1022 lines
40 KiB
C++
1022 lines
40 KiB
C++
/*
|
|
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "video/adaptation/overuse_frame_detector.h"
|
|
|
|
#include <memory>
|
|
|
|
#include "api/video/encoded_image.h"
|
|
#include "api/video/i420_buffer.h"
|
|
#include "api/video/video_adaptation_reason.h"
|
|
#include "modules/video_coding/utility/quality_scaler.h"
|
|
#include "rtc_base/event.h"
|
|
#include "rtc_base/fake_clock.h"
|
|
#include "rtc_base/random.h"
|
|
#include "rtc_base/task_queue_for_test.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
using ::testing::_;
|
|
using ::testing::InvokeWithoutArgs;
|
|
|
|
namespace {
|
|
const int kWidth = 640;
|
|
const int kHeight = 480;
|
|
// Corresponds to load of 15%
|
|
const int kFrameIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kProcessTimeUs = 5 * rtc::kNumMicrosecsPerMillisec;
|
|
} // namespace
|
|
|
|
class MockCpuOveruseObserver : public OveruseFrameDetectorObserverInterface {
|
|
public:
|
|
MockCpuOveruseObserver() {}
|
|
virtual ~MockCpuOveruseObserver() {}
|
|
|
|
MOCK_METHOD(void, AdaptUp, (), (override));
|
|
MOCK_METHOD(void, AdaptDown, (), (override));
|
|
};
|
|
|
|
class CpuOveruseObserverImpl : public OveruseFrameDetectorObserverInterface {
|
|
public:
|
|
CpuOveruseObserverImpl() : overuse_(0), normaluse_(0) {}
|
|
virtual ~CpuOveruseObserverImpl() {}
|
|
|
|
void AdaptDown() override { ++overuse_; }
|
|
void AdaptUp() override { ++normaluse_; }
|
|
|
|
int overuse_;
|
|
int normaluse_;
|
|
};
|
|
|
|
class OveruseFrameDetectorUnderTest : public OveruseFrameDetector {
|
|
public:
|
|
explicit OveruseFrameDetectorUnderTest(
|
|
CpuOveruseMetricsObserver* metrics_observer)
|
|
: OveruseFrameDetector(metrics_observer) {}
|
|
~OveruseFrameDetectorUnderTest() {}
|
|
|
|
using OveruseFrameDetector::CheckForOveruse;
|
|
using OveruseFrameDetector::SetOptions;
|
|
};
|
|
|
|
class OveruseFrameDetectorTest : public ::testing::Test,
|
|
public CpuOveruseMetricsObserver {
|
|
protected:
|
|
void SetUp() override {
|
|
observer_ = &mock_observer_;
|
|
options_.min_process_count = 0;
|
|
overuse_detector_ = std::make_unique<OveruseFrameDetectorUnderTest>(this);
|
|
// Unfortunately, we can't call SetOptions here, since that would break
|
|
// single-threading requirements in the RunOnTqNormalUsage test.
|
|
}
|
|
|
|
void OnEncodedFrameTimeMeasured(int encode_time_ms,
|
|
int encode_usage_percent) override {
|
|
encode_usage_percent_ = encode_usage_percent;
|
|
}
|
|
|
|
int InitialUsage() {
|
|
return ((options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) /
|
|
2.0f) +
|
|
0.5;
|
|
}
|
|
|
|
virtual void InsertAndSendFramesWithInterval(int num_frames,
|
|
int interval_us,
|
|
int width,
|
|
int height,
|
|
int delay_us) {
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(width, height))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
uint32_t timestamp = 0;
|
|
while (num_frames-- > 0) {
|
|
frame.set_timestamp(timestamp);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(delay_us));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
|
|
capture_time_us, delay_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us));
|
|
timestamp += interval_us * 90 / 1000;
|
|
}
|
|
}
|
|
|
|
virtual void InsertAndSendSimulcastFramesWithInterval(
|
|
int num_frames,
|
|
int interval_us,
|
|
int width,
|
|
int height,
|
|
// One element per layer
|
|
rtc::ArrayView<const int> delays_us) {
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(width, height))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
uint32_t timestamp = 0;
|
|
while (num_frames-- > 0) {
|
|
frame.set_timestamp(timestamp);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
int max_delay_us = 0;
|
|
for (int delay_us : delays_us) {
|
|
if (delay_us > max_delay_us) {
|
|
clock_.AdvanceTime(TimeDelta::Micros(delay_us - max_delay_us));
|
|
max_delay_us = delay_us;
|
|
}
|
|
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
|
|
capture_time_us, delay_us);
|
|
}
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
clock_.AdvanceTime(TimeDelta::Micros(interval_us - max_delay_us));
|
|
timestamp += interval_us * 90 / 1000;
|
|
}
|
|
}
|
|
|
|
virtual void InsertAndSendFramesWithRandomInterval(int num_frames,
|
|
int min_interval_us,
|
|
int max_interval_us,
|
|
int width,
|
|
int height,
|
|
int delay_us) {
|
|
webrtc::Random random(17);
|
|
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(width, height))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
uint32_t timestamp = 0;
|
|
while (num_frames-- > 0) {
|
|
frame.set_timestamp(timestamp);
|
|
int interval_us = random.Rand(min_interval_us, max_interval_us);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(delay_us));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(),
|
|
capture_time_us,
|
|
absl::optional<int>(delay_us));
|
|
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
// Avoid turning clock backwards.
