abstract(empty.as_bytes()).unwrap();
let sun_path: [u8; 0] = [];
assert_eq!(addr.as_abstract(), Some(&sun_path[..]));
let name = String::from("nix\0abstract\0test");
let addr = UnixAddr::new_abstract(name.as_bytes()).unwrap();
let sun_path = [
110u8, 105, 120, 0, 97, 98, 115, 116, 114, 97, 99, 116, 0, 116, 101, 115, 116
];
assert_eq!(addr.as_abstract(), Some(&sun_path[..]));
assert_eq!(addr.path(), None);
// Internally, name is null-prefixed (abstract namespace)
assert_eq!(unsafe { (*addr.as_ptr()).sun_path[0] }, 0);
}
#[test]
pub fn test_getsockname() {
use nix::sys::socket::{socket, AddressFamily, SockType, SockFlag};
use nix::sys::socket::{bind, SockAddr};
let tempdir = tempfile::tempdir().unwrap();
let sockname = tempdir.path().join("sock");
let sock = socket(AddressFamily::Unix, SockType::Stream, SockFlag::empty(), None)
.expect("socket failed");
let sockaddr = SockAddr::new_unix(&sockname).unwrap();
bind(sock, &sockaddr).expect("bind failed");
assert_eq!(sockaddr, getsockname(sock).expect("getsockname failed"));
}
#[test]
pub fn test_socketpair() {
use nix::unistd::{read, write};
use nix::sys::socket::{socketpair, AddressFamily, SockType, SockFlag};
let (fd1, fd2) = socketpair(AddressFamily::Unix, SockType::Stream, None, SockFlag::empty())
.unwrap();
write(fd1, b"hello").unwrap();
let mut buf = [0;5];
read(fd2, &mut buf).unwrap();
assert_eq!(&buf[..], b"hello");
}
mod recvfrom {
use nix::Result;
use nix::sys::socket::*;
use std::thread;
use super::*;
const MSG: &[u8] = b"Hello, World!";
fn sendrecv<Fs, Fr>(rsock: RawFd, ssock: RawFd, f_send: Fs, mut f_recv: Fr) -> Option<SockAddr>
where
Fs: Fn(RawFd, &[u8], MsgFlags) -> Result<usize> + Send + 'static,
Fr: FnMut(usize, Option<SockAddr>),
{
let mut buf: [u8; 13] = [0u8; 13];
let mut l = 0;
let mut from = None;
let send_thread = thread::spawn(move || {
let mut l = 0;
while l < std::mem::size_of_val(MSG) {
l += f_send(ssock, &MSG[l..], MsgFlags::empty()).unwrap();
}
});
while l < std::mem::size_of_val(MSG) {
let (len, from_) = recvfrom(rsock, &mut buf[l..]).unwrap();
f_recv(len, from_);
from = from_;
l += len;
}
assert_eq!(&buf, MSG);
send_thread.join().unwrap();
from
}
#[test]
pub fn stream() {
let (fd2, fd1) = socketpair(AddressFamily::Unix, SockType::Stream,
None, SockFlag::empty()).unwrap();
// Ignore from for stream sockets
let _ = sendrecv(fd1, fd2, |s, m, flags| {
send(s, m, flags)
}, |_, _| {});
}
#[test]
pub fn udp() {
let std_sa = SocketAddr::from_str("127.0.0.1:6789").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
bind(rsock, &sock_addr).unwrap();
let ssock = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
let from = sendrecv(rsock, ssock, move |s, m, flags| {
sendto(s, m, &sock_addr, flags)
},|_, _| {});
// UDP sockets should set the from address
assert_eq!(AddressFamily::Inet, from.unwrap().family());
}
#[cfg(target_os = "linux")]
mod udp_offload {
use super::*;
use nix::sys::uio::IoVec;
use nix::sys::socket::sockopt::{UdpGroSegment, UdpGsoSegment};
#[test]
// Disable the test under emulation because it fails in Cirrus-CI. Lack
// of QEMU support is suspected.
#[cfg_attr(qemu, ignore)]
pub fn gso() {
require_kernel_version!(udp_offload::gso, ">= 4.18");
// In this test, we send the data and provide a GSO segment size.
// Since we are sending the buffer of size 13, six UDP packets
// with size 2 and two UDP packet with size 1 will be sent.
let segment_size: u16 = 2;
let std_sa = SocketAddr::from_str("127.0.0.1:6791").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
setsockopt(rsock, UdpGsoSegment, &(segment_size as _))
.expect("setsockopt UDP_SEGMENT failed");
bind(rsock, &sock_addr).unwrap();
let ssock = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
let mut num_packets_received: i32 = 0;
sendrecv(rsock, ssock, move |s, m, flags| {
let iov = [IoVec::from_slice(m)];
let cmsg = ControlMessage::UdpGsoSegments(&segment_size);
sendmsg(s, &iov, &[cmsg], flags, Some(&sock_addr))
}, {
let num_packets_received_ref = &mut num_packets_received;
move |len, _| {
// check that we receive UDP packets with payload size
// less or equal to segment size
assert!(len <= segment_size as usize);
*num_packets_received_ref += 1;
}
});
// Buffer size is 13, we will receive six packets of size 2,
// and one packet of size 1.
assert_eq!(7, num_packets_received);
}
#[test]
// Disable the test on emulated platforms because it fails in Cirrus-CI.
// Lack of QEMU support is suspected.
#[cfg_attr(qemu, ignore)]
pub fn gro() {
require_kernel_version!(udp_offload::gro, ">= 5.3");
// It's hard to guarantee receiving GRO packets. Just checking
// that `setsockopt` doesn't fail with error
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
setsockopt(rsock, UdpGroSegment, &true)
.expect("setsockopt UDP_GRO failed");
}
}
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
))]
#[test]
pub fn udp_sendmmsg() {
use nix::sys::uio::IoVec;
let std_sa = SocketAddr::from_str("127.0.0.1:6793").unwrap();
let std_sa2 = SocketAddr::from_str("127.0.0.1:6794").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let inet_addr2 = InetAddr::from_std(&std_sa2);
let sock_addr = SockAddr::new_inet(inet_addr);
let sock_addr2 = SockAddr::new_inet(inet_addr2);
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
bind(rsock, &sock_addr).unwrap();
let ssock = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
let from = sendrecv(rsock, ssock, move |s, m, flags| {
let iov = [IoVec::from_slice(m)];
let mut msgs = vec![
SendMmsgData {
iov: &iov,
cmsgs: &[],
addr: Some(sock_addr),
_lt: Default::default(),
}
];
let batch_size = 15;
for _ in 0..batch_size {
msgs.push(
SendMmsgData {
iov: &iov,
cmsgs: &[],
addr: Some(sock_addr2),
_lt: Default::default(),
}
);
}
sendmmsg(s, msgs.iter(), flags)
.map(move |sent_bytes| {
assert!(!sent_bytes.is_empty());
for sent in &sent_bytes {
assert_eq!(*sent, m.len());
}
sent_bytes.len()
})
}, |_, _ | {});
// UDP sockets should set the from address
assert_eq!(AddressFamily::Inet, from.unwrap().family());
}
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
))]
#[test]
pub fn udp_recvmmsg() {
use nix::sys::uio::IoVec;
use nix::sys::socket::{MsgFlags, recvmmsg};
const NUM_MESSAGES_SENT: usize = 2;
const DATA: [u8; 2] = [1,2];
let std_sa = SocketAddr::from_str("127.0.0.1:6798").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
bind(rsock, &sock_addr).unwrap();
let ssock = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
let send_thread = thread::spawn(move || {
for _ in 0..NUM_MESSAGES_SENT {
sendto(ssock, &DATA[..], &sock_addr, MsgFlags::empty()).unwrap();
}
});
let mut msgs = std::collections::LinkedList::new();
// Buffers to receive exactly `NUM_MESSAGES_SENT` messages
let mut receive_buffers = [[0u8; 32]; NUM_MESSAGES_SENT];
let iovs: Vec<_> = receive_buffers.iter_mut().map(|buf| {
[IoVec::from_mut_slice(&mut buf[..])]
