android13/external/selinux/checkpolicy/module_compiler.c

1487 lines
34 KiB
C

/* Author : Joshua Brindle <jbrindle@tresys.com>
* Karl MacMillan <kmacmillan@tresys.com>
* Jason Tang <jtang@tresys.com>
* Added support for binary policy modules
*
* Copyright (C) 2004 - 2005 Tresys Technology, LLC
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*/
#include <assert.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <sepol/policydb/policydb.h>
#include <sepol/policydb/avrule_block.h>
#include <sepol/policydb/conditional.h>
#include "queue.h"
#include "module_compiler.h"
union stack_item_u {
avrule_block_t *avrule;
cond_list_t *cond_list;
};
typedef struct scope_stack {
union stack_item_u u;
int type; /* for above union: 1 = avrule block, 2 = conditional */
avrule_decl_t *decl; /* if in an avrule block, which
* declaration is current */
avrule_t *last_avrule;
int in_else; /* if in an avrule block, within ELSE branch */
int require_given; /* 1 if this block had at least one require */
struct scope_stack *parent, *child;
} scope_stack_t;
extern policydb_t *policydbp;
extern queue_t id_queue;
extern int yyerror(const char *msg);
__attribute__ ((format(printf, 1, 2)))
extern void yyerror2(const char *fmt, ...);
static int push_stack(int stack_type, ...);
static void pop_stack(void);
/* keep track of the last item added to the stack */
static scope_stack_t *stack_top = NULL;
static avrule_block_t *last_block;
static uint32_t next_decl_id = 1;
static const char * const flavor_str[SYM_NUM] = {
[SYM_COMMONS] = "common",
[SYM_CLASSES] = "class",
[SYM_ROLES] = "role",
[SYM_TYPES] = "type",
[SYM_USERS] = "user",
[SYM_BOOLS] = "bool",
[SYM_LEVELS] = "level",
[SYM_CATS] = "cat"
};
static void print_error_msg(int ret, uint32_t symbol_type)
{
switch (ret) {
case -3:
yyerror("Out of memory!");
break;
case -2:
yyerror2("Duplicate declaration of %s", flavor_str[symbol_type]);
break;
case -1:
yyerror2("Could not declare %s here", flavor_str[symbol_type]);
break;
default:
yyerror("Unknown error");
}
}
int define_policy(int pass, int module_header_given)
{
char *id;
if (module_header_given) {
if (policydbp->policy_type != POLICY_MOD) {
yyerror
("Module specification found while not building a policy module.\n");
return -1;
}
if (pass == 2) {
while ((id = queue_remove(id_queue)) != NULL)
free(id);
} else {
id = (char *)queue_remove(id_queue);
if (!id) {
yyerror("no module name");
return -1;
}
free(policydbp->name);
policydbp->name = id;
if ((policydbp->version =
queue_remove(id_queue)) == NULL) {
yyerror
("Expected a module version but none was found.");
return -1;
}
}
} else {
if (policydbp->policy_type == POLICY_MOD) {
yyerror
("Building a policy module, but no module specification found.\n");
return -1;
}
}
/* the first declaration within the global avrule
block will always have an id of 1 */
next_decl_id = 2;
/* reset the scoping stack */
while (stack_top != NULL) {
pop_stack();
}
if (push_stack(1, policydbp->global, policydbp->global->branch_list) ==
-1) {
return -1;
}
last_block = policydbp->global;
return 0;
}
/* Given the current parse stack, returns 1 if a declaration or require would
* be allowed here or 0 if not. For example, declarations and requirements are
* not allowed in conditionals, so if there are any conditionals in the
* current scope stack then this would return a 0.
*/
static int is_creation_allowed(void)
{
if (stack_top->type != 1 || stack_top->in_else) {
return 0;
}
return 1;
}
/* Attempt to declare or require a symbol within the current scope.
* Returns:
* 0: Success - Symbol had not been previously created.
* 1: Success - Symbol had already been created and caller must free datum.
* -1: Failure - Symbol cannot be created here
* -2: Failure - Duplicate declaration or type/attribute mismatch
* -3: Failure - Out of memory or some other error
*/
static int create_symbol(uint32_t symbol_type, hashtab_key_t key, hashtab_datum_t datum,
uint32_t * dest_value, uint32_t scope)
{
avrule_decl_t *decl = stack_top->decl;
int ret;
if (!is_creation_allowed()) {
return -1;
}
ret = symtab_insert(policydbp, symbol_type, key, datum, scope,
decl->decl_id, dest_value);
if (ret == 1 && dest_value) {
hashtab_datum_t s =
hashtab_search(policydbp->symtab[symbol_type].table,
key);
assert(s != NULL);
if (symbol_type == SYM_LEVELS) {
*dest_value = ((level_datum_t *)s)->level->sens;
} else {
*dest_value = ((symtab_datum_t *)s)->value;
}
} else if (ret == -2) {
return -2;
} else if (ret < 0) {
return -3;
}
return ret;
}
/* Attempt to declare a symbol within the current declaration. If
* currently within a non-conditional and in a non-else branch then
* insert the symbol, return 0 on success if symbol was undeclared.