|
|
if (interval_us > delay_us)
|
|
clock_.AdvanceTime(TimeDelta::Micros(interval_us - delay_us));
|
|
|
|
timestamp += interval_us * 90 / 1000;
|
|
}
|
|
}
|
|
|
|
virtual void ForceUpdate(int width, int height) {
|
|
// Insert one frame, wait a second and then put in another to force update
|
|
// the usage. From the tests where these are used, adding another sample
|
|
// doesn't affect the expected outcome (this is mainly to check initial
|
|
// values and whether the overuse detector has been reset or not).
|
|
InsertAndSendFramesWithInterval(2, rtc::kNumMicrosecsPerSec, width, height,
|
|
kFrameIntervalUs);
|
|
}
|
|
void TriggerOveruse(int num_times) {
|
|
const int kDelayUs = 32 * rtc::kNumMicrosecsPerMillisec;
|
|
for (int i = 0; i < num_times; ++i) {
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
void TriggerUnderuse() {
|
|
const int kDelayUs1 = 5000;
|
|
const int kDelayUs2 = 6000;
|
|
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs1);
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs2);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
int UsagePercent() { return encode_usage_percent_; }
|
|
|
|
int64_t OveruseProcessingTimeLimitForFramerate(int fps) const {
|
|
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
|
|
int64_t max_processing_time_us =
|
|
(frame_interval * options_.high_encode_usage_threshold_percent) / 100;
|
|
return max_processing_time_us;
|
|
}
|
|
|
|
int64_t UnderuseProcessingTimeLimitForFramerate(int fps) const {
|
|
int64_t frame_interval = rtc::kNumMicrosecsPerSec / fps;
|
|
int64_t max_processing_time_us =
|
|
(frame_interval * options_.low_encode_usage_threshold_percent) / 100;
|
|
return max_processing_time_us;
|
|
}
|
|
|
|
CpuOveruseOptions options_;
|
|
rtc::ScopedFakeClock clock_;
|
|
MockCpuOveruseObserver mock_observer_;
|
|
OveruseFrameDetectorObserverInterface* observer_;
|
|
std::unique_ptr<OveruseFrameDetectorUnderTest> overuse_detector_;
|
|
int encode_usage_percent_ = -1;
|
|
};
|
|
|
|
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
|
|
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
|
|
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
|
|
// usage > high => overuse
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
|
|
// usage > high => overuse
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
// usage < low => underuse
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
TriggerUnderuse();
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(2);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
TriggerUnderuse();
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
|
|
const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
|
|
options_.min_process_count = 1;
|
|
CpuOveruseObserverImpl overuse_observer;
|
|
observer_ = nullptr;
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
overuse_detector_->CheckForOveruse(&overuse_observer);
|
|
EXPECT_EQ(0, overuse_observer.normaluse_);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs));
|
|
overuse_detector_->CheckForOveruse(&overuse_observer);
|
|
EXPECT_EQ(1, overuse_observer.normaluse_);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(0);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(64);
|
|
for (size_t i = 0; i < 64; ++i) {
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
options_.high_threshold_consecutive_count = 2;
|
|
overuse_detector_->SetOptions(options_);
|
|
TriggerOveruse(2);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
options_.high_threshold_consecutive_count = 2;
|
|
overuse_detector_->SetOptions(options_);
|
|
TriggerOveruse(1);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
// Verify reset (with new width/height).
|
|
ForceUpdate(kWidth, kHeight + 1);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(
|
|
2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec,
|
|
kWidth, kHeight, kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
// Verify reset.
|
|
InsertAndSendFramesWithInterval(
|
|
2,
|
|
(options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec,
|
|
kWidth, kHeight, kProcessTimeUs);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
|
|
options_.min_frame_samples = 40;
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
// Pass time far enough to digest all previous samples.
|
|
clock_.AdvanceTime(TimeDelta::Seconds(1));
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
// The last sample has not been processed here.