}).collect();
for iov in &iovs {
msgs.push_back(RecvMmsgData {
iov,
cmsg_buffer: None,
})
};
let res = recvmmsg(rsock, &mut msgs, MsgFlags::empty(), None).expect("recvmmsg");
assert_eq!(res.len(), DATA.len());
for RecvMsg { address, bytes, .. } in res.into_iter() {
assert_eq!(AddressFamily::Inet, address.unwrap().family());
assert_eq!(DATA.len(), bytes);
}
for buf in &receive_buffers {
assert_eq!(&buf[..DATA.len()], DATA);
}
send_thread.join().unwrap();
}
#[cfg(any(
target_os = "linux",
target_os = "android",
target_os = "freebsd",
target_os = "netbsd",
))]
#[test]
pub fn udp_recvmmsg_dontwait_short_read() {
use nix::sys::uio::IoVec;
use nix::sys::socket::{MsgFlags, recvmmsg};
const NUM_MESSAGES_SENT: usize = 2;
const DATA: [u8; 4] = [1,2,3,4];
let std_sa = SocketAddr::from_str("127.0.0.1:6799").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
let rsock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None
).unwrap();
bind(rsock, &sock_addr).unwrap();
let ssock = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
let send_thread = thread::spawn(move || {
for _ in 0..NUM_MESSAGES_SENT {
sendto(ssock, &DATA[..], &sock_addr, MsgFlags::empty()).unwrap();
}
});
// Ensure we've sent all the messages before continuing so `recvmmsg`
// will return right away
send_thread.join().unwrap();
let mut msgs = std::collections::LinkedList::new();
// Buffers to receive >`NUM_MESSAGES_SENT` messages to ensure `recvmmsg`
// will return when there are fewer than requested messages in the
// kernel buffers when using `MSG_DONTWAIT`.
let mut receive_buffers = [[0u8; 32]; NUM_MESSAGES_SENT + 2];
let iovs: Vec<_> = receive_buffers.iter_mut().map(|buf| {
[IoVec::from_mut_slice(&mut buf[..])]
}).collect();
for iov in &iovs {
msgs.push_back(RecvMmsgData {
iov,
cmsg_buffer: None,
})
};
let res = recvmmsg(rsock, &mut msgs, MsgFlags::MSG_DONTWAIT, None).expect("recvmmsg");
assert_eq!(res.len(), NUM_MESSAGES_SENT);
for RecvMsg { address, bytes, .. } in res.into_iter() {
assert_eq!(AddressFamily::Inet, address.unwrap().family());
assert_eq!(DATA.len(), bytes);
}
for buf in &receive_buffers[..NUM_MESSAGES_SENT] {
assert_eq!(&buf[..DATA.len()], DATA);
}
}
}
// Test error handling of our recvmsg wrapper
#[test]
pub fn test_recvmsg_ebadf() {
use nix::errno::Errno;
use nix::sys::socket::{MsgFlags, recvmsg};
use nix::sys::uio::IoVec;
let mut buf = [0u8; 5];
let iov = [IoVec::from_mut_slice(&mut buf[..])];
let fd = -1; // Bad file descriptor
let r = recvmsg(fd, &iov, None, MsgFlags::empty());
assert_eq!(r.err().unwrap(), Errno::EBADF);
}
// Disable the test on emulated platforms due to a bug in QEMU versions <
// 2.12.0. https://bugs.launchpad.net/qemu/+bug/1701808
#[cfg_attr(qemu, ignore)]
#[test]
pub fn test_scm_rights() {
use nix::sys::uio::IoVec;
use nix::unistd::{pipe, read, write, close};
use nix::sys::socket::{socketpair, sendmsg, recvmsg,
AddressFamily, SockType, SockFlag,
ControlMessage, ControlMessageOwned, MsgFlags};
let (fd1, fd2) = socketpair(AddressFamily::Unix, SockType::Stream, None, SockFlag::empty())
.unwrap();
let (r, w) = pipe().unwrap();
let mut received_r: Option<RawFd> = None;
{
let iov = [IoVec::from_slice(b"hello")];
let fds = [r];
let cmsg = ControlMessage::ScmRights(&fds);
assert_eq!(sendmsg(fd1, &iov, &[cmsg], MsgFlags::empty(), None).unwrap(), 5);
close(r).unwrap();
close(fd1).unwrap();
}
{
let mut buf = [0u8; 5];
let iov = [IoVec::from_mut_slice(&mut buf[..])];
let mut cmsgspace = cmsg_space!([RawFd; 1]);
let msg = recvmsg(fd2, &iov, Some(&mut cmsgspace), MsgFlags::empty()).unwrap();
for cmsg in msg.cmsgs() {
if let ControlMessageOwned::ScmRights(fd) = cmsg {
assert_eq!(received_r, None);
assert_eq!(fd.len(), 1);
received_r = Some(fd[0]);
} else {
panic!("unexpected cmsg");
}
}
assert_eq!(msg.bytes, 5);
assert!(!msg.flags.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC));
close(fd2).unwrap();
}
let received_r = received_r.expect("Did not receive passed fd");
// Ensure that the received file descriptor works
write(w, b"world").unwrap();
let mut buf = [0u8; 5];
read(received_r, &mut buf).unwrap();
assert_eq!(&buf[..], b"world");
close(received_r).unwrap();
close(w).unwrap();
}
// Disable the test on emulated platforms due to not enabled support of AF_ALG in QEMU from rust cross
#[cfg(any(target_os = "linux", target_os= "android"))]
#[cfg_attr(qemu, ignore)]
#[test]
pub fn test_af_alg_cipher() {
use nix::sys::uio::IoVec;
use nix::unistd::read;
use nix::sys::socket::{socket, sendmsg, bind, accept, setsockopt,
AddressFamily, SockType, SockFlag, SockAddr,
ControlMessage, MsgFlags};
use nix::sys::socket::sockopt::AlgSetKey;
skip_if_cirrus!("Fails for an unknown reason Cirrus CI. Bug #1352");
// Travis's seccomp profile blocks AF_ALG
// https://docs.docker.com/engine/security/seccomp/
skip_if_seccomp!(test_af_alg_cipher);
let alg_type = "skcipher";
let alg_name = "ctr-aes-aesni";
// 256-bits secret key
let key = vec![0u8; 32];
// 16-bytes IV
let iv_len = 16;
let iv = vec![1u8; iv_len];
// 256-bytes plain payload
let payload_len = 256;
let payload = vec![2u8; payload_len];
let sock = socket(AddressFamily::Alg, SockType::SeqPacket, SockFlag::empty(), None)
.expect("socket failed");
let sockaddr = SockAddr::new_alg(alg_type, alg_name);
bind(sock, &sockaddr).expect("bind failed");
if let SockAddr::Alg(alg) = sockaddr {
assert_eq!(alg.alg_name().to_string_lossy(), alg_name);
assert_eq!(alg.alg_type().to_string_lossy(), alg_type);
} else {
panic!("unexpected SockAddr");
}
setsockopt(sock, AlgSetKey::default(), &key).expect("setsockopt");
let session_socket = accept(sock).expect("accept failed");
let msgs = [ControlMessage::AlgSetOp(&libc::ALG_OP_ENCRYPT), ControlMessage::AlgSetIv(iv.as_slice())];
let iov = IoVec::from_slice(&payload);
sendmsg(session_socket, &[iov], &msgs, MsgFlags::empty(), None).expect("sendmsg encrypt");
