785 lines
29 KiB
C++
785 lines
29 KiB
C++
/*
|
|
* Copyright 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#undef LOG_TAG
|
|
#define LOG_TAG "Scheduler"
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include "Scheduler.h"
|
|
|
|
#include <android-base/properties.h>
|
|
#include <android-base/stringprintf.h>
|
|
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
|
|
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
|
|
#include <configstore/Utils.h>
|
|
#include <ftl/fake_guard.h>
|
|
#include <gui/WindowInfo.h>
|
|
#include <system/window.h>
|
|
#include <ui/DisplayStatInfo.h>
|
|
#include <utils/Timers.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <FrameTimeline/FrameTimeline.h>
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <numeric>
|
|
|
|
#include "../Layer.h"
|
|
#include "DispSyncSource.h"
|
|
#include "EventThread.h"
|
|
#include "FrameRateOverrideMappings.h"
|
|
#include "InjectVSyncSource.h"
|
|
#include "OneShotTimer.h"
|
|
#include "SurfaceFlingerProperties.h"
|
|
#include "VSyncPredictor.h"
|
|
#include "VSyncReactor.h"
|
|
|
|
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
|
|
do { \
|
|
if (mConnections.count(handle) == 0) { \
|
|
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
|
|
return __VA_ARGS__; \
|
|
} \
|
|
} while (false)
|
|
|
|
namespace android::scheduler {
|
|
|
|
Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features)
|
|
: impl::MessageQueue(compositor), mFeatures(features), mSchedulerCallback(callback) {}
|
|
|
|
Scheduler::~Scheduler() {
|
|
// Stop timers and wait for their threads to exit.
|
|
mDisplayPowerTimer.reset();
|
|
mTouchTimer.reset();
|
|
|
|
// Stop idle timer and clear callbacks, as the RefreshRateConfigs may outlive the Scheduler.
|
|
setRefreshRateConfigs(nullptr);
|
|
}
|
|
|
|
void Scheduler::startTimers() {
|
|
using namespace sysprop;
|
|
using namespace std::string_literals;
|
|
|
|
if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
|
|
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
|
|
mTouchTimer.emplace(
|
|
"TouchTimer", std::chrono::milliseconds(millis),
|
|
[this] { touchTimerCallback(TimerState::Reset); },
|
|
[this] { touchTimerCallback(TimerState::Expired); });
|
|
mTouchTimer->start();
|
|
}
|
|
|
|
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
|
|
mDisplayPowerTimer.emplace(
|
|
"DisplayPowerTimer", std::chrono::milliseconds(millis),
|
|
[this] { displayPowerTimerCallback(TimerState::Reset); },
|
|
[this] { displayPowerTimerCallback(TimerState::Expired); });
|
|
mDisplayPowerTimer->start();
|
|
}
|
|
}
|
|
|
|
void Scheduler::setRefreshRateConfigs(std::shared_ptr<RefreshRateConfigs> configs) {
|
|
// The current RefreshRateConfigs instance may outlive this call, so unbind its idle timer.
|
|
{
|
|
// mRefreshRateConfigsLock is not locked here to avoid the deadlock
|
|
// as the callback can attempt to acquire the lock before stopIdleTimer can finish
|
|
// the execution. It's safe to FakeGuard as main thread is the only thread that
|
|
// writes to the mRefreshRateConfigs.
|
|
ftl::FakeGuard guard(mRefreshRateConfigsLock);
|
|
if (mRefreshRateConfigs) {
|
|
mRefreshRateConfigs->stopIdleTimer();
|
|
mRefreshRateConfigs->clearIdleTimerCallbacks();
|
|
}
|
|
}
|
|
{
|
|
// Clear state that depends on the current instance.
