android13/external/starlark-go/starlark/unpack.go

320 lines
8.8 KiB
Go

package starlark
// This file defines the Unpack helper functions used by
// built-in functions to interpret their call arguments.
import (
"fmt"
"log"
"reflect"
"strings"
)
// An Unpacker defines custom argument unpacking behavior.
// See UnpackArgs.
type Unpacker interface {
Unpack(v Value) error
}
// UnpackArgs unpacks the positional and keyword arguments into the
// supplied parameter variables. pairs is an alternating list of names
// and pointers to variables.
//
// If the variable is a bool, integer, string, *List, *Dict, Callable,
// Iterable, or user-defined implementation of Value,
// UnpackArgs performs the appropriate type check.
// Predeclared Go integer types uses the AsInt check.
// If the parameter name ends with "?",
// it and all following parameters are optional.
//
// If the variable implements Unpacker, its Unpack argument
// is called with the argument value, allowing an application
// to define its own argument validation and conversion.
//
// If the variable implements Value, UnpackArgs may call
// its Type() method while constructing the error message.
//
// Examples:
//
// var (
// a Value
// b = MakeInt(42)
// c Value = starlark.None
// )
//
// // 1. mixed parameters, like def f(a, b=42, c=None).
// err := UnpackArgs("f", args, kwargs, "a", &a, "b?", &b, "c?", &c)
//
// // 2. keyword parameters only, like def f(*, a, b, c=None).
// if len(args) > 0 {
// return fmt.Errorf("f: unexpected positional arguments")
// }
// err := UnpackArgs("f", args, kwargs, "a", &a, "b?", &b, "c?", &c)
//
// // 3. positional parameters only, like def f(a, b=42, c=None, /) in Python 3.8.
// err := UnpackPositionalArgs("f", args, kwargs, 1, &a, &b, &c)
//
// More complex forms such as def f(a, b=42, *args, c, d=123, **kwargs)
// require additional logic, but their need in built-ins is exceedingly rare.
//
// In the examples above, the declaration of b with type Int causes UnpackArgs
// to require that b's argument value, if provided, is also an int.
// To allow arguments of any type, while retaining the default value of 42,
// declare b as a Value:
//
// var b Value = MakeInt(42)
//
// The zero value of a variable of type Value, such as 'a' in the
// examples above, is not a valid Starlark value, so if the parameter is
// optional, the caller must explicitly handle the default case by
// interpreting nil as None or some computed default. The same is true
// for the zero values of variables of type *List, *Dict, Callable, or
// Iterable. For example:
//
// // def myfunc(d=None, e=[], f={})
// var (
// d Value
// e *List
// f *Dict
// )
// err := UnpackArgs("myfunc", args, kwargs, "d?", &d, "e?", &e, "f?", &f)
// if d == nil { d = None; }
// if e == nil { e = new(List); }
// if f == nil { f = new(Dict); }
//
func UnpackArgs(fnname string, args Tuple, kwargs []Tuple, pairs ...interface{}) error {
nparams := len(pairs) / 2
var defined intset
defined.init(nparams)
paramName := func(x interface{}) string { // (no free variables)
name := x.(string)
if name[len(name)-1] == '?' {
name = name[:len(name)-1]
}
return name
}
// positional arguments
if len(args) > nparams {
return fmt.Errorf("%s: got %d arguments, want at most %d",
fnname, len(args), nparams)
}
for i, arg := range args {
defined.set(i)
if err := unpackOneArg(arg, pairs[2*i+1]); err != nil {
name := paramName(pairs[2*i])
return fmt.Errorf("%s: for parameter %s: %s", fnname, name, err)
}
}
// keyword arguments
kwloop:
for _, item := range kwargs {
name, arg := item[0].(String), item[1]
for i := 0; i < nparams; i++ {
if paramName(pairs[2*i]) == string(name) {
// found it
if defined.set(i) {
return fmt.Errorf("%s: got multiple values for keyword argument %s",
fnname, name)
}
ptr := pairs[2*i+1]
if err := unpackOneArg(arg, ptr); err != nil {
return fmt.Errorf("%s: for parameter %s: %s", fnname, name, err)
}
continue kwloop
}
}
return fmt.Errorf("%s: unexpected keyword argument %s", fnname, name)
}
// Check that all non-optional parameters are defined.
// (We needn't check the first len(args).)
for i := len(args); i < nparams; i++ {
name := pairs[2*i].(string)
if strings.HasSuffix(name, "?") {
break // optional
}
if !defined.get(i) {
return fmt.Errorf("%s: missing argument for %s", fnname, name)
}
}
return nil
}
// UnpackPositionalArgs unpacks the positional arguments into
// corresponding variables. Each element of vars is a pointer; see
// UnpackArgs for allowed types and conversions.