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
|
|
// Pass time far enough to digest all previous samples, 41 in total.
|
|
clock_.AdvanceTime(TimeDelta::Seconds(1));
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
|
|
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
|
|
static const size_t kNumFramesEncodingDelay = 3;
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
// Unique timestamps.
|
|
frame.set_timestamp(static_cast<uint32_t>(i));
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs));
|
|
if (i > kNumFramesEncodingDelay) {
|
|
overuse_detector_->FrameSent(
|
|
static_cast<uint32_t>(i - kNumFramesEncodingDelay), rtc::TimeMicros(),
|
|
capture_time_us, kIntervalUs);
|
|
}
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
|
|
// >85% encoding time should trigger overuse.
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
|
|
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
|
|
static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
uint32_t timestamp = 0;
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
frame.set_timestamp(timestamp);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
// Encode and send first parts almost instantly.
|
|
clock_.AdvanceTime(TimeDelta::Millis(1));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
|
|
rtc::kNumMicrosecsPerMillisec);
|
|
// Encode heavier part, resulting in >85% usage total.
|
|
clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
|
|
kDelayUs);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs));
|
|
timestamp += kIntervalUs * 90 / 1000;
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, RunOnTqNormalUsage) {
|
|
TaskQueueForTest queue("OveruseFrameDetectorTestQueue");
|
|
|
|
queue.SendTask(
|
|
[&] {
|
|
overuse_detector_->StartCheckForOveruse(queue.Get(), options_,
|
|
observer_);
|
|
},
|
|
RTC_FROM_HERE);
|
|
|
|
rtc::Event event;
|
|
// Expect NormalUsage(). When called, stop the |overuse_detector_| and then
|
|
// set |event| to end the test.
|
|
EXPECT_CALL(mock_observer_, AdaptUp())
|
|
.WillOnce(InvokeWithoutArgs([this, &event] {
|
|
overuse_detector_->StopCheckForOveruse();
|
|
event.Set();
|
|
}));
|
|
|
|
queue.PostTask([this] {
|
|
const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
|
|
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs1);
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs2);
|
|
});
|
|
|
|
EXPECT_TRUE(event.Wait(10000));
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, MaxIntervalScalesWithFramerate) {
|
|
const int kCapturerMaxFrameRate = 30;
|
|
const int kEncodeMaxFrameRate = 20; // Maximum fps the encoder can sustain.
|
|
|
|
overuse_detector_->SetOptions(options_);
|
|
// Trigger overuse.
|
|
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kCapturerMaxFrameRate;
|
|
// Processing time just below over use limit given kEncodeMaxFrameRate.
|
|
int64_t processing_time_us =
|
|
(98 * OveruseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Simulate frame rate reduction and normal usage.
|
|
frame_interval_us = rtc::kNumMicrosecsPerSec / kEncodeMaxFrameRate;
|
|
overuse_detector_->OnTargetFramerateUpdated(kEncodeMaxFrameRate);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Reduce processing time to trigger underuse.
|
|
processing_time_us =
|
|
(98 * UnderuseProcessingTimeLimitForFramerate(kEncodeMaxFrameRate)) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(1);
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, RespectsMinFramerate) {
|
|
const int kMinFrameRate = 7; // Minimum fps allowed by current detector impl.
|
|
overuse_detector_->SetOptions(options_);
|
|
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate);
|
|
|
|
// Normal usage just at the limit.
|
|
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMinFrameRate;
|
|
// Processing time just below over use limit given kEncodeMaxFrameRate.
|
|
int64_t processing_time_us =
|
|
(98 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Over the limit to overuse.
|
|
processing_time_us =
|
|
(102 * OveruseProcessingTimeLimitForFramerate(kMinFrameRate)) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Reduce input frame rate. Should still trigger overuse.