* For roles and users, it is legal to have multiple declarations; as
* such return 1 to indicate that caller must free() the datum because
* it was not added. If symbols may not be declared here return -1.
* For duplicate declarations return -2. For all else, including out
* of memory, return -3. Note that dest_value and datum_value might
* not be restricted pointers. */
int declare_symbol(uint32_t symbol_type,
hashtab_key_t key, hashtab_datum_t datum,
uint32_t * dest_value, uint32_t * datum_value)
{
avrule_decl_t *decl = stack_top->decl;
int ret = create_symbol(symbol_type, key, datum, dest_value, SCOPE_DECL);
if (ret < 0) {
return ret;
}
if (ebitmap_set_bit(decl->declared.scope + symbol_type,
*datum_value - 1, 1)) {
return -3;
}
return ret;
}
static int role_implicit_bounds(hashtab_t roles_tab,
char *role_id, role_datum_t *role)
{
role_datum_t *bounds;
char *bounds_id, *delim;
delim = strrchr(role_id, '.');
if (!delim)
return 0; /* no implicit boundary */
bounds_id = strdup(role_id);
if (!bounds_id) {
yyerror("out of memory");
return -1;
}
bounds_id[(size_t)(delim - role_id)] = '\0';
bounds = hashtab_search(roles_tab, bounds_id);
if (!bounds) {
yyerror2("role %s doesn't exist, is implicit bounds of %s",
bounds_id, role_id);
return -1;
}
if (!role->bounds)
role->bounds = bounds->s.value;
else if (role->bounds != bounds->s.value) {
yyerror2("role %s has inconsistent bounds %s/%s",
role_id, bounds_id,
policydbp->p_role_val_to_name[role->bounds - 1]);
return -1;
}
free(bounds_id);
return 0;
}
static int create_role(uint32_t scope, unsigned char isattr, role_datum_t **role, char **key)
{
char *id = queue_remove(id_queue);
role_datum_t *datum = NULL;
int ret;
uint32_t value;
*role = NULL;
*key = NULL;
isattr = isattr ? ROLE_ATTRIB : ROLE_ROLE;
if (id == NULL) {
yyerror("no role name");
return -1;
}
datum = malloc(sizeof(*datum));
if (datum == NULL) {
yyerror("Out of memory!");
free(id);
return -1;
}
role_datum_init(datum);
datum->flavor = isattr;
if (scope == SCOPE_DECL) {
ret = declare_symbol(SYM_ROLES, id, datum, &value, &value);
} else {
ret = require_symbol(SYM_ROLES, id, datum, &value, &value);
}
datum->s.value = value;
if (ret == 0) {
*role = datum;
*key = strdup(id);
if (*key == NULL) {
yyerror("Out of memory!");
return -1;
}
} else if (ret == 1) {
*role = hashtab_search(policydbp->symtab[SYM_ROLES].table, id);
if (*role && (isattr != (*role)->flavor)) {
yyerror2("Identifier %s used as both an attribute and a role",
id);
free(id);
role_datum_destroy(datum);
free(datum);
return -1;
}
*role = datum;
*key = id;
} else {
print_error_msg(ret, SYM_ROLES);
free(id);
role_datum_destroy(datum);
free(datum);
}
return ret;
}
role_datum_t *declare_role(unsigned char isattr)
{
char *key = NULL;
role_datum_t *role = NULL;
role_datum_t *dest_role = NULL;
hashtab_t roles_tab;
int ret, ret2;
ret = create_role(SCOPE_DECL, isattr, &role, &key);
if (ret < 0) {
return NULL;
}
/* create a new role_datum_t for this decl, if necessary */
assert(stack_top->type == 1);
if (stack_top->parent == NULL) {
/* in parent, so use global symbol table */
roles_tab = policydbp->p_roles.table;
} else {
roles_tab = stack_top->decl->p_roles.table;
}
dest_role = hashtab_search(roles_tab, key);
if (dest_role == NULL) {
if (ret == 0) {
dest_role = malloc(sizeof(*dest_role));
if (dest_role == NULL) {
yyerror("Out of memory!");
free(key);
return NULL;
}
role_datum_init(dest_role);
dest_role->s.value = role->s.value;
dest_role->flavor = role->flavor;
} else {
dest_role = role;
}
ret2 = role_implicit_bounds(roles_tab, key, dest_role);
if (ret2 != 0) {
free(key);
role_datum_destroy(dest_role);
free(dest_role);
return NULL;
}
ret2 = hashtab_insert(roles_tab, key, dest_role);
if (ret2 != 0) {
yyerror("Out of memory!");
free(key);
role_datum_destroy(dest_role);
free(dest_role);
return NULL;
}
} else {
free(key);
if (ret == 1) {
role_datum_destroy(role);
free(role);
}
}
if (ret == 0) {
ret2 = ebitmap_set_bit(&dest_role->dominates, dest_role->s.value - 1, 1);
if (ret2 != 0) {
yyerror("out of memory");
return NULL;
}
}
return dest_role;
}
static int create_type(uint32_t scope, unsigned char isattr, type_datum_t **type)