// allocate buffer for encrypted data
let mut encrypted = vec![0u8; payload_len];
let num_bytes = read(session_socket, &mut encrypted).expect("read encrypt");
assert_eq!(num_bytes, payload_len);
let iov = IoVec::from_slice(&encrypted);
let iv = vec![1u8; iv_len];
let msgs = [ControlMessage::AlgSetOp(&libc::ALG_OP_DECRYPT), ControlMessage::AlgSetIv(iv.as_slice())];
sendmsg(session_socket, &[iov], &msgs, MsgFlags::empty(), None).expect("sendmsg decrypt");
// allocate buffer for decrypted data
let mut decrypted = vec![0u8; payload_len];
let num_bytes = read(session_socket, &mut decrypted).expect("read decrypt");
assert_eq!(num_bytes, payload_len);
assert_eq!(decrypted, payload);
}
// Disable the test on emulated platforms due to not enabled support of AF_ALG
// in QEMU from rust cross
#[cfg(any(target_os = "linux", target_os= "android"))]
#[cfg_attr(qemu, ignore)]
#[test]
pub fn test_af_alg_aead() {
use libc::{ALG_OP_DECRYPT, ALG_OP_ENCRYPT};
use nix::fcntl::{fcntl, FcntlArg, OFlag};
use nix::sys::uio::IoVec;
use nix::unistd::{read, close};
use nix::sys::socket::{socket, sendmsg, bind, accept, setsockopt,
AddressFamily, SockType, SockFlag, SockAddr,
ControlMessage, MsgFlags};
use nix::sys::socket::sockopt::{AlgSetKey, AlgSetAeadAuthSize};
skip_if_cirrus!("Fails for an unknown reason Cirrus CI. Bug #1352");
// Travis's seccomp profile blocks AF_ALG
// https://docs.docker.com/engine/security/seccomp/
skip_if_seccomp!(test_af_alg_aead);
let auth_size = 4usize;
let assoc_size = 16u32;
let alg_type = "aead";
let alg_name = "gcm(aes)";
// 256-bits secret key
let key = vec![0u8; 32];
// 12-bytes IV
let iv_len = 12;
let iv = vec![1u8; iv_len];
// 256-bytes plain payload
let payload_len = 256;
let mut payload = vec![2u8; payload_len + (assoc_size as usize) + auth_size];
for i in 0..assoc_size {
payload[i as usize] = 10;
}
let len = payload.len();
for i in 0..auth_size {
payload[len - 1 - i] = 0;
}
let sock = socket(AddressFamily::Alg, SockType::SeqPacket, SockFlag::empty(), None)
.expect("socket failed");
let sockaddr = SockAddr::new_alg(alg_type, alg_name);
bind(sock, &sockaddr).expect("bind failed");
setsockopt(sock, AlgSetAeadAuthSize, &auth_size).expect("setsockopt AlgSetAeadAuthSize");
setsockopt(sock, AlgSetKey::default(), &key).expect("setsockopt AlgSetKey");
let session_socket = accept(sock).expect("accept failed");
let msgs = [
ControlMessage::AlgSetOp(&ALG_OP_ENCRYPT),
ControlMessage::AlgSetIv(iv.as_slice()),
ControlMessage::AlgSetAeadAssoclen(&assoc_size)];
let iov = IoVec::from_slice(&payload);
sendmsg(session_socket, &[iov], &msgs, MsgFlags::empty(), None).expect("sendmsg encrypt");
// allocate buffer for encrypted data
let mut encrypted = vec![0u8; (assoc_size as usize) + payload_len + auth_size];
let num_bytes = read(session_socket, &mut encrypted).expect("read encrypt");
assert_eq!(num_bytes, payload_len + auth_size + (assoc_size as usize));
close(session_socket).expect("close");
for i in 0..assoc_size {
encrypted[i as usize] = 10;
}
let iov = IoVec::from_slice(&encrypted);
let iv = vec![1u8; iv_len];
let session_socket = accept(sock).expect("accept failed");
let msgs = [
ControlMessage::AlgSetOp(&ALG_OP_DECRYPT),
ControlMessage::AlgSetIv(iv.as_slice()),
ControlMessage::AlgSetAeadAssoclen(&assoc_size),
];
sendmsg(session_socket, &[iov], &msgs, MsgFlags::empty(), None).expect("sendmsg decrypt");
// allocate buffer for decrypted data
let mut decrypted = vec![0u8; payload_len + (assoc_size as usize) + auth_size];
// Starting with kernel 4.9, the interface changed slightly such that the
// authentication tag memory is only needed in the output buffer for encryption
// and in the input buffer for decryption.
// Do not block on read, as we may have fewer bytes than buffer size
fcntl(session_socket,FcntlArg::F_SETFL(OFlag::O_NONBLOCK)).expect("fcntl non_blocking");
let num_bytes = read(session_socket, &mut decrypted).expect("read decrypt");
assert!(num_bytes >= payload_len + (assoc_size as usize));
assert_eq!(decrypted[(assoc_size as usize)..(payload_len + (assoc_size as usize))], payload[(assoc_size as usize)..payload_len + (assoc_size as usize)]);
}
// Verify `ControlMessage::Ipv4PacketInfo` for `sendmsg`.
// This creates a (udp) socket bound to localhost, then sends a message to
// itself but uses Ipv4PacketInfo to force the source address to be localhost.
//
// This would be a more interesting test if we could assume that the test host
// has more than one IP address (since we could select a different address to
// test from).
#[cfg(any(target_os = "linux",
target_os = "macos",
target_os = "netbsd"))]
#[test]
pub fn test_sendmsg_ipv4packetinfo() {
use cfg_if::cfg_if;
use nix::sys::uio::IoVec;
use nix::sys::socket::{socket, sendmsg, bind,
AddressFamily, SockType, SockFlag, SockAddr,
ControlMessage, MsgFlags};
let sock = socket(AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None)
.expect("socket failed");
let std_sa = SocketAddr::from_str("127.0.0.1:4000").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
bind(sock, &sock_addr).expect("bind failed");
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
if let InetAddr::V4(sin) = inet_addr {
cfg_if! {
if #[cfg(target_os = "netbsd")] {
let _dontcare = sin;
let pi = libc::in_pktinfo {
ipi_ifindex: 0, /* Unspecified interface */
ipi_addr: libc::in_addr { s_addr: 0 },
};
} else {
let pi = libc::in_pktinfo {
ipi_ifindex: 0, /* Unspecified interface */
ipi_addr: libc::in_addr { s_addr: 0 },
ipi_spec_dst: sin.sin_addr,
};
}
}
let cmsg = [ControlMessage::Ipv4PacketInfo(&pi)];
sendmsg(sock, &iov, &cmsg, MsgFlags::empty(), Some(&sock_addr))
.expect("sendmsg");
} else {
panic!("No IPv4 addresses available for testing?");
}
}
// Verify `ControlMessage::Ipv6PacketInfo` for `sendmsg`.