|
|
std::scoped_lock lock(mPolicyLock);
|
|
mPolicy = {};
|
|
}
|
|
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
mRefreshRateConfigs = std::move(configs);
|
|
if (!mRefreshRateConfigs) return;
|
|
|
|
mRefreshRateConfigs->setIdleTimerCallbacks(
|
|
{.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); },
|
|
.onExpired = [this] { idleTimerCallback(TimerState::Expired); }},
|
|
.kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); },
|
|
.onExpired = [this] { kernelIdleTimerCallback(TimerState::Expired); }}});
|
|
|
|
mRefreshRateConfigs->startIdleTimer();
|
|
}
|
|
|
|
void Scheduler::run() {
|
|
while (true) {
|
|
waitMessage();
|
|
}
|
|
}
|
|
|
|
void Scheduler::createVsyncSchedule(FeatureFlags features) {
|
|
mVsyncSchedule.emplace(features);
|
|
}
|
|
|
|
std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(
|
|
const char* name, std::chrono::nanoseconds workDuration,
|
|
std::chrono::nanoseconds readyDuration, bool traceVsync) {
|
|
return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(),
|
|
mVsyncSchedule->getTracker(), workDuration,
|
|
readyDuration, traceVsync, name);
|
|
}
|
|
|
|
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
|
|
const auto refreshRateConfigs = holdRefreshRateConfigs();
|
|
const bool supportsFrameRateOverrideByContent =
|
|
refreshRateConfigs->supportsFrameRateOverrideByContent();
|
|
return mFrameRateOverrideMappings
|
|
.getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent);
|
|
}
|
|
|
|
bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const {
|
|
const auto frameRate = getFrameRateOverride(uid);
|
|
if (!frameRate.has_value()) {
|
|
return true;
|
|
}
|
|
|
|
return mVsyncSchedule->getTracker().isVSyncInPhase(expectedVsyncTimestamp, *frameRate);
|
|
}
|
|
|
|
impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const {
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
|
|
return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) {
|
|
return !isVsyncValid(expectedVsyncTimestamp, uid);
|
|
};
|
|
}
|
|
|
|
impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const {
|
|
return [this](uid_t uid) {
|
|
const Fps refreshRate = holdRefreshRateConfigs()->getActiveMode()->getFps();
|
|
const auto currentPeriod =
|
|
mVsyncSchedule->getTracker().currentPeriod() ?: refreshRate.getPeriodNsecs();
|
|
|
|
const auto frameRate = getFrameRateOverride(uid);
|
|
if (!frameRate.has_value()) {
|
|
return currentPeriod;
|
|
}
|
|
|
|
const auto divisor = RefreshRateConfigs::getFrameRateDivisor(refreshRate, *frameRate);
|
|
if (divisor <= 1) {
|
|
return currentPeriod;
|
|
}
|
|
return currentPeriod * divisor;
|
|
};
|
|
}
|
|
|
|
ConnectionHandle Scheduler::createConnection(
|
|
const char* connectionName, frametimeline::TokenManager* tokenManager,
|
|
std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration,
|
|
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
|
|
auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration);
|
|
auto throttleVsync = makeThrottleVsyncCallback();
|
|
auto getVsyncPeriod = makeGetVsyncPeriodFunction();
|
|
auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager,
|
|
std::move(interceptCallback),
|
|
std::move(throttleVsync),
|
|
std::move(getVsyncPeriod));
|
|
return createConnection(std::move(eventThread));
|
|
}
|
|
|
|
ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
|
|
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
|
|
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
|
|
|
|
auto connection = createConnectionInternal(eventThread.get());
|
|
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
|
|
return handle;
|
|
}
|
|
|
|
sp<EventThreadConnection> Scheduler::createConnectionInternal(
|
|
EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
|
|
return eventThread->createEventConnection([&] { resync(); }, eventRegistration);
|
|
}
|
|
|
|
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
|
|
ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, nullptr);
|
|
return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration);
|
|
}
|
|
|
|
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, nullptr);
|
|
return mConnections[handle].connection;
|
|
}
|
|
|
|
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
|
|
bool connected) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
|
|
thread->onHotplugReceived(displayId, connected);
|
|
}
|
|
|
|
void Scheduler::onScreenAcquired(ConnectionHandle handle) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onScreenAcquired();
|
|
mScreenAcquired = true;
|
|
}
|
|
|
|
void Scheduler::onScreenReleased(ConnectionHandle handle) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onScreenReleased();
|
|
mScreenAcquired = false;
|
|
}
|
|
|
|
void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
|
|
const auto refreshRateConfigs = holdRefreshRateConfigs();
|
|
const bool supportsFrameRateOverrideByContent =
|
|
refreshRateConfigs->supportsFrameRateOverrideByContent();
|
|
|
|
std::vector<FrameRateOverride> overrides =
|
|
mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent);
|
|
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
|
|
}
|
|
|
|
void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mPolicyLock);
|
|
// Cache the last reported modes for primary display.