{
char *id;
type_datum_t *datum;
int ret;
uint32_t value = 0;
*type = NULL;
isattr = isattr ? TYPE_ATTRIB : TYPE_TYPE;
id = (char *)queue_remove(id_queue);
if (!id) {
yyerror("no type/attribute name?");
return -1;
}
if (strcmp(id, "self") == 0) {
yyerror("\"self\" is a reserved type name.");
free(id);
return -1;
}
datum = malloc(sizeof(*datum));
if (!datum) {
yyerror("Out of memory!");
free(id);
return -1;
}
type_datum_init(datum);
datum->primary = 1;
datum->flavor = isattr;
if (scope == SCOPE_DECL) {
ret = declare_symbol(SYM_TYPES, id, datum, &value, &value);
} else {
ret = require_symbol(SYM_TYPES, id, datum, &value, &value);
}
if (ret == 0) {
datum->s.value = value;
*type = datum;
} else if (ret == 1) {
type_datum_destroy(datum);
free(datum);
*type = hashtab_search(policydbp->symtab[SYM_TYPES].table, id);
if (*type && (isattr != (*type)->flavor)) {
yyerror2("Identifier %s used as both an attribute and a type",
id);
free(id);
return -1;
}
free(id);
} else {
print_error_msg(ret, SYM_TYPES);
free(id);
type_datum_destroy(datum);
free(datum);
}
return ret;
}
type_datum_t *declare_type(unsigned char primary, unsigned char isattr)
{
type_datum_t *type = NULL;
int ret = create_type(SCOPE_DECL, isattr, &type);
if (ret == 0) {
type->primary = primary;
}
return type;
}
static int user_implicit_bounds(hashtab_t users_tab,
char *user_id, user_datum_t *user)
{
user_datum_t *bounds;
char *bounds_id, *delim;
delim = strrchr(user_id, '.');
if (!delim)
return 0; /* no implicit boundary */
bounds_id = strdup(user_id);
if (!bounds_id) {
yyerror("out of memory");
return -1;
}
bounds_id[(size_t)(delim - user_id)] = '\0';
bounds = hashtab_search(users_tab, bounds_id);
if (!bounds) {
yyerror2("user %s doesn't exist, is implicit bounds of %s",
bounds_id, user_id);
return -1;
}
if (!user->bounds)
user->bounds = bounds->s.value;
else if (user->bounds != bounds->s.value) {
yyerror2("user %s has inconsistent bounds %s/%s",
user_id, bounds_id,
policydbp->p_role_val_to_name[user->bounds - 1]);
return -1;
}
free(bounds_id);
return 0;
}
static int create_user(uint32_t scope, user_datum_t **user, char **key)
{
char *id = queue_remove(id_queue);
user_datum_t *datum = NULL;
int ret;
uint32_t value;
*user = NULL;
*key = NULL;
if (id == NULL) {
yyerror("no user name");
return -1;
}
datum = malloc(sizeof(*datum));
if (datum == NULL) {
yyerror("Out of memory!");
free(id);
return -1;
}
user_datum_init(datum);
if (scope == SCOPE_DECL) {
ret = declare_symbol(SYM_USERS, id, datum, &value, &value);
} else {
ret = require_symbol(SYM_USERS, id, datum, &value, &value);
}
datum->s.value = value;
if (ret == 0) {
*user = datum;
*key = strdup(id);
if (*key == NULL) {
yyerror("Out of memory!");
return -1;
}
} else if (ret == 1) {
*user = datum;
*key = id;
} else {
print_error_msg(ret, SYM_USERS);
free(id);
user_datum_destroy(datum);
free(datum);
}
return ret;
}
user_datum_t *declare_user(void)
{
char *key = NULL;
user_datum_t *user = NULL;
user_datum_t *dest_user = NULL;
hashtab_t users_tab;
int ret, ret2;
ret = create_user(SCOPE_DECL, &user, &key);
if (ret < 0) {
return NULL;
}
/* create a new user_datum_t for this decl, if necessary */
assert(stack_top->type == 1);
if (stack_top->parent == NULL) {
/* in parent, so use global symbol table */
users_tab = policydbp->p_users.table;
} else {
users_tab = stack_top->decl->p_users.table;
}
dest_user = hashtab_search(users_tab, key);
if (dest_user == NULL) {
if (ret == 0) {
dest_user = malloc(sizeof(*dest_user));
if (dest_user == NULL) {
yyerror("Out of memory!");
free(key);
return NULL;
}
user_datum_init(dest_user);
dest_user->s.value = user->s.value;
} else {
dest_user = user;
}
ret2 = user_implicit_bounds(users_tab, key, dest_user);
if (ret2 != 0) {
free(key);
user_datum_destroy(dest_user);
free(dest_user);
return NULL;
}
ret2 = hashtab_insert(users_tab, key, dest_user);
if (ret2 != 0) {
yyerror("Out of memory!");
free(key);
user_datum_destroy(dest_user);
free(dest_user);
return NULL;
}
} else {
free(key);
if (ret == 1) {
user_datum_destroy(user);
free(user);
}
}
return dest_user;
}
/* Return a type_datum_t for the local avrule_decl with the given ID.