|
|
overuse_detector_->OnTargetFramerateUpdated(kMinFrameRate - 1);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, frame_interval_us, kWidth, kHeight,
|
|
processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest, LimitsMaxFrameInterval) {
|
|
const int kMaxFrameRate = 20;
|
|
overuse_detector_->SetOptions(options_);
|
|
overuse_detector_->OnTargetFramerateUpdated(kMaxFrameRate);
|
|
int64_t frame_interval_us = rtc::kNumMicrosecsPerSec / kMaxFrameRate;
|
|
// Maximum frame interval allowed is 35% above ideal.
|
|
int64_t max_frame_interval_us = (135 * frame_interval_us) / 100;
|
|
// Maximum processing time, without triggering overuse, allowed with the above
|
|
// frame interval.
|
|
int64_t max_processing_time_us =
|
|
(max_frame_interval_us * options_.high_encode_usage_threshold_percent) /
|
|
100;
|
|
|
|
// Processing time just below overuse limit given kMaxFrameRate.
|
|
int64_t processing_time_us = (98 * max_processing_time_us) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
|
|
kHeight, processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Go above limit, trigger overuse.
|
|
processing_time_us = (102 * max_processing_time_us) / 100;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
|
|
kHeight, processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
|
|
// Increase frame interval, should still trigger overuse.
|
|
max_frame_interval_us *= 2;
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
for (int i = 0; i < options_.high_threshold_consecutive_count; ++i) {
|
|
InsertAndSendFramesWithInterval(1200, max_frame_interval_us, kWidth,
|
|
kHeight, processing_time_us);
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
// Models screencast, with irregular arrival of frames which are heavy
|
|
// to encode.
|
|
TEST_F(OveruseFrameDetectorTest, NoOveruseForLargeRandomFrameInterval) {
|
|
// TODO(bugs.webrtc.org/8504): When new estimator is relanded,
|
|
// behavior is improved in this scenario, with only AdaptUp events,
|
|
// and estimated load closer to the true average.
|
|
|
|
// EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
// EXPECT_CALL(mock_observer_, AdaptUp())
|
|
// .Times(::testing::AtLeast(1));
|
|
overuse_detector_->SetOptions(options_);
|
|
|
|
const int kNumFrames = 500;
|
|
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kTargetFramerate = 5;
|
|
|
|
overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate);
|
|
|
|
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
|
|
kMaxIntervalUs, kWidth, kHeight,
|
|
kEncodeTimeUs);
|
|
// Average usage 19%. Check that estimate is in the right ball park.
|
|
// EXPECT_NEAR(UsagePercent(), 20, 10);
|
|
EXPECT_NEAR(UsagePercent(), 20, 35);
|
|
}
|
|
|
|
// Models screencast, with irregular arrival of frames, often
|
|
// exceeding the timeout interval.
|
|
TEST_F(OveruseFrameDetectorTest, NoOveruseForRandomFrameIntervalWithReset) {
|
|
// TODO(bugs.webrtc.org/8504): When new estimator is relanded,
|
|
// behavior is improved in this scenario, and we get AdaptUp events.
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
// EXPECT_CALL(mock_observer_, AdaptUp())
|
|
// .Times(::testing::AtLeast(1));
|
|
|
|
const int kNumFrames = 500;
|
|
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kTargetFramerate = 5;
|
|
|
|
overuse_detector_->OnTargetFramerateUpdated(kTargetFramerate);
|
|
|
|
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
|
|
kMaxIntervalUs, kWidth, kHeight,
|
|
kEncodeTimeUs);
|
|
|
|
// Average usage 6.6%, but since the frame_timeout_interval_ms is
|
|
// only 1500 ms, we often reset the estimate to the initial value.
|
|
// Check that estimate is in the right ball park.
|
|
EXPECT_GE(UsagePercent(), 1);
|
|
EXPECT_LE(UsagePercent(), InitialUsage() + 5);
|
|
}
|
|
|
|
// Models simulcast, with multiple encoded frames for each input frame.
|
|
// Load estimate should be based on the maximum encode time per input frame.