|
|
mPolicy.cachedModeChangedParams = {handle, mode};
|
|
|
|
// Invalidate content based refresh rate selection so it could be calculated
|
|
// again for the new refresh rate.
|
|
mPolicy.contentRequirements.clear();
|
|
}
|
|
onNonPrimaryDisplayModeChanged(handle, mode);
|
|
}
|
|
|
|
void Scheduler::dispatchCachedReportedMode() {
|
|
// Check optional fields first.
|
|
if (!mPolicy.mode) {
|
|
ALOGW("No mode ID found, not dispatching cached mode.");
|
|
return;
|
|
}
|
|
if (!mPolicy.cachedModeChangedParams) {
|
|
ALOGW("No mode changed params found, not dispatching cached mode.");
|
|
return;
|
|
}
|
|
|
|
// If the mode is not the current mode, this means that a
|
|
// mode change is in progress. In that case we shouldn't dispatch an event
|
|
// as it will be dispatched when the current mode changes.
|
|
if (std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
mRefreshRateConfigs->getActiveMode() != mPolicy.mode) {
|
|
return;
|
|
}
|
|
|
|
// If there is no change from cached mode, there is no need to dispatch an event
|
|
if (mPolicy.mode == mPolicy.cachedModeChangedParams->mode) {
|
|
return;
|
|
}
|
|
|
|
mPolicy.cachedModeChangedParams->mode = mPolicy.mode;
|
|
onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle,
|
|
mPolicy.cachedModeChangedParams->mode);
|
|
}
|
|
|
|
void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->onModeChanged(mode);
|
|
}
|
|
|
|
size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle, 0);
|
|
return mConnections[handle].thread->getEventThreadConnectionCount();
|
|
}
|
|
|
|
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections.at(handle).thread.get();
|
|
}
|
|
thread->dump(result);
|
|
}
|
|
|
|
void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
|
|
std::chrono::nanoseconds readyDuration) {
|
|
android::EventThread* thread;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mConnectionsLock);
|
|
RETURN_IF_INVALID_HANDLE(handle);
|
|
thread = mConnections[handle].thread.get();
|
|
}
|
|
thread->setDuration(workDuration, readyDuration);
|
|
}
|
|
|
|
DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) {
|
|
const auto vsyncTime = mVsyncSchedule->getTracker().nextAnticipatedVSyncTimeFrom(now);
|
|
const auto vsyncPeriod = mVsyncSchedule->getTracker().currentPeriod();
|
|
return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod};
|
|
}
|
|
|
|
ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
|
|
if (mInjectVSyncs == enable) {
|
|
return {};
|
|
}
|
|
|
|
ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
|
|
|
|
if (!mInjectorConnectionHandle) {
|
|
auto vsyncSource = std::make_unique<InjectVSyncSource>();
|
|
mVSyncInjector = vsyncSource.get();
|
|
|
|
auto eventThread =
|
|
std::make_unique<impl::EventThread>(std::move(vsyncSource),
|
|
/*tokenManager=*/nullptr,
|
|
impl::EventThread::InterceptVSyncsCallback(),
|
|
impl::EventThread::ThrottleVsyncCallback(),
|
|
impl::EventThread::GetVsyncPeriodFunction());
|
|
|
|
// EventThread does not dispatch VSYNC unless the display is connected and powered on.