* If it does not exist, create one with the same value as 'value'.
* This function assumes that the ID is within scope. c.f.,
* is_id_in_scope().
*
* NOTE: this function usurps ownership of id afterwards. The caller
* shall not reference it nor free() it afterwards.
*/
type_datum_t *get_local_type(char *id, uint32_t value, unsigned char isattr)
{
type_datum_t *dest_typdatum;
hashtab_t types_tab;
assert(stack_top->type == 1);
if (stack_top->parent == NULL) {
/* in global, so use global symbol table */
types_tab = policydbp->p_types.table;
} else {
types_tab = stack_top->decl->p_types.table;
}
dest_typdatum = hashtab_search(types_tab, id);
if (!dest_typdatum) {
dest_typdatum = (type_datum_t *) malloc(sizeof(type_datum_t));
if (dest_typdatum == NULL) {
free(id);
return NULL;
}
type_datum_init(dest_typdatum);
dest_typdatum->s.value = value;
dest_typdatum->flavor = isattr ? TYPE_ATTRIB : TYPE_TYPE;
dest_typdatum->primary = 1;
if (hashtab_insert(types_tab, id, dest_typdatum)) {
free(id);
type_datum_destroy(dest_typdatum);
free(dest_typdatum);
return NULL;
}
} else {
free(id);
if (dest_typdatum->flavor != isattr ? TYPE_ATTRIB : TYPE_TYPE) {
return NULL;
}
}
return dest_typdatum;
}
/* Return a role_datum_t for the local avrule_decl with the given ID.
* If it does not exist, create one with the same value as 'value'.
* This function assumes that the ID is within scope. c.f.,
* is_id_in_scope().
*
* NOTE: this function usurps ownership of id afterwards. The caller
* shall not reference it nor free() it afterwards.
*/
role_datum_t *get_local_role(char *id, uint32_t value, unsigned char isattr)
{
role_datum_t *dest_roledatum;
hashtab_t roles_tab;
assert(stack_top->type == 1);
if (stack_top->parent == NULL) {
/* in global, so use global symbol table */
roles_tab = policydbp->p_roles.table;
} else {
roles_tab = stack_top->decl->p_roles.table;
}
dest_roledatum = hashtab_search(roles_tab, id);
if (!dest_roledatum) {
dest_roledatum = (role_datum_t *)malloc(sizeof(role_datum_t));
if (dest_roledatum == NULL) {
free(id);
return NULL;
}
role_datum_init(dest_roledatum);
dest_roledatum->s.value = value;
dest_roledatum->flavor = isattr ? ROLE_ATTRIB : ROLE_ROLE;
if (hashtab_insert(roles_tab, id, dest_roledatum)) {
free(id);
role_datum_destroy(dest_roledatum);
free(dest_roledatum);
return NULL;
}
} else {
free(id);
if (dest_roledatum->flavor != isattr ? ROLE_ATTRIB : ROLE_ROLE)
return NULL;
}
return dest_roledatum;
}
/* Attempt to require a symbol within the current scope. If currently
* within an optional (and not its else branch), add the symbol to the
* required list. Return 0 on success, 1 if caller needs to free()
* datum. If symbols may not be declared here return -1. For duplicate
* declarations return -2. For all else, including out of memory,
* return -3.. Note that dest_value and datum_value might not be
* restricted pointers.