|
|
TEST_F(OveruseFrameDetectorTest, NoOveruseForSimulcast) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
|
|
constexpr int kNumFrames = 500;
|
|
constexpr int kEncodeTimesUs[] = {
|
|
10 * rtc::kNumMicrosecsPerMillisec,
|
|
8 * rtc::kNumMicrosecsPerMillisec,
|
|
12 * rtc::kNumMicrosecsPerMillisec,
|
|
};
|
|
constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth,
|
|
kHeight, kEncodeTimesUs);
|
|
|
|
// Average usage 40%. 12 ms / 30 ms.
|
|
EXPECT_GE(UsagePercent(), 35);
|
|
EXPECT_LE(UsagePercent(), 45);
|
|
}
|
|
|
|
// Tests using new cpu load estimator
|
|
class OveruseFrameDetectorTest2 : public OveruseFrameDetectorTest {
|
|
protected:
|
|
void SetUp() override {
|
|
options_.filter_time_ms = 5 * rtc::kNumMillisecsPerSec;
|
|
OveruseFrameDetectorTest::SetUp();
|
|
}
|
|
|
|
void InsertAndSendFramesWithInterval(int num_frames,
|
|
int interval_us,
|
|
int width,
|
|
int height,
|
|
int delay_us) override {
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(width, height))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
while (num_frames-- > 0) {
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us /* ignored */);
|
|
overuse_detector_->FrameSent(0 /* ignored timestamp */,
|
|
0 /* ignored send_time_us */,
|
|
capture_time_us, delay_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(interval_us));
|
|
}
|
|
}
|
|
|
|
void InsertAndSendFramesWithRandomInterval(int num_frames,
|
|
int min_interval_us,
|
|
int max_interval_us,
|
|
int width,
|
|
int height,
|
|
int delay_us) override {
|
|
webrtc::Random random(17);
|
|
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(width, height))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
for (int i = 0; i < num_frames; i++) {
|
|
int interval_us = random.Rand(min_interval_us, max_interval_us);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
overuse_detector_->FrameSent(0 /* ignored timestamp */,
|
|
0 /* ignored send_time_us */,
|
|
capture_time_us, delay_us);
|
|
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
clock_.AdvanceTime(TimeDelta::Micros(interval_us));
|
|
}
|
|
}
|
|
|
|
void ForceUpdate(int width, int height) override {
|
|
// This is mainly to check initial values and whether the overuse
|
|
// detector has been reset or not.
|
|
InsertAndSendFramesWithInterval(1, rtc::kNumMicrosecsPerSec, width, height,
|
|
kFrameIntervalUs);
|
|
}
|
|
};
|
|
|
|
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
|
|
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
|
|
TEST_F(OveruseFrameDetectorTest2, TriggerOveruse) {
|
|
// usage > high => overuse
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, OveruseAndRecover) {
|
|
// usage > high => overuse
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
// usage < low => underuse
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
TriggerUnderuse();
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, DoubleOveruseAndRecover) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(2);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
TriggerUnderuse();
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, TriggerUnderuseWithMinProcessCount) {
|
|
const int kProcessIntervalUs = 5 * rtc::kNumMicrosecsPerSec;
|
|
options_.min_process_count = 1;
|
|
CpuOveruseObserverImpl overuse_observer;
|
|
observer_ = nullptr;
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(1200, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
overuse_detector_->CheckForOveruse(&overuse_observer);
|
|
EXPECT_EQ(0, overuse_observer.normaluse_);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kProcessIntervalUs));
|
|
overuse_detector_->CheckForOveruse(&overuse_observer);
|
|
EXPECT_EQ(1, overuse_observer.normaluse_);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ConstantOveruseGivesNoNormalUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(0);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(64);
|
|
for (size_t i = 0; i < 64; ++i) {
|
|
TriggerOveruse(options_.high_threshold_consecutive_count);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ConsecutiveCountTriggersOveruse) {
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(1);
|
|
options_.high_threshold_consecutive_count = 2;
|
|
overuse_detector_->SetOptions(options_);
|
|
TriggerOveruse(2);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, IncorrectConsecutiveCountTriggersNoOveruse) {
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
options_.high_threshold_consecutive_count = 2;
|
|
overuse_detector_->SetOptions(options_);
|
|
TriggerOveruse(1);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ProcessingUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_EQ(kProcessTimeUs * 100 / kFrameIntervalUs, UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ResetAfterResolutionChange) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
// Verify reset (with new width/height).
|
|
ForceUpdate(kWidth, kHeight + 1);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ResetAfterFrameTimeout) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(1000, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
InsertAndSendFramesWithInterval(
|
|
2, options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec,
|
|
kWidth, kHeight, kProcessTimeUs);
|
|
EXPECT_NE(InitialUsage(), UsagePercent());
|
|
// Verify reset.
|
|
InsertAndSendFramesWithInterval(
|
|
2,
|
|
(options_.frame_timeout_interval_ms + 1) * rtc::kNumMicrosecsPerMillisec,
|
|
kWidth, kHeight, kProcessTimeUs);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ConvergesSlowly) {
|
|
overuse_detector_->SetOptions(options_);
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
// No update for the first sample.