// This creates a (udp) socket bound to ip6-localhost, then sends a message to
// itself but uses Ipv6PacketInfo to force the source address to be
// ip6-localhost.
//
// This would be a more interesting test if we could assume that the test host
// has more than one IP address (since we could select a different address to
// test from).
#[cfg(any(target_os = "linux",
target_os = "macos",
target_os = "netbsd",
target_os = "freebsd"))]
#[test]
pub fn test_sendmsg_ipv6packetinfo() {
use nix::errno::Errno;
use nix::sys::uio::IoVec;
use nix::sys::socket::{socket, sendmsg, bind,
AddressFamily, SockType, SockFlag, SockAddr,
ControlMessage, MsgFlags};
let sock = socket(AddressFamily::Inet6,
SockType::Datagram,
SockFlag::empty(),
None)
.expect("socket failed");
let std_sa = SocketAddr::from_str("[::1]:6000").unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
let sock_addr = SockAddr::new_inet(inet_addr);
if let Err(Errno::EADDRNOTAVAIL) = bind(sock, &sock_addr) {
println!("IPv6 not available, skipping test.");
return;
}
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
if let InetAddr::V6(sin) = inet_addr {
let pi = libc::in6_pktinfo {
ipi6_ifindex: 0, /* Unspecified interface */
ipi6_addr: sin.sin6_addr,
};
let cmsg = [ControlMessage::Ipv6PacketInfo(&pi)];
sendmsg(sock, &iov, &cmsg, MsgFlags::empty(), Some(&sock_addr))
.expect("sendmsg");
} else {
println!("No IPv6 addresses available for testing: skipping testing Ipv6PacketInfo");
}
}
/// Tests that passing multiple fds using a single `ControlMessage` works.
// Disable the test on emulated platforms due to a bug in QEMU versions <
// 2.12.0. https://bugs.launchpad.net/qemu/+bug/1701808
#[cfg_attr(qemu, ignore)]
#[test]
fn test_scm_rights_single_cmsg_multiple_fds() {
use std::os::unix::net::UnixDatagram;
use std::os::unix::io::{RawFd, AsRawFd};
use std::thread;
use nix::sys::socket::{ControlMessage, ControlMessageOwned, MsgFlags,
sendmsg, recvmsg};
use nix::sys::uio::IoVec;
let (send, receive) = UnixDatagram::pair().unwrap();
let thread = thread::spawn(move || {
let mut buf = [0u8; 8];
let iovec = [IoVec::from_mut_slice(&mut buf)];
let mut space = cmsg_space!([RawFd; 2]);
let msg = recvmsg(
receive.as_raw_fd(),
&iovec,
Some(&mut space),
MsgFlags::empty()
).unwrap();
assert!(!msg.flags.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC));
let mut cmsgs = msg.cmsgs();
match cmsgs.next() {
Some(ControlMessageOwned::ScmRights(fds)) => {
assert_eq!(fds.len(), 2,
"unexpected fd count (expected 2 fds, got {})",
fds.len());
},
_ => panic!(),
}
assert!(cmsgs.next().is_none(), "unexpected control msg");
assert_eq!(msg.bytes, 8);
assert_eq!(iovec[0].as_slice(), [1u8, 2, 3, 4, 5, 6, 7, 8]);
});
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
let fds = [libc::STDIN_FILENO, libc::STDOUT_FILENO]; // pass stdin and stdout
let cmsg = [ControlMessage::ScmRights(&fds)];
sendmsg(send.as_raw_fd(), &iov, &cmsg, MsgFlags::empty(), None).unwrap();
thread.join().unwrap();
}
// Verify `sendmsg` builds a valid `msghdr` when passing an empty
// `cmsgs` argument. This should result in a msghdr with a nullptr
// msg_control field and a msg_controllen of 0 when calling into the
// raw `sendmsg`.
#[test]
pub fn test_sendmsg_empty_cmsgs() {
use nix::sys::uio::IoVec;
use nix::unistd::close;
use nix::sys::socket::{socketpair, sendmsg, recvmsg,
AddressFamily, SockType, SockFlag, MsgFlags};
let (fd1, fd2) = socketpair(AddressFamily::Unix, SockType::Stream, None, SockFlag::empty())
.unwrap();
{
let iov = [IoVec::from_slice(b"hello")];
assert_eq!(sendmsg(fd1, &iov, &[], MsgFlags::empty(), None).unwrap(), 5);
close(fd1).unwrap();
}
{
let mut buf = [0u8; 5];
let iov = [IoVec::from_mut_slice(&mut buf[..])];
let mut cmsgspace = cmsg_space!([RawFd; 1]);
let msg = recvmsg(fd2, &iov, Some(&mut cmsgspace), MsgFlags::empty()).unwrap();
for _ in msg.cmsgs() {
panic!("unexpected cmsg");
}
assert!(!msg.flags.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC));
assert_eq!(msg.bytes, 5);
close(fd2).unwrap();
}
}
#[cfg(any(
target_os = "android",
target_os = "linux",
target_os = "freebsd",
target_os = "dragonfly",
))]
#[test]
fn test_scm_credentials() {
use nix::sys::uio::IoVec;
use nix::unistd::{close, getpid, getuid, getgid};
use nix::sys::socket::{socketpair, sendmsg, recvmsg,
AddressFamily, SockType, SockFlag,
ControlMessage, ControlMessageOwned, MsgFlags,
UnixCredentials};
#[cfg(any(target_os = "android", target_os = "linux"))]
use nix::sys::socket::{setsockopt, sockopt::PassCred};
let (send, recv) = socketpair(AddressFamily::Unix, SockType::Stream, None, SockFlag::empty())
.unwrap();
#[cfg(any(target_os = "android", target_os = "linux"))]
setsockopt(recv, PassCred, &true).unwrap();
{
let iov = [IoVec::from_slice(b"hello")];
#[cfg(any(target_os = "android", target_os = "linux"))]
let cred = UnixCredentials::new();
#[cfg(any(target_os = "android", target_os = "linux"))]
let cmsg = ControlMessage::ScmCredentials(&cred);
#[cfg(any(target_os = "freebsd", target_os = "dragonfly"))]
let cmsg = ControlMessage::ScmCreds;
assert_eq!(sendmsg(send, &iov, &[cmsg], MsgFlags::empty(), None).unwrap(), 5);
close(send).unwrap();
}
{
let mut buf = [0u8; 5];
let iov = [IoVec::from_mut_slice(&mut buf[..])];
let mut cmsgspace = cmsg_space!(UnixCredentials);
let msg = recvmsg(recv, &iov, Some(&mut cmsgspace), MsgFlags::empty()).unwrap();
let mut received_cred = None;
for cmsg in msg.cmsgs() {
let cred = match cmsg {
#[cfg(any(target_os = "android", target_os = "linux"))]
ControlMessageOwned::ScmCredentials(cred) => cred,
#[cfg(any(target_os = "freebsd", target_os = "dragonfly"))]
ControlMessageOwned::ScmCreds(cred) => cred,
other => panic!("unexpected cmsg {:?}", other),
};
assert!(received_cred.is_none());
assert_eq!(cred.pid(), getpid().as_raw());
assert_eq!(cred.uid(), getuid().as_raw());
assert_eq!(cred.gid(), getgid().as_raw());
received_cred = Some(cred);
}
received_cred.expect("no creds received");
assert_eq!(msg.bytes, 5);
assert!(!msg.flags.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC));
close(recv).unwrap();
}
}
/// Ensure that we can send `SCM_CREDENTIALS` and `SCM_RIGHTS` with a single
/// `sendmsg` call.