*/
int require_symbol(uint32_t symbol_type,
hashtab_key_t key, hashtab_datum_t datum,
uint32_t * dest_value, uint32_t * datum_value)
{
avrule_decl_t *decl = stack_top->decl;
int ret = create_symbol(symbol_type, key, datum, dest_value, SCOPE_REQ);
if (ret < 0) {
return ret;
}
if (ebitmap_set_bit(decl->required.scope + symbol_type,
*datum_value - 1, 1)) {
return -3;
}
stack_top->require_given = 1;
return ret;
}
int add_perm_to_class(uint32_t perm_value, uint32_t class_value)
{
avrule_decl_t *decl = stack_top->decl;
scope_index_t *scope;
assert(perm_value >= 1);
assert(class_value >= 1);
scope = &decl->required;
if (class_value > scope->class_perms_len) {
uint32_t i;
ebitmap_t *new_map = realloc(scope->class_perms_map,
class_value * sizeof(*new_map));
if (new_map == NULL) {
return -1;
}
scope->class_perms_map = new_map;
for (i = scope->class_perms_len; i < class_value; i++) {
ebitmap_init(scope->class_perms_map + i);
}
scope->class_perms_len = class_value;
}
if (ebitmap_set_bit(scope->class_perms_map + class_value - 1,
perm_value - 1, 1)) {
return -1;
}
return 0;
}
static int perm_destroy(hashtab_key_t key, hashtab_datum_t datum, void *p
__attribute__ ((unused)))
{
if (key)
free(key);
free(datum);
return 0;
}
static void class_datum_destroy(class_datum_t * cladatum)
{
if (cladatum != NULL) {
hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(cladatum->permissions.table);
free(cladatum);
}
}
int require_class(int pass)
{
char *class_id = queue_remove(id_queue);
char *perm_id = NULL;
class_datum_t *datum = NULL;
perm_datum_t *perm = NULL;
int ret;
if (pass == 2) {
free(class_id);
while ((perm_id = queue_remove(id_queue)) != NULL)
free(perm_id);
return 0;
}
/* first add the class if it is not already there */
if (class_id == NULL) {
yyerror("no class name for class definition?");
return -1;
}
if ((datum = calloc(1, sizeof(*datum))) == NULL ||
symtab_init(&datum->permissions, PERM_SYMTAB_SIZE)) {
yyerror("Out of memory!");
class_datum_destroy(datum);
return -1;
}
ret =
require_symbol(SYM_CLASSES, class_id, datum, &datum->s.value,
&datum->s.value);
if (ret < 0) {
print_error_msg(ret, SYM_CLASSES);
free(class_id);
class_datum_destroy(datum);
return -1;
}
if (ret == 0) {
/* a new class was added; reindex everything */
if (policydb_index_classes(policydbp)) {
yyerror("Out of memory!");
return -1;
}
} else {
class_datum_destroy(datum);
datum = hashtab_search(policydbp->p_classes.table, class_id);
assert(datum); /* the class datum should have existed */
free(class_id);
}
/* now add each of the permissions to this class's requirements */
while ((perm_id = queue_remove(id_queue)) != NULL) {
int allocated = 0;
/* Is the permission already in the table? */
perm = hashtab_search(datum->permissions.table, perm_id);
if (!perm && datum->comdatum)
perm =
hashtab_search(datum->comdatum->permissions.table,
perm_id);
if (perm) {
/* Yes, drop the name. */
free(perm_id);
} else {
/* No - allocate and insert an entry for it. */
if (policydbp->policy_type == POLICY_BASE) {
yyerror2
("Base policy - require of permission %s without prior declaration.",
perm_id);
free(perm_id);
return -1;
}
allocated = 1;
if ((perm = malloc(sizeof(*perm))) == NULL) {
yyerror("Out of memory!");
free(perm_id);
return -1;
}
memset(perm, 0, sizeof(*perm));
ret =
hashtab_insert(datum->permissions.table, perm_id,
perm);
if (ret) {
yyerror("Out of memory!");
free(perm_id);
free(perm);
return -1;
}
perm->s.value = datum->permissions.nprim + 1;
}
if (add_perm_to_class(perm->s.value, datum->s.value) == -1) {
yyerror("Out of memory!");
return -1;
}
/* Update number of primitives if we allocated one. */
if (allocated)
datum->permissions.nprim++;
}
return 0;
}
static int require_role_or_attribute(int pass, unsigned char isattr)
{
char *key = NULL;
role_datum_t *role = NULL;
int ret;
if (pass == 2) {
free(queue_remove(id_queue));
return 0;
}
ret = create_role(SCOPE_REQ, isattr, &role, &key);
if (ret < 0) {