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
|
|
// Total time approximately 40 * 33ms = 1.3s, significantly less
|
|
// than the 5s time constant.
|
|
InsertAndSendFramesWithInterval(40, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
|
|
// Should have started to approach correct load of 15%, but not very far.
|
|
EXPECT_LT(UsagePercent(), InitialUsage());
|
|
EXPECT_GT(UsagePercent(), (InitialUsage() * 3 + 15) / 4);
|
|
|
|
// Run for roughly 10s more, should now be closer.
|
|
InsertAndSendFramesWithInterval(300, kFrameIntervalUs, kWidth, kHeight,
|
|
kProcessTimeUs);
|
|
EXPECT_NEAR(UsagePercent(), 20, 5);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, InitialProcessingUsage) {
|
|
overuse_detector_->SetOptions(options_);
|
|
ForceUpdate(kWidth, kHeight);
|
|
EXPECT_EQ(InitialUsage(), UsagePercent());
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, MeasuresMultipleConcurrentSamples) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
|
|
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
|
|
static const size_t kNumFramesEncodingDelay = 3;
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
// Unique timestamps.
|
|
frame.set_timestamp(static_cast<uint32_t>(i));
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs));
|
|
if (i > kNumFramesEncodingDelay) {
|
|
overuse_detector_->FrameSent(
|
|
static_cast<uint32_t>(i - kNumFramesEncodingDelay), rtc::TimeMicros(),
|
|
capture_time_us, kIntervalUs);
|
|
}
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, UpdatesExistingSamples) {
|
|
// >85% encoding time should trigger overuse.
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(::testing::AtLeast(1));
|
|
static const int kIntervalUs = 33 * rtc::kNumMicrosecsPerMillisec;
|
|
static const int kDelayUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
VideoFrame frame =
|
|
VideoFrame::Builder()
|
|
.set_video_frame_buffer(I420Buffer::Create(kWidth, kHeight))
|
|
.set_rotation(webrtc::kVideoRotation_0)
|
|
.set_timestamp_us(0)
|
|
.build();
|
|
uint32_t timestamp = 0;
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
frame.set_timestamp(timestamp);
|
|
int64_t capture_time_us = rtc::TimeMicros();
|
|
overuse_detector_->FrameCaptured(frame, capture_time_us);
|
|
// Encode and send first parts almost instantly.
|
|
clock_.AdvanceTime(TimeDelta::Millis(1));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
|
|
rtc::kNumMicrosecsPerMillisec);
|
|
// Encode heavier part, resulting in >85% usage total.
|
|
clock_.AdvanceTime(TimeDelta::Micros(kDelayUs) - TimeDelta::Millis(1));
|
|
overuse_detector_->FrameSent(timestamp, rtc::TimeMicros(), capture_time_us,
|
|
kDelayUs);
|
|
clock_.AdvanceTime(TimeDelta::Micros(kIntervalUs - kDelayUs));
|
|
timestamp += kIntervalUs * 90 / 1000;
|
|
overuse_detector_->CheckForOveruse(observer_);
|
|
}
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, RunOnTqNormalUsage) {
|
|
TaskQueueForTest queue("OveruseFrameDetectorTestQueue");
|
|
|
|
queue.SendTask(
|
|
[&] {
|
|
overuse_detector_->StartCheckForOveruse(queue.Get(), options_,
|
|
observer_);
|
|
},
|
|
RTC_FROM_HERE);
|
|
|
|
rtc::Event event;
|
|
// Expect NormalUsage(). When called, stop the |overuse_detector_| and then
|
|
// set |event| to end the test.