//
// UnpackPositionalArgs reports an error if the number of arguments is
// less than min or greater than len(vars), if kwargs is nonempty, or if
// any conversion fails.
//
// See UnpackArgs for general comments.
func UnpackPositionalArgs(fnname string, args Tuple, kwargs []Tuple, min int, vars ...interface{}) error {
if len(kwargs) > 0 {
return fmt.Errorf("%s: unexpected keyword arguments", fnname)
}
max := len(vars)
if len(args) < min {
var atleast string
if min < max {
atleast = "at least "
}
return fmt.Errorf("%s: got %d arguments, want %s%d", fnname, len(args), atleast, min)
}
if len(args) > max {
var atmost string
if max > min {
atmost = "at most "
}
return fmt.Errorf("%s: got %d arguments, want %s%d", fnname, len(args), atmost, max)
}
for i, arg := range args {
if err := unpackOneArg(arg, vars[i]); err != nil {
return fmt.Errorf("%s: for parameter %d: %s", fnname, i+1, err)
}
}
return nil
}
func unpackOneArg(v Value, ptr interface{}) error {
// On failure, don't clobber *ptr.
switch ptr := ptr.(type) {
case Unpacker:
return ptr.Unpack(v)
case *Value:
*ptr = v
case *string:
s, ok := AsString(v)
if !ok {
return fmt.Errorf("got %s, want string", v.Type())
}
*ptr = s
case *bool:
b, ok := v.(Bool)
if !ok {
return fmt.Errorf("got %s, want bool", v.Type())
}
*ptr = bool(b)
case *int, *int8, *int16, *int32, *int64,
*uint, *uint8, *uint16, *uint32, *uint64, *uintptr:
return AsInt(v, ptr)
case *float64:
f, ok := v.(Float)
if !ok {
return fmt.Errorf("got %s, want float", v.Type())
}
*ptr = float64(f)
case **List:
list, ok := v.(*List)
if !ok {
return fmt.Errorf("got %s, want list", v.Type())
}
*ptr = list
case **Dict:
dict, ok := v.(*Dict)
if !ok {
return fmt.Errorf("got %s, want dict", v.Type())
}
*ptr = dict
case *Callable:
f, ok := v.(Callable)
if !ok {
return fmt.Errorf("got %s, want callable", v.Type())
}
*ptr = f
case *Iterable:
it, ok := v.(Iterable)
if !ok {
return fmt.Errorf("got %s, want iterable", v.Type())
}
*ptr = it
default:
// v must have type *V, where V is some subtype of starlark.Value.
ptrv := reflect.ValueOf(ptr)
if ptrv.Kind() != reflect.Ptr {
log.Panicf("internal error: not a pointer: %T", ptr)
}
paramVar := ptrv.Elem()
if !reflect.TypeOf(v).AssignableTo(paramVar.Type()) {
// The value is not assignable to the variable.
// Detect a possible bug in the Go program that called Unpack:
// If the variable *ptr is not a subtype of Value,
// no value of v can possibly work.
if !paramVar.Type().AssignableTo(reflect.TypeOf(new(Value)).Elem()) {
log.Panicf("pointer element type does not implement Value: %T", ptr)
}
// Report Starlark dynamic type error.
//
// We prefer the Starlark Value.Type name over
// its Go reflect.Type name, but calling the
// Value.Type method on the variable is not safe
// in general. If the variable is an interface,
// the call will fail. Even if the variable has
// a concrete type, it might not be safe to call
// Type() on a zero instance. Thus we must use
// recover.
// Default to Go reflect.Type name
paramType := paramVar.Type().String()
// Attempt to call Value.Type method.
func() {
defer func() { recover() }()
paramType = paramVar.MethodByName("Type").Call(nil)[0].String()
}()
return fmt.Errorf("got %s, want %s", v.Type(), paramType)
}
paramVar.Set(reflect.ValueOf(v))
}
return nil
}
type intset struct {
small uint64 // bitset, used if n < 64
large map[int]bool // set, used if n >= 64
}
func (is *intset) init(n int) {
if n >= 64 {
is.large = make(map[int]bool)
}
}
func (is *intset) set(i int) (prev bool) {
if is.large == nil {
prev = is.small&(1<<uint(i)) != 0
is.small |= 1 << uint(i)
} else {
prev = is.large[i]
is.large[i] = true
}
return
}
func (is *intset) get(i int) bool {
if is.large == nil {
return is.small&(1<<uint(i)) != 0
}
return is.large[i]
}
func (is *intset) len() int {
if is.large == nil {
// Suboptimal, but used only for error reporting.
len := 0
for i := 0; i < 64; i++ {
if is.small&(1<<uint(i)) != 0 {
len++
}
}
return len
}
return len(is.large)
}