return -1;
}
free(key);
if (ret == 0) {
ret = ebitmap_set_bit(&role->dominates, role->s.value - 1, 1);
if (ret != 0) {
yyerror("Out of memory");
return -1;
}
} else {
role_datum_destroy(role);
free(role);
}
return 0;
}
int require_role(int pass)
{
return require_role_or_attribute(pass, 0);
}
int require_attribute_role(int pass)
{
return require_role_or_attribute(pass, 1);
}
static int require_type_or_attribute(int pass, unsigned char isattr)
{
type_datum_t *type = NULL;
int ret;
if (pass == 2) {
free(queue_remove(id_queue));
return 0;
}
ret = create_type(SCOPE_REQ, isattr, &type);
if (ret < 0) {
return -1;
}
return 0;
}
int require_type(int pass)
{
return require_type_or_attribute(pass, 0);
}
int require_attribute(int pass)
{
return require_type_or_attribute(pass, 1);
}
int require_user(int pass)
{
char *key = NULL;
user_datum_t *user = NULL;
int ret;
if (pass == 1) {
free(queue_remove(id_queue));
return 0;
}
ret = create_user(SCOPE_REQ, &user, &key);
if (ret < 0) {
return -1;
}
free(key);
if (ret == 1) {
user_datum_destroy(user);
free(user);
}
return 0;
}
static int require_bool_tunable(int pass, int is_tunable)
{
char *id = queue_remove(id_queue);
cond_bool_datum_t *booldatum = NULL;
int retval;
if (pass == 2) {
free(id);
return 0;
}
if (id == NULL) {
yyerror("no boolean name");
return -1;
}
if ((booldatum = calloc(1, sizeof(*booldatum))) == NULL) {
cond_destroy_bool(id, booldatum, NULL);
yyerror("Out of memory!");
return -1;
}
if (is_tunable)
booldatum->flags |= COND_BOOL_FLAGS_TUNABLE;
retval =
require_symbol(SYM_BOOLS, id, booldatum,
&booldatum->s.value, &booldatum->s.value);
if (retval != 0) {
cond_destroy_bool(id, booldatum, NULL);
if (retval < 0) {
print_error_msg(retval, SYM_BOOLS);
return -1;
}
}
return 0;
}
int require_bool(int pass)
{
return require_bool_tunable(pass, 0);
}
int require_tunable(int pass)
{
return require_bool_tunable(pass, 1);
}
int require_sens(int pass)
{
char *id = queue_remove(id_queue);
level_datum_t *level = NULL;
int retval;
if (pass == 2) {
free(id);
return 0;
}
if (!id) {
yyerror("no sensitivity name");
return -1;
}
level = malloc(sizeof(level_datum_t));
if (!level) {
free(id);
yyerror("Out of memory!");
return -1;
}
level_datum_init(level);
level->level = malloc(sizeof(mls_level_t));
if (!level->level) {
free(id);
level_datum_destroy(level);
free(level);
yyerror("Out of memory!");
return -1;
}
mls_level_init(level->level);
retval = require_symbol(SYM_LEVELS, id, level,
&level->level->sens, &level->level->sens);
if (retval != 0) {
free(id);
mls_level_destroy(level->level);
free(level->level);
level_datum_destroy(level);
free(level);
if (retval < 0) {
print_error_msg(retval, SYM_LEVELS);
return -1;
}
}
return 0;
}
int require_cat(int pass)
{
char *id = queue_remove(id_queue);
cat_datum_t *cat = NULL;
int retval;
if (pass == 2) {
free(id);
return 0;
}
if (!id) {
yyerror("no category name");
return -1;
}
cat = malloc(sizeof(cat_datum_t));
if (!cat) {
free(id);
yyerror("Out of memory!");
return -1;
}
cat_datum_init(cat);
retval = require_symbol(SYM_CATS, id, cat,
&cat->s.value, &cat->s.value);
if (retval != 0) {
free(id);
cat_datum_destroy(cat);
free(cat);
if (retval < 0) {
print_error_msg(retval, SYM_CATS);
return -1;
}
}
return 0;
}
static int is_scope_in_stack(const scope_datum_t * scope, const scope_stack_t * stack)
{
uint32_t i;
if (stack == NULL) {
return 0; /* no matching scope found */
}
if (stack->type == 1) {
const avrule_decl_t *decl = stack->decl;
for (i = 0; i < scope->decl_ids_len; i++) {
if (scope->decl_ids[i] == decl->decl_id) {
return 1;
}
}
} else {
/* note that conditionals can't declare or require
* symbols, so skip this level */
}
/* not within scope of this stack, so try its parent */
return is_scope_in_stack(scope, stack->parent);
}
int is_id_in_scope(uint32_t symbol_type, const_hashtab_key_t id)
{
const scope_datum_t *scope =
(scope_datum_t *) hashtab_search(policydbp->scope[symbol_type].