#[cfg(any(target_os = "android", target_os = "linux"))]
// qemu's handling of multiple cmsgs is bugged, ignore tests under emulation
// see https://bugs.launchpad.net/qemu/+bug/1781280
#[cfg_attr(qemu, ignore)]
#[test]
fn test_scm_credentials_and_rights() {
let space = cmsg_space!(libc::ucred, RawFd);
test_impl_scm_credentials_and_rights(space);
}
/// Ensure that passing a an oversized control message buffer to recvmsg
/// still works.
#[cfg(any(target_os = "android", target_os = "linux"))]
// qemu's handling of multiple cmsgs is bugged, ignore tests under emulation
// see https://bugs.launchpad.net/qemu/+bug/1781280
#[cfg_attr(qemu, ignore)]
#[test]
fn test_too_large_cmsgspace() {
let space = vec![0u8; 1024];
test_impl_scm_credentials_and_rights(space);
}
#[cfg(any(target_os = "android", target_os = "linux"))]
fn test_impl_scm_credentials_and_rights(mut space: Vec<u8>) {
use libc::ucred;
use nix::sys::uio::IoVec;
use nix::unistd::{pipe, write, close, getpid, getuid, getgid};
use nix::sys::socket::{socketpair, sendmsg, recvmsg, setsockopt,
SockType, SockFlag,
ControlMessage, ControlMessageOwned, MsgFlags};
use nix::sys::socket::sockopt::PassCred;
let (send, recv) = socketpair(AddressFamily::Unix, SockType::Stream, None, SockFlag::empty())
.unwrap();
setsockopt(recv, PassCred, &true).unwrap();
let (r, w) = pipe().unwrap();
let mut received_r: Option<RawFd> = None;
{
let iov = [IoVec::from_slice(b"hello")];
let cred = ucred {
pid: getpid().as_raw(),
uid: getuid().as_raw(),
gid: getgid().as_raw(),
}.into();
let fds = [r];
let cmsgs = [
ControlMessage::ScmCredentials(&cred),
ControlMessage::ScmRights(&fds),
];
assert_eq!(sendmsg(send, &iov, &cmsgs, MsgFlags::empty(), None).unwrap(), 5);
close(r).unwrap();
close(send).unwrap();
}
{
let mut buf = [0u8; 5];
let iov = [IoVec::from_mut_slice(&mut buf[..])];
let msg = recvmsg(recv, &iov, Some(&mut space), MsgFlags::empty()).unwrap();
let mut received_cred = None;
assert_eq!(msg.cmsgs().count(), 2, "expected 2 cmsgs");
for cmsg in msg.cmsgs() {
match cmsg {
ControlMessageOwned::ScmRights(fds) => {
assert_eq!(received_r, None, "already received fd");
assert_eq!(fds.len(), 1);
received_r = Some(fds[0]);
}
ControlMessageOwned::ScmCredentials(cred) => {
assert!(received_cred.is_none());
assert_eq!(cred.pid(), getpid().as_raw());
assert_eq!(cred.uid(), getuid().as_raw());
assert_eq!(cred.gid(), getgid().as_raw());
received_cred = Some(cred);
}
_ => panic!("unexpected cmsg"),
}
}
received_cred.expect("no creds received");
assert_eq!(msg.bytes, 5);
assert!(!msg.flags.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC));
close(recv).unwrap();
}
let received_r = received_r.expect("Did not receive passed fd");
// Ensure that the received file descriptor works
write(w, b"world").unwrap();
let mut buf = [0u8; 5];
read(received_r, &mut buf).unwrap();
assert_eq!(&buf[..], b"world");
close(received_r).unwrap();
close(w).unwrap();
}
// Test creating and using named unix domain sockets
#[test]
pub fn test_unixdomain() {
use nix::sys::socket::{SockType, SockFlag};
use nix::sys::socket::{bind, socket, connect, listen, accept, SockAddr};
use nix::unistd::{read, write, close};
use std::thread;
let tempdir = tempfile::tempdir().unwrap();
let sockname = tempdir.path().join("sock");
let s1 = socket(AddressFamily::Unix, SockType::Stream,
SockFlag::empty(), None).expect("socket failed");
let sockaddr = SockAddr::new_unix(&sockname).unwrap();
bind(s1, &sockaddr).expect("bind failed");
listen(s1, 10).expect("listen failed");
let thr = thread::spawn(move || {
let s2 = socket(AddressFamily::Unix, SockType::Stream, SockFlag::empty(), None)
.expect("socket failed");
connect(s2, &sockaddr).expect("connect failed");
write(s2, b"hello").expect("write failed");
close(s2).unwrap();
});
let s3 = accept(s1).expect("accept failed");
let mut buf = [0;5];
read(s3, &mut buf).unwrap();
close(s3).unwrap();
close(s1).unwrap();
thr.join().unwrap();
assert_eq!(&buf[..], b"hello");
}
// Test creating and using named system control sockets
#[cfg(any(target_os = "macos", target_os = "ios"))]
#[test]
pub fn test_syscontrol() {
use nix::errno::Errno;
use nix::sys::socket::{socket, SockAddr, SockType, SockFlag, SockProtocol};
let fd = socket(AddressFamily::System, SockType::Datagram,
SockFlag::empty(), SockProtocol::KextControl)
.expect("socket failed");
let _sockaddr = SockAddr::new_sys_control(fd, "com.apple.net.utun_control", 0).expect("resolving sys_control name failed");
assert_eq!(SockAddr::new_sys_control(fd, "foo.bar.lol", 0).err(), Some(Errno::ENOENT));
// requires root privileges
// connect(fd, &sockaddr).expect("connect failed");
}
#[cfg(any(
target_os = "android",
target_os = "freebsd",
target_os = "ios",
target_os = "linux",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))]
fn loopback_address(family: AddressFamily) -> Option<nix::ifaddrs::InterfaceAddress> {
use std::io;
use std::io::Write;
use nix::ifaddrs::getifaddrs;
use nix::net::if_::*;
let addrs = match getifaddrs() {
Ok(iter) => iter,
Err(e) => {
let stdioerr = io::stderr();
let mut handle = stdioerr.lock();
writeln!(handle, "getifaddrs: {:?}", e).unwrap();
return None;
},
};
// return first address matching family
for ifaddr in addrs {
if ifaddr.flags.contains(InterfaceFlags::IFF_LOOPBACK) {
match ifaddr.address {
Some(SockAddr::Inet(InetAddr::V4(..))) => {
match family {
AddressFamily::Inet => return Some(ifaddr),
_ => continue
}
},
Some(SockAddr::Inet(InetAddr::V6(..))) => {
match family {
AddressFamily::Inet6 => return Some(ifaddr),
_ => continue
}
},
_ => continue,
}
}
}
None
}
#[cfg(any(
target_os = "android",
target_os = "ios",
target_os = "linux",
target_os = "macos",
target_os = "netbsd",
))]
// qemu doesn't seem to be emulating this correctly in these architectures
#[cfg_attr(all(
qemu,
any(
target_arch = "mips",
target_arch = "mips64",
target_arch = "powerpc64",
)
), ignore)]
#[test]
pub fn test_recv_ipv4pktinfo() {
use nix::sys::socket::sockopt::Ipv4PacketInfo;
use nix::sys::socket::{bind, SockFlag, SockType};
use nix::sys::socket::{getsockname, setsockopt, socket};
use nix::sys::socket::{recvmsg, sendmsg, ControlMessageOwned, MsgFlags};
use nix::sys::uio::IoVec;
use nix::net::if_::*;
let lo_ifaddr = loopback_address(AddressFamily::Inet);
let (lo_name, lo) = match lo_ifaddr {
Some(ifaddr) => (ifaddr.interface_name,
ifaddr.address.expect("Expect IPv4 address on interface")),
None => return,
};
let receive = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("receive socket failed");