|
|
EXPECT_CALL(mock_observer_, AdaptUp())
|
|
.WillOnce(InvokeWithoutArgs([this, &event] {
|
|
overuse_detector_->StopCheckForOveruse();
|
|
event.Set();
|
|
}));
|
|
|
|
queue.PostTask([this] {
|
|
const int kDelayUs1 = 5 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kDelayUs2 = 6 * rtc::kNumMicrosecsPerMillisec;
|
|
InsertAndSendFramesWithInterval(1300, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs1);
|
|
InsertAndSendFramesWithInterval(1, kFrameIntervalUs, kWidth, kHeight,
|
|
kDelayUs2);
|
|
});
|
|
|
|
EXPECT_TRUE(event.Wait(10000));
|
|
}
|
|
|
|
// Models screencast, with irregular arrival of frames which are heavy
|
|
// to encode.
|
|
TEST_F(OveruseFrameDetectorTest2, NoOveruseForLargeRandomFrameInterval) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
|
|
const int kNumFrames = 500;
|
|
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kMaxIntervalUs = 1000 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
|
|
kMaxIntervalUs, kWidth, kHeight,
|
|
kEncodeTimeUs);
|
|
// Average usage 19%. Check that estimate is in the right ball park.
|
|
EXPECT_NEAR(UsagePercent(), 20, 10);
|
|
}
|
|
|
|
// Models screencast, with irregular arrival of frames, often
|
|
// exceeding the timeout interval.
|
|
TEST_F(OveruseFrameDetectorTest2, NoOveruseForRandomFrameIntervalWithReset) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
EXPECT_CALL(mock_observer_, AdaptUp()).Times(::testing::AtLeast(1));
|
|
|
|
const int kNumFrames = 500;
|
|
const int kEncodeTimeUs = 100 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
const int kMinIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kMaxIntervalUs = 3000 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
InsertAndSendFramesWithRandomInterval(kNumFrames, kMinIntervalUs,
|
|
kMaxIntervalUs, kWidth, kHeight,
|
|
kEncodeTimeUs);
|
|
|
|
// Average usage 6.6%, but since the frame_timeout_interval_ms is
|
|
// only 1500 ms, we often reset the estimate to the initial value.
|
|
// Check that estimate is in the right ball park.
|
|
EXPECT_GE(UsagePercent(), 1);
|
|
EXPECT_LE(UsagePercent(), InitialUsage() + 5);
|
|
}
|
|
|
|
TEST_F(OveruseFrameDetectorTest2, ToleratesOutOfOrderFrames) {
|
|
overuse_detector_->SetOptions(options_);
|
|
// Represents a cpu utilization close to 100%. First input frame results in
|
|
// three encoded frames, and the last of those isn't finished until after the
|
|
// first encoded frame corresponding to the next input frame.
|
|
const int kEncodeTimeUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
const int kCaptureTimesMs[] = {33, 33, 66, 33};
|
|
|
|
for (int capture_time_ms : kCaptureTimesMs) {
|
|
overuse_detector_->FrameSent(
|
|
0, 0, capture_time_ms * rtc::kNumMicrosecsPerMillisec, kEncodeTimeUs);
|
|
}
|
|
EXPECT_GE(UsagePercent(), InitialUsage());
|
|
}
|
|
|
|
// Models simulcast, with multiple encoded frames for each input frame.
|
|
// Load estimate should be based on the maximum encode time per input frame.
|
|
TEST_F(OveruseFrameDetectorTest2, NoOveruseForSimulcast) {
|
|
overuse_detector_->SetOptions(options_);
|
|
EXPECT_CALL(mock_observer_, AdaptDown()).Times(0);
|
|
|
|
constexpr int kNumFrames = 500;
|
|
constexpr int kEncodeTimesUs[] = {
|
|
10 * rtc::kNumMicrosecsPerMillisec,
|
|
8 * rtc::kNumMicrosecsPerMillisec,
|
|
12 * rtc::kNumMicrosecsPerMillisec,
|
|
};
|
|
constexpr int kIntervalUs = 30 * rtc::kNumMicrosecsPerMillisec;
|
|
|
|
InsertAndSendSimulcastFramesWithInterval(kNumFrames, kIntervalUs, kWidth,
|
|
kHeight, kEncodeTimesUs);
|
|
|
|
// Average usage 40%. 12 ms / 30 ms.
|
|
EXPECT_GE(UsagePercent(), 35);
|
|
EXPECT_LE(UsagePercent(), 45);
|
|
}
|
|
|
|
} // namespace webrtc
|