|
|
eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true);
|
|
eventThread->onScreenAcquired();
|
|
|
|
mInjectorConnectionHandle = createConnection(std::move(eventThread));
|
|
}
|
|
|
|
mInjectVSyncs = enable;
|
|
return mInjectorConnectionHandle;
|
|
}
|
|
|
|
bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) {
|
|
if (!mInjectVSyncs || !mVSyncInjector) {
|
|
return false;
|
|
}
|
|
|
|
mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp);
|
|
return true;
|
|
}
|
|
|
|
void Scheduler::enableHardwareVsync() {
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
|
|
mVsyncSchedule->getTracker().resetModel();
|
|
mSchedulerCallback.setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void Scheduler::disableHardwareVsync(bool makeUnavailable) {
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (mPrimaryHWVsyncEnabled) {
|
|
mSchedulerCallback.setVsyncEnabled(false);
|
|
mPrimaryHWVsyncEnabled = false;
|
|
}
|
|
if (makeUnavailable) {
|
|
mHWVsyncAvailable = false;
|
|
}
|
|
}
|
|
|
|
void Scheduler::resyncToHardwareVsync(bool makeAvailable, Fps refreshRate) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (makeAvailable) {
|
|
mHWVsyncAvailable = makeAvailable;
|
|
} else if (!mHWVsyncAvailable) {
|
|
// Hardware vsync is not currently available, so abort the resync
|
|
// attempt for now
|
|
return;
|
|
}
|
|
}
|
|
|
|
setVsyncPeriod(refreshRate.getPeriodNsecs());
|
|
}
|
|
|
|
void Scheduler::resync() {
|
|
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
|
|
|
|
const nsecs_t now = systemTime();
|
|
const nsecs_t last = mLastResyncTime.exchange(now);
|
|
|
|
if (now - last > kIgnoreDelay) {
|
|
const auto refreshRate = [&] {
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
return mRefreshRateConfigs->getActiveMode()->getFps();
|
|
}();
|
|
resyncToHardwareVsync(false, refreshRate);
|
|
}
|
|
}
|
|
|
|
void Scheduler::setVsyncPeriod(nsecs_t period) {
|
|
if (period <= 0) return;
|
|
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
mVsyncSchedule->getController().startPeriodTransition(period);
|
|
|
|
if (!mPrimaryHWVsyncEnabled) {
|
|
mVsyncSchedule->getTracker().resetModel();
|
|
mSchedulerCallback.setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
|
|
bool* periodFlushed) {
|
|
bool needsHwVsync = false;
|
|
*periodFlushed = false;
|
|
{ // Scope for the lock
|
|
std::lock_guard<std::mutex> lock(mHWVsyncLock);
|
|
if (mPrimaryHWVsyncEnabled) {
|
|
needsHwVsync =
|
|
mVsyncSchedule->getController().addHwVsyncTimestamp(timestamp, hwcVsyncPeriod,
|
|
periodFlushed);
|
|
}
|
|
}
|
|
|
|
if (needsHwVsync) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
void Scheduler::addPresentFence(std::shared_ptr<FenceTime> fence) {
|
|
if (mVsyncSchedule->getController().addPresentFence(std::move(fence))) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
void Scheduler::registerLayer(Layer* layer) {
|
|
using WindowType = gui::WindowInfo::Type;
|
|
|
|
scheduler::LayerHistory::LayerVoteType voteType;
|
|
|
|
if (!mFeatures.test(Feature::kContentDetection) ||
|
|
layer->getWindowType() == WindowType::STATUS_BAR) {
|
|
voteType = scheduler::LayerHistory::LayerVoteType::NoVote;
|
|
} else if (layer->getWindowType() == WindowType::WALLPAPER) {
|
|
// Running Wallpaper at Min is considered as part of content detection.
