android13/external/webrtc/modules/audio_processing/aec3/suppression_gain_unittest.cc

149 lines
5.9 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGainDeathTest, NullOutputGains) {
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(1, {0.f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(1, {0.f});
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(1);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(1, {0.f});
for (auto& S2_k : S2) {
S2_k.fill(.1f);
}
FftData E;
FftData Y;
E.re.fill(0.f);
E.im.fill(0.f);
Y.re.fill(0.f);
Y.im.fill(0.f);
float high_bands_gain;
AecState aec_state(EchoCanceller3Config{}, 1);
EXPECT_DEATH(
SuppressionGain(EchoCanceller3Config{}, DetectOptimization(), 16000, 1)
.GetGain(E2, S2, R2, N2,
RenderSignalAnalyzer((EchoCanceller3Config{})), aec_state,
std::vector<std::vector<std::vector<float>>>(
3, std::vector<std::vector<float>>(
1, std::vector<float>(kBlockSize, 0.f))),
&high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
constexpr size_t kNumRenderChannels = 1;
constexpr size_t kNumCaptureChannels = 2;
constexpr int kSampleRateHz = 16000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
SuppressionGain suppression_gain(EchoCanceller3Config(), DetectOptimization(),
kSampleRateHz, kNumCaptureChannels);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
float high_bands_gain;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(kNumCaptureChannels,
{0.f});
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(kNumCaptureChannels);
std::array<float, kFftLengthBy2Plus1> g;
std::vector<SubtractorOutput> output(kNumCaptureChannels);
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
kNumRenderChannels, std::vector<float>(kBlockSize, 0.f)));
EchoCanceller3Config config;
AecState aec_state(config, kNumCaptureChannels);
ApmDataDumper data_dumper(42);
Subtractor subtractor(config, kNumRenderChannels, kNumCaptureChannels,
&data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels));
absl::optional<DelayEstimate> delay_estimate;
// Ensure that a strong noise is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(10.f);
Y2[ch].fill(10.f);
R2[ch].fill(.1f);
N2[ch].fill(100.f);
}
for (auto& subtractor_output : output) {
subtractor_output.Reset();
}
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong nearend is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(100.f);
Y2[ch].fill(100.f);
R2[ch].fill(0.1f);
S2[ch].fill(0.1f);
N2[ch].fill(0.f);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Add a strong echo to one of the channels and ensure that it is suppressed.
E2[1].fill(1000000000.f);
R2[1].fill(10000000000000.f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, S2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.f, a, 0.001); });
}
} // namespace aec3
} // namespace webrtc