bind(receive, &lo).expect("bind failed");
let sa = getsockname(receive).expect("getsockname failed");
setsockopt(receive, Ipv4PacketInfo, &true).expect("setsockopt failed");
{
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
let send = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
sendmsg(send, &iov, &[], MsgFlags::empty(), Some(&sa)).expect("sendmsg failed");
}
{
let mut buf = [0u8; 8];
let iovec = [IoVec::from_mut_slice(&mut buf)];
let mut space = cmsg_space!(libc::in_pktinfo);
let msg = recvmsg(
receive,
&iovec,
Some(&mut space),
MsgFlags::empty(),
).expect("recvmsg failed");
assert!(
!msg.flags
.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC)
);
let mut cmsgs = msg.cmsgs();
if let Some(ControlMessageOwned::Ipv4PacketInfo(pktinfo)) = cmsgs.next() {
let i = if_nametoindex(lo_name.as_bytes()).expect("if_nametoindex");
assert_eq!(
pktinfo.ipi_ifindex as libc::c_uint,
i,
"unexpected ifindex (expected {}, got {})",
i,
pktinfo.ipi_ifindex
);
}
assert!(cmsgs.next().is_none(), "unexpected additional control msg");
assert_eq!(msg.bytes, 8);
assert_eq!(
iovec[0].as_slice(),
[1u8, 2, 3, 4, 5, 6, 7, 8]
);
}
}
#[cfg(any(
target_os = "freebsd",
target_os = "ios",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))]
// qemu doesn't seem to be emulating this correctly in these architectures
#[cfg_attr(all(
qemu,
any(
target_arch = "mips",
target_arch = "mips64",
target_arch = "powerpc64",
)
), ignore)]
#[test]
pub fn test_recvif() {
use nix::net::if_::*;
use nix::sys::socket::sockopt::{Ipv4RecvIf, Ipv4RecvDstAddr};
use nix::sys::socket::{bind, SockFlag, SockType};
use nix::sys::socket::{getsockname, setsockopt, socket, SockAddr};
use nix::sys::socket::{recvmsg, sendmsg, ControlMessageOwned, MsgFlags};
use nix::sys::uio::IoVec;
let lo_ifaddr = loopback_address(AddressFamily::Inet);
let (lo_name, lo) = match lo_ifaddr {
Some(ifaddr) => (ifaddr.interface_name,
ifaddr.address.expect("Expect IPv4 address on interface")),
None => return,
};
let receive = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("receive socket failed");
bind(receive, &lo).expect("bind failed");
let sa = getsockname(receive).expect("getsockname failed");
setsockopt(receive, Ipv4RecvIf, &true).expect("setsockopt IP_RECVIF failed");
setsockopt(receive, Ipv4RecvDstAddr, &true).expect("setsockopt IP_RECVDSTADDR failed");
{
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
let send = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
sendmsg(send, &iov, &[], MsgFlags::empty(), Some(&sa)).expect("sendmsg failed");
}
{
let mut buf = [0u8; 8];
let iovec = [IoVec::from_mut_slice(&mut buf)];
let mut space = cmsg_space!(libc::sockaddr_dl, libc::in_addr);
let msg = recvmsg(
receive,
&iovec,
Some(&mut space),
MsgFlags::empty(),
).expect("recvmsg failed");
assert!(
!msg.flags
.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC)
);
assert_eq!(msg.cmsgs().count(), 2, "expected 2 cmsgs");
let mut rx_recvif = false;
let mut rx_recvdstaddr = false;
for cmsg in msg.cmsgs() {
match cmsg {
ControlMessageOwned::Ipv4RecvIf(dl) => {
rx_recvif = true;
let i = if_nametoindex(lo_name.as_bytes()).expect("if_nametoindex");
assert_eq!(
dl.sdl_index as libc::c_uint,
i,
"unexpected ifindex (expected {}, got {})",
i,
dl.sdl_index
);
},
ControlMessageOwned::Ipv4RecvDstAddr(addr) => {
rx_recvdstaddr = true;
if let SockAddr::Inet(InetAddr::V4(a)) = lo {
assert_eq!(a.sin_addr.s_addr,
addr.s_addr,
"unexpected destination address (expected {}, got {})",
a.sin_addr.s_addr,
addr.s_addr);
} else {
panic!("unexpected Sockaddr");
}
},
_ => panic!("unexpected additional control msg"),
}
}
assert!(rx_recvif);
assert!(rx_recvdstaddr);
assert_eq!(msg.bytes, 8);
assert_eq!(
iovec[0].as_slice(),
[1u8, 2, 3, 4, 5, 6, 7, 8]
);
}
}
#[cfg(any(
target_os = "android",
target_os = "freebsd",
target_os = "ios",
target_os = "linux",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
))]
// qemu doesn't seem to be emulating this correctly in these architectures
#[cfg_attr(all(
qemu,
any(
target_arch = "mips",
target_arch = "mips64",
target_arch = "powerpc64",
)
), ignore)]
#[test]
pub fn test_recv_ipv6pktinfo() {
use nix::net::if_::*;
use nix::sys::socket::sockopt::Ipv6RecvPacketInfo;
use nix::sys::socket::{bind, SockFlag, SockType};
use nix::sys::socket::{getsockname, setsockopt, socket};
use nix::sys::socket::{recvmsg, sendmsg, ControlMessageOwned, MsgFlags};
use nix::sys::uio::IoVec;
let lo_ifaddr = loopback_address(AddressFamily::Inet6);
let (lo_name, lo) = match lo_ifaddr {
Some(ifaddr) => (ifaddr.interface_name,
ifaddr.address.expect("Expect IPv4 address on interface")),
None => return,
};
let receive = socket(
AddressFamily::Inet6,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("receive socket failed");
bind(receive, &lo).expect("bind failed");
let sa = getsockname(receive).expect("getsockname failed");
setsockopt(receive, Ipv6RecvPacketInfo, &true).expect("setsockopt failed");
{
let slice = [1u8, 2, 3, 4, 5, 6, 7, 8];
let iov = [IoVec::from_slice(&slice)];
let send = socket(
AddressFamily::Inet6,
SockType::Datagram,
SockFlag::empty(),
None,
).expect("send socket failed");
sendmsg(send, &iov, &[], MsgFlags::empty(), Some(&sa)).expect("sendmsg failed");
}
{
let mut buf = [0u8; 8];
let iovec = [IoVec::from_mut_slice(&mut buf)];
let mut space = cmsg_space!(libc::in6_pktinfo);
let msg = recvmsg(
receive,
&iovec,
Some(&mut space),
MsgFlags::empty(),
).expect("recvmsg failed");
assert!(
!msg.flags
.intersects(MsgFlags::MSG_TRUNC | MsgFlags::MSG_CTRUNC)
);
let mut cmsgs = msg.cmsgs();
if let Some(ControlMessageOwned::Ipv6PacketInfo(pktinfo)) = cmsgs.next()
{
let i = if_nametoindex(lo_name.as_bytes()).expect("if_nametoindex");
assert_eq!(
pktinfo.ipi6_ifindex as libc::c_uint,
i,
"unexpected ifindex (expected {}, got {})",
i,
pktinfo.ipi6_ifindex
);
}
assert!(cmsgs.next().is_none(), "unexpected additional control msg");
assert_eq!(msg.bytes, 8);
assert_eq!(
iovec[0].as_slice(),
[1u8, 2, 3, 4, 5, 6, 7, 8]
);
}
}
#[cfg(any(target_os = "android", target_os = "linux"))]
#[cfg_attr(graviton, ignore = "Not supported by the CI environment")]
#[test]
pub fn test_vsock() {
use nix::errno::Errno;
use nix::sys::socket::{AddressFamily, socket, bind, connect, listen,
SockAddr, SockType, SockFlag};
use nix::unistd::{close};
use std::thread;
let port: u32 = 3000;
let s1 = socket(AddressFamily::Vsock, SockType::Stream,
SockFlag::empty(), None)
.expect("socket failed");
// VMADDR_CID_HYPERVISOR is reserved, so we expect an EADDRNOTAVAIL error.