|
|
voteType = scheduler::LayerHistory::LayerVoteType::Min;
|
|
} else {
|
|
voteType = scheduler::LayerHistory::LayerVoteType::Heuristic;
|
|
}
|
|
|
|
// If the content detection feature is off, we still keep the layer history,
|
|
// since we use it for other features (like Frame Rate API), so layers
|
|
// still need to be registered.
|
|
mLayerHistory.registerLayer(layer, voteType);
|
|
}
|
|
|
|
void Scheduler::deregisterLayer(Layer* layer) {
|
|
mLayerHistory.deregisterLayer(layer);
|
|
}
|
|
|
|
void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
|
|
LayerHistory::LayerUpdateType updateType) {
|
|
{
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
if (!mRefreshRateConfigs->canSwitch()) return;
|
|
}
|
|
|
|
mLayerHistory.record(layer, presentTime, systemTime(), updateType);
|
|
}
|
|
|
|
void Scheduler::setModeChangePending(bool pending) {
|
|
mLayerHistory.setModeChangePending(pending);
|
|
}
|
|
|
|
void Scheduler::chooseRefreshRateForContent() {
|
|
const auto configs = holdRefreshRateConfigs();
|
|
if (!configs->canSwitch()) return;
|
|
|
|
ATRACE_CALL();
|
|
|
|
LayerHistory::Summary summary = mLayerHistory.summarize(*configs, systemTime());
|
|
applyPolicy(&Policy::contentRequirements, std::move(summary));
|
|
}
|
|
|
|
void Scheduler::resetIdleTimer() {
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ false);
|
|
}
|
|
|
|
void Scheduler::onTouchHint() {
|
|
if (mTouchTimer) {
|
|
mTouchTimer->reset();
|
|
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ true);
|
|
}
|
|
}
|
|
|
|
void Scheduler::setDisplayPowerMode(hal::PowerMode powerMode) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(mPolicyLock);
|
|
mPolicy.displayPowerMode = powerMode;
|
|
}
|
|
mVsyncSchedule->getController().setDisplayPowerMode(powerMode);
|
|
|
|
if (mDisplayPowerTimer) {
|
|
mDisplayPowerTimer->reset();
|
|
}
|
|
|
|
// Display Power event will boost the refresh rate to performance.
|
|
// Clear Layer History to get fresh FPS detection
|
|
mLayerHistory.clear();
|
|
}
|
|
|
|
void Scheduler::kernelIdleTimerCallback(TimerState state) {
|
|
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
|
|
|
|
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
|
|
// magic number
|
|
const Fps refreshRate = [&] {
|
|
std::scoped_lock lock(mRefreshRateConfigsLock);
|
|
return mRefreshRateConfigs->getActiveMode()->getFps();
|
|
}();
|
|
|
|
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz;
|
|
using namespace fps_approx_ops;
|
|
|
|
if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
|
|
// If we're not in performance mode then the kernel timer shouldn't do
|
|
// anything, as the refresh rate during DPU power collapse will be the
|
|
// same.
|
|
resyncToHardwareVsync(true /* makeAvailable */, refreshRate);
|
|
} else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
|
|
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
|
|
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
|
|
// need to update the VsyncController model anyway.
|
|
disableHardwareVsync(false /* makeUnavailable */);
|
|
}
|
|
|
|
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
|
|
}
|
|
|
|
void Scheduler::idleTimerCallback(TimerState state) {
|
|
applyPolicy(&Policy::idleTimer, state);
|
|
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
|
|
}
|
|
|
|
void Scheduler::touchTimerCallback(TimerState state) {
|
|
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
|
|
// Touch event will boost the refresh rate to performance.
|
|
// Clear layer history to get fresh FPS detection.