table, id);
if (scope == NULL) {
return 1; /* id is not known, so return success */
}
return is_scope_in_stack(scope, stack_top);
}
static int is_perm_in_scope_index(uint32_t perm_value, uint32_t class_value,
const scope_index_t * scope)
{
if (class_value > scope->class_perms_len) {
return 1;
}
if (ebitmap_get_bit(scope->class_perms_map + class_value - 1,
perm_value - 1)) {
return 1;
}
return 0;
}
static int is_perm_in_stack(uint32_t perm_value, uint32_t class_value,
const scope_stack_t * stack)
{
if (stack == NULL) {
return 0; /* no matching scope found */
}
if (stack->type == 1) {
avrule_decl_t *decl = stack->decl;
if (is_perm_in_scope_index
(perm_value, class_value, &decl->required)
|| is_perm_in_scope_index(perm_value, class_value,
&decl->declared)) {
return 1;
}
} else {
/* note that conditionals can't declare or require
* symbols, so skip this level */
}
/* not within scope of this stack, so try its parent */
return is_perm_in_stack(perm_value, class_value, stack->parent);
}
int is_perm_in_scope(const_hashtab_key_t perm_id, const_hashtab_key_t class_id)
{
const class_datum_t *cladatum =
(class_datum_t *) hashtab_search(policydbp->p_classes.table,
class_id);
const perm_datum_t *perdatum;
if (cladatum == NULL) {
return 1;
}
perdatum = (perm_datum_t *) hashtab_search(cladatum->permissions.table,
perm_id);
if (perdatum == NULL) {
return 1;
}
return is_perm_in_stack(perdatum->s.value, cladatum->s.value,
stack_top);
}
cond_list_t *get_current_cond_list(cond_list_t * cond)
{
/* FIX ME: do something different here if in a nested
* conditional? */
avrule_decl_t *decl = stack_top->decl;
return get_decl_cond_list(policydbp, decl, cond);
}
/* Append the new conditional node to the existing ones. During
* expansion the list will be reversed -- i.e., the last AV rule will
* be the first one listed in the policy. This matches the behavior
* of the upstream compiler. */
void append_cond_list(cond_list_t * cond)
{
cond_list_t *old_cond = get_current_cond_list(cond);
avrule_t *tmp;
assert(old_cond != NULL); /* probably out of memory */
if (old_cond->avtrue_list == NULL) {
old_cond->avtrue_list = cond->avtrue_list;
} else {
for (tmp = old_cond->avtrue_list; tmp->next != NULL;
tmp = tmp->next) ;
tmp->next = cond->avtrue_list;
}
if (old_cond->avfalse_list == NULL) {
old_cond->avfalse_list = cond->avfalse_list;
} else {
for (tmp = old_cond->avfalse_list; tmp->next != NULL;
tmp = tmp->next) ;
tmp->next = cond->avfalse_list;
}
old_cond->flags |= cond->flags;
}
void append_avrule(avrule_t * avrule)
{
avrule_decl_t *decl = stack_top->decl;
/* currently avrules follow a completely different code path
* for handling avrules and compute types
* (define_cond_avrule_te_avtab, define_cond_compute_type);
* therefore there ought never be a conditional on top of the
* scope stack */
assert(stack_top->type == 1);
if (stack_top->last_avrule == NULL) {
decl->avrules = avrule;
} else {
stack_top->last_avrule->next = avrule;
}
stack_top->last_avrule = avrule;
}
/* this doesn't actually append, but really prepends it */
void append_role_trans(role_trans_rule_t * role_tr_rules)
{
avrule_decl_t *decl = stack_top->decl;
/* role transitions are not allowed within conditionals */
assert(stack_top->type == 1);
role_tr_rules->next = decl->role_tr_rules;
decl->role_tr_rules = role_tr_rules;
}
/* this doesn't actually append, but really prepends it */
void append_role_allow(role_allow_rule_t * role_allow_rules)
{
avrule_decl_t *decl = stack_top->decl;
/* role allows are not allowed within conditionals */
assert(stack_top->type == 1);
role_allow_rules->next = decl->role_allow_rules;
decl->role_allow_rules = role_allow_rules;
}
/* this doesn't actually append, but really prepends it */
void append_filename_trans(filename_trans_rule_t * filename_trans_rules)
{
avrule_decl_t *decl = stack_top->decl;
/* filename transitions are not allowed within conditionals */
assert(stack_top->type == 1);
filename_trans_rules->next = decl->filename_trans_rules;
decl->filename_trans_rules = filename_trans_rules;
}
/* this doesn't actually append, but really prepends it */
void append_range_trans(range_trans_rule_t * range_tr_rules)
{
avrule_decl_t *decl = stack_top->decl;
/* range transitions are not allowed within conditionals */
assert(stack_top->type == 1);
range_tr_rules->next = decl->range_tr_rules;
decl->range_tr_rules = range_tr_rules;
}
int begin_optional(int pass)
{
avrule_block_t *block = NULL;
avrule_decl_t *decl;
if (pass == 1) {