let sockaddr = SockAddr::new_vsock(libc::VMADDR_CID_HYPERVISOR, port);
assert_eq!(bind(s1, &sockaddr).err(),
Some(Errno::EADDRNOTAVAIL));
let sockaddr = SockAddr::new_vsock(libc::VMADDR_CID_ANY, port);
assert_eq!(bind(s1, &sockaddr), Ok(()));
listen(s1, 10).expect("listen failed");
let thr = thread::spawn(move || {
let cid: u32 = libc::VMADDR_CID_HOST;
let s2 = socket(AddressFamily::Vsock, SockType::Stream,
SockFlag::empty(), None)
.expect("socket failed");
let sockaddr = SockAddr::new_vsock(cid, port);
// The current implementation does not support loopback devices, so,
// for now, we expect a failure on the connect.
assert_ne!(connect(s2, &sockaddr), Ok(()));
close(s2).unwrap();
});
close(s1).unwrap();
thr.join().unwrap();
}
// Disable the test on emulated platforms because it fails in Cirrus-CI. Lack
// of QEMU support is suspected.
#[cfg_attr(qemu, ignore)]
#[cfg(all(target_os = "linux"))]
#[test]
fn test_recvmsg_timestampns() {
use nix::sys::socket::*;
use nix::sys::uio::IoVec;
use nix::sys::time::*;
use std::time::*;
// Set up
let message = "Ohayō!".as_bytes();
let in_socket = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None).unwrap();
setsockopt(in_socket, sockopt::ReceiveTimestampns, &true).unwrap();
let localhost = InetAddr::new(IpAddr::new_v4(127, 0, 0, 1), 0);
bind(in_socket, &SockAddr::new_inet(localhost)).unwrap();
let address = getsockname(in_socket).unwrap();
// Get initial time
let time0 = SystemTime::now();
// Send the message
let iov = [IoVec::from_slice(message)];
let flags = MsgFlags::empty();
let l = sendmsg(in_socket, &iov, &[], flags, Some(&address)).unwrap();
assert_eq!(message.len(), l);
// Receive the message
let mut buffer = vec![0u8; message.len()];
let mut cmsgspace = nix::cmsg_space!(TimeSpec);
let iov = [IoVec::from_mut_slice(&mut buffer)];
let r = recvmsg(in_socket, &iov, Some(&mut cmsgspace), flags).unwrap();
let rtime = match r.cmsgs().next() {
Some(ControlMessageOwned::ScmTimestampns(rtime)) => rtime,
Some(_) => panic!("Unexpected control message"),
None => panic!("No control message")
};
// Check the final time
let time1 = SystemTime::now();
// the packet's received timestamp should lie in-between the two system
// times, unless the system clock was adjusted in the meantime.
let rduration = Duration::new(rtime.tv_sec() as u64,
rtime.tv_nsec() as u32);
assert!(time0.duration_since(UNIX_EPOCH).unwrap() <= rduration);
assert!(rduration <= time1.duration_since(UNIX_EPOCH).unwrap());
// Close socket
nix::unistd::close(in_socket).unwrap();
}
// Disable the test on emulated platforms because it fails in Cirrus-CI. Lack
// of QEMU support is suspected.
#[cfg_attr(qemu, ignore)]
#[cfg(all(target_os = "linux"))]
#[test]
fn test_recvmmsg_timestampns() {
use nix::sys::socket::*;
use nix::sys::uio::IoVec;
use nix::sys::time::*;
use std::time::*;
// Set up
let message = "Ohayō!".as_bytes();
let in_socket = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None).unwrap();
setsockopt(in_socket, sockopt::ReceiveTimestampns, &true).unwrap();
let localhost = InetAddr::new(IpAddr::new_v4(127, 0, 0, 1), 0);
bind(in_socket, &SockAddr::new_inet(localhost)).unwrap();
let address = getsockname(in_socket).unwrap();
// Get initial time
let time0 = SystemTime::now();
// Send the message
let iov = [IoVec::from_slice(message)];
let flags = MsgFlags::empty();
let l = sendmsg(in_socket, &iov, &[], flags, Some(&address)).unwrap();
assert_eq!(message.len(), l);
// Receive the message
let mut buffer = vec![0u8; message.len()];
let mut cmsgspace = nix::cmsg_space!(TimeSpec);
let iov = [IoVec::from_mut_slice(&mut buffer)];
let mut data = vec![
RecvMmsgData {
iov,
cmsg_buffer: Some(&mut cmsgspace),
},
];
let r = recvmmsg(in_socket, &mut data, flags, None).unwrap();
let rtime = match r[0].cmsgs().next() {
Some(ControlMessageOwned::ScmTimestampns(rtime)) => rtime,
Some(_) => panic!("Unexpected control message"),
None => panic!("No control message")
};
// Check the final time
let time1 = SystemTime::now();
// the packet's received timestamp should lie in-between the two system
// times, unless the system clock was adjusted in the meantime.
let rduration = Duration::new(rtime.tv_sec() as u64,
rtime.tv_nsec() as u32);
assert!(time0.duration_since(UNIX_EPOCH).unwrap() <= rduration);
assert!(rduration <= time1.duration_since(UNIX_EPOCH).unwrap());
// Close socket
nix::unistd::close(in_socket).unwrap();
}
// Disable the test on emulated platforms because it fails in Cirrus-CI. Lack
// of QEMU support is suspected.