/* allocate a new avrule block for this optional block */
if ((block = avrule_block_create()) == NULL ||
(decl = avrule_decl_create(next_decl_id)) == NULL) {
goto cleanup;
}
block->flags |= AVRULE_OPTIONAL;
block->branch_list = decl;
last_block->next = block;
} else {
/* select the next block from the chain built during pass 1 */
block = last_block->next;
assert(block != NULL &&
block->branch_list != NULL &&
block->branch_list->decl_id == next_decl_id);
decl = block->branch_list;
}
if (push_stack(1, block, decl) == -1) {
goto cleanup;
}
stack_top->last_avrule = NULL;
last_block = block;
next_decl_id++;
return 0;
cleanup:
yyerror("Out of memory!");
avrule_block_destroy(block);
return -1;
}
int end_optional(int pass __attribute__ ((unused)))
{
/* once nested conditionals are allowed, do the stack unfolding here */
pop_stack();
return 0;
}
int begin_optional_else(int pass)
{
avrule_decl_t *decl;
assert(stack_top->type == 1 && stack_top->in_else == 0);
if (pass == 1) {
/* allocate a new declaration and add it to the
* current chain */
if ((decl = avrule_decl_create(next_decl_id)) == NULL) {
yyerror("Out of memory!");
return -1;
}
stack_top->decl->next = decl;
} else {
/* pick the (hopefully last) declaration of this
avrule block, built from pass 1 */
decl = stack_top->decl->next;
assert(decl != NULL &&
decl->next == NULL && decl->decl_id == next_decl_id);
}
stack_top->in_else = 1;
stack_top->decl = decl;
stack_top->last_avrule = NULL;
stack_top->require_given = 0;
next_decl_id++;
return 0;
}
static int copy_requirements(avrule_decl_t * dest, const scope_stack_t * stack)
{
uint32_t i;
if (stack == NULL) {
return 0;
}
if (stack->type == 1) {
const scope_index_t *src_scope = &stack->decl->required;
scope_index_t *dest_scope = &dest->required;
for (i = 0; i < SYM_NUM; i++) {
const ebitmap_t *src_bitmap = &src_scope->scope[i];
ebitmap_t *dest_bitmap = &dest_scope->scope[i];
if (ebitmap_union(dest_bitmap, src_bitmap)) {
yyerror("Out of memory!");
return -1;
}
}
/* now copy class permissions */
if (src_scope->class_perms_len > dest_scope->class_perms_len) {
ebitmap_t *new_map =
realloc(dest_scope->class_perms_map,
src_scope->class_perms_len *
sizeof(*new_map));
if (new_map == NULL) {
yyerror("Out of memory!");
return -1;
}
dest_scope->class_perms_map = new_map;
for (i = dest_scope->class_perms_len;
i < src_scope->class_perms_len; i++) {
ebitmap_init(dest_scope->class_perms_map + i);
}
dest_scope->class_perms_len =
src_scope->class_perms_len;
}
for (i = 0; i < src_scope->class_perms_len; i++) {
const ebitmap_t *src_bitmap = &src_scope->class_perms_map[i];
ebitmap_t *dest_bitmap =
&dest_scope->class_perms_map[i];
if (ebitmap_union(dest_bitmap, src_bitmap)) {
yyerror("Out of memory!");
return -1;
}
}
}
return copy_requirements(dest, stack->parent);
}
/* During pass 1, check that at least one thing was required within
* this block, for those places where a REQUIRED is necessary. During
* pass 2, have this block inherit its parents' requirements. Return
* 0 on success, -1 on failure. */
int end_avrule_block(int pass)
{
avrule_decl_t *decl = stack_top->decl;
assert(stack_top->type == 1);
if (pass == 2) {
/* this avrule_decl inherits all of its parents'
* requirements */
if (copy_requirements(decl, stack_top->parent) == -1) {
return -1;
}
return 0;
}
if (!stack_top->in_else && !stack_top->require_given) {
if (policydbp->policy_type == POLICY_BASE
&& stack_top->parent != NULL) {
/* if this is base no require should be in the global block */
return 0;
} else {
/* non-ELSE branches must have at least one thing required */
yyerror("This block has no require section.");
return -1;
}
}
return 0;
}
/* Push a new scope on to the stack and update the 'last' pointer.
* Return 0 on success, -1 if out * of memory. */
static int push_stack(int stack_type, ...)
{
scope_stack_t *s = calloc(1, sizeof(*s));
va_list ap;
if (s == NULL) {
return -1;
}
va_start(ap, stack_type);
switch (s->type = stack_type) {
case 1:{
s->u.avrule = va_arg(ap, avrule_block_t *);
s->decl = va_arg(ap, avrule_decl_t *);
break;
}
case 2:{
s->u.cond_list = va_arg(ap, cond_list_t *);
break;
}
default:
/* invalid stack type given */
assert(0);
}
va_end(ap);
s->parent = stack_top;
s->child = NULL;
stack_top = s;
return 0;
}
/* Pop off the most recently added from the stack. Update the 'last'
* pointer. */
static void pop_stack(void)
{
scope_stack_t *parent;
assert(stack_top != NULL);
parent = stack_top->parent;
if (parent != NULL) {
parent->child = NULL;
}
free(stack_top);
stack_top = parent;
}