#[cfg_attr(qemu, ignore)]
#[cfg(any(target_os = "android", target_os = "fuchsia", target_os = "linux"))]
#[test]
fn test_recvmsg_rxq_ovfl() {
use nix::Error;
use nix::sys::socket::*;
use nix::sys::uio::IoVec;
use nix::sys::socket::sockopt::{RxqOvfl, RcvBuf};
let message = [0u8; 2048];
let bufsize = message.len() * 2;
let in_socket = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None).unwrap();
let out_socket = socket(
AddressFamily::Inet,
SockType::Datagram,
SockFlag::empty(),
None).unwrap();
let localhost = InetAddr::new(IpAddr::new_v4(127, 0, 0, 1), 0);
bind(in_socket, &SockAddr::new_inet(localhost)).unwrap();
let address = getsockname(in_socket).unwrap();
connect(out_socket, &address).unwrap();
// Set SO_RXQ_OVFL flag.
setsockopt(in_socket, RxqOvfl, &1).unwrap();
// Set the receiver buffer size to hold only 2 messages.
setsockopt(in_socket, RcvBuf, &bufsize).unwrap();
let mut drop_counter = 0;
for _ in 0..2 {
let iov = [IoVec::from_slice(&message)];
let flags = MsgFlags::empty();
// Send the 3 messages (the receiver buffer can only hold 2 messages)
// to create an overflow.
for _ in 0..3 {
let l = sendmsg(out_socket, &iov, &[], flags, Some(&address)).unwrap();
assert_eq!(message.len(), l);
}
// Receive the message and check the drop counter if any.
loop {
let mut buffer = vec![0u8; message.len()];
let mut cmsgspace = nix::cmsg_space!(u32);
let iov = [IoVec::from_mut_slice(&mut buffer)];
match recvmsg(
in_socket,
&iov,
Some(&mut cmsgspace),
MsgFlags::MSG_DONTWAIT) {
Ok(r) => {
drop_counter = match r.cmsgs().next() {
Some(ControlMessageOwned::RxqOvfl(drop_counter)) => drop_counter,
Some(_) => panic!("Unexpected control message"),
None => 0,
};
},
Err(Error::EAGAIN) => { break; },
_ => { panic!("unknown recvmsg() error"); },
}
}
}
// One packet lost.
assert_eq!(drop_counter, 1);
// Close sockets
nix::unistd::close(in_socket).unwrap();
nix::unistd::close(out_socket).unwrap();
}
#[cfg(any(
target_os = "linux",
target_os = "android",
))]
mod linux_errqueue {
use nix::sys::socket::*;
use super::{FromStr, SocketAddr};
// Send a UDP datagram to a bogus destination address and observe an ICMP error (v4).
//
// Disable the test on QEMU because QEMU emulation of IP_RECVERR is broken (as documented on PR
// #1514).
#[cfg_attr(qemu, ignore)]
#[test]
fn test_recverr_v4() {
#[repr(u8)]
enum IcmpTypes {
DestUnreach = 3, // ICMP_DEST_UNREACH
}
#[repr(u8)]
enum IcmpUnreachCodes {
PortUnreach = 3, // ICMP_PORT_UNREACH
}
test_recverr_impl::<sockaddr_in, _, _>(
"127.0.0.1:6800",
AddressFamily::Inet,
sockopt::Ipv4RecvErr,
libc::SO_EE_ORIGIN_ICMP,
IcmpTypes::DestUnreach as u8,
IcmpUnreachCodes::PortUnreach as u8,
// Closure handles protocol-specific testing and returns generic sock_extended_err for
// protocol-independent test impl.
|cmsg| {
if let ControlMessageOwned::Ipv4RecvErr(ext_err, err_addr) = cmsg {
if let Some(origin) = err_addr {
// Validate that our network error originated from 127.0.0.1:0.
assert_eq!(origin.sin_family, AddressFamily::Inet as _);
assert_eq!(Ipv4Addr(origin.sin_addr), Ipv4Addr::new(127, 0, 0, 1));
assert_eq!(origin.sin_port, 0);
} else {
panic!("Expected some error origin");
}
*ext_err
} else {
panic!("Unexpected control message {:?}", cmsg);
}
},
)
}
// Essentially the same test as v4.
//
// Disable the test on QEMU because QEMU emulation of IPV6_RECVERR is broken (as documented on
// PR #1514).
#[cfg_attr(qemu, ignore)]
#[test]
fn test_recverr_v6() {
#[repr(u8)]
enum IcmpV6Types {
DestUnreach = 1, // ICMPV6_DEST_UNREACH
}
#[repr(u8)]
enum IcmpV6UnreachCodes {
PortUnreach = 4, // ICMPV6_PORT_UNREACH
}
test_recverr_impl::<sockaddr_in6, _, _>(
"[::1]:6801",
AddressFamily::Inet6,
sockopt::Ipv6RecvErr,
libc::SO_EE_ORIGIN_ICMP6,
IcmpV6Types::DestUnreach as u8,
IcmpV6UnreachCodes::PortUnreach as u8,
// Closure handles protocol-specific testing and returns generic sock_extended_err for
// protocol-independent test impl.
|cmsg| {
if let ControlMessageOwned::Ipv6RecvErr(ext_err, err_addr) = cmsg {
if let Some(origin) = err_addr {
// Validate that our network error originated from localhost:0.
assert_eq!(origin.sin6_family, AddressFamily::Inet6 as _);
assert_eq!(
Ipv6Addr(origin.sin6_addr),
Ipv6Addr::from_std(&"::1".parse().unwrap()),
);
assert_eq!(origin.sin6_port, 0);
} else {
panic!("Expected some error origin");
}
*ext_err
} else {
panic!("Unexpected control message {:?}", cmsg);
}
},
)
}
fn test_recverr_impl<SA, OPT, TESTF>(sa: &str,
af: AddressFamily,
opt: OPT,
ee_origin: u8,
ee_type: u8,
ee_code: u8,
testf: TESTF)
where
OPT: SetSockOpt<Val = bool>,
TESTF: FnOnce(&ControlMessageOwned) -> libc::sock_extended_err,
{
use nix::errno::Errno;
use nix::sys::uio::IoVec;
const MESSAGE_CONTENTS: &str = "ABCDEF";
let sock_addr = {
let std_sa = SocketAddr::from_str(sa).unwrap();
let inet_addr = InetAddr::from_std(&std_sa);
SockAddr::new_inet(inet_addr)
};
let sock = socket(af, SockType::Datagram, SockFlag::SOCK_CLOEXEC, None).unwrap();
setsockopt(sock, opt, &true).unwrap();
if let Err(e) = sendto(sock, MESSAGE_CONTENTS.as_bytes(), &sock_addr, MsgFlags::empty()) {
assert_eq!(e, Errno::EADDRNOTAVAIL);
println!("{:?} not available, skipping test.", af);
return;
}
let mut buf = [0u8; 8];
let iovec = [IoVec::from_mut_slice(&mut buf)];
let mut cspace = cmsg_space!(libc::sock_extended_err, SA);
let msg = recvmsg(sock, &iovec, Some(&mut cspace), MsgFlags::MSG_ERRQUEUE).unwrap();
// The sent message / destination associated with the error is returned:
assert_eq!(msg.bytes, MESSAGE_CONTENTS.as_bytes().len());
assert_eq!(&buf[..msg.bytes], MESSAGE_CONTENTS.as_bytes());
// recvmsg(2): "The original destination address of the datagram that caused the error is
// supplied via msg_name;" however, this is not literally true. E.g., an earlier version
// of this test used 0.0.0.0 (::0) as the destination address, which was mutated into
// 127.0.0.1 (::1).
assert_eq!(msg.address, Some(sock_addr));
// Check for expected control message.
let ext_err = match msg.cmsgs().next() {
Some(cmsg) => testf(&cmsg),
None => panic!("No control message"),
};
assert_eq!(ext_err.ee_errno, libc::ECONNREFUSED as u32);
assert_eq!(ext_err.ee_origin, ee_origin);
// ip(7): ee_type and ee_code are set from the type and code fields of the ICMP (ICMPv6)
// header.
assert_eq!(ext_err.ee_type, ee_type);
assert_eq!(ext_err.ee_code, ee_code);
// ip(7): ee_info contains the discovered MTU for EMSGSIZE errors.
assert_eq!(ext_err.ee_info, 0);
}
}