|
|
// NOTE: Instead of checking all the layers, we should be checking the layer
|
|
// that is currently on top. b/142507166 will give us this capability.
|
|
if (applyPolicy(&Policy::touch, touch).touch) {
|
|
mLayerHistory.clear();
|
|
}
|
|
ATRACE_INT("TouchState", static_cast<int>(touch));
|
|
}
|
|
|
|
void Scheduler::displayPowerTimerCallback(TimerState state) {
|
|
applyPolicy(&Policy::displayPowerTimer, state);
|
|
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
|
|
}
|
|
|
|
void Scheduler::dump(std::string& result) const {
|
|
using base::StringAppendF;
|
|
|
|
StringAppendF(&result, "+ Touch timer: %s\n",
|
|
mTouchTimer ? mTouchTimer->dump().c_str() : "off");
|
|
StringAppendF(&result, "+ Content detection: %s %s\n\n",
|
|
mFeatures.test(Feature::kContentDetection) ? "on" : "off",
|
|
mLayerHistory.dump().c_str());
|
|
|
|
mFrameRateOverrideMappings.dump(result);
|
|
|
|
{
|
|
std::lock_guard lock(mHWVsyncLock);
|
|
StringAppendF(&result,
|
|
"mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n",
|
|
mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable);
|
|
}
|
|
}
|
|
|
|
void Scheduler::dumpVsync(std::string& out) const {
|
|
mVsyncSchedule->dump(out);
|
|
}
|
|
|
|
bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) {
|
|
const auto refreshRateConfigs = holdRefreshRateConfigs();
|
|
|
|
// we always update mFrameRateOverridesByContent here
|
|
// supportsFrameRateOverridesByContent will be checked
|
|
// when getting FrameRateOverrides from mFrameRateOverrideMappings
|
|
if (!consideredSignals.idle) {
|
|
const auto frameRateOverrides =
|
|
refreshRateConfigs->getFrameRateOverrides(mPolicy.contentRequirements,
|
|
displayRefreshRate, consideredSignals);
|
|
return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename S, typename T>
|
|
auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals {
|
|
DisplayModePtr newMode;
|
|
GlobalSignals consideredSignals;
|
|
|
|
bool refreshRateChanged = false;
|
|
bool frameRateOverridesChanged;
|
|
|
|
const auto refreshRateConfigs = holdRefreshRateConfigs();
|
|
{
|
|
std::lock_guard<std::mutex> lock(mPolicyLock);
|
|
|
|
auto& currentState = mPolicy.*statePtr;
|
|
if (currentState == newState) return {};
|
|
currentState = std::forward<T>(newState);
|
|
|
|
std::tie(newMode, consideredSignals) = chooseDisplayMode();
|
|
frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps());
|
|
|
|
if (mPolicy.mode == newMode) {
|
|
// We don't need to change the display mode, but we might need to send an event
|
|
// about a mode change, since it was suppressed if previously considered idle.
|
|
if (!consideredSignals.idle) {
|
|
dispatchCachedReportedMode();
|
|
}
|
|
} else {
|
|
mPolicy.mode = newMode;
|
|
refreshRateChanged = true;
|
|
}
|
|
}
|
|
if (refreshRateChanged) {
|
|
mSchedulerCallback.requestDisplayMode(std::move(newMode),
|
|
consideredSignals.idle ? DisplayModeEvent::None
|
|
: DisplayModeEvent::Changed);
|
|
}
|
|
if (frameRateOverridesChanged) {
|
|
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
|
|
}
|
|
return consideredSignals;
|
|
}
|
|
|
|
auto Scheduler::chooseDisplayMode() -> std::pair<DisplayModePtr, GlobalSignals> {
|
|
ATRACE_CALL();
|
|
|
|
const auto configs = holdRefreshRateConfigs();
|
|
|
|
// If Display Power is not in normal operation we want to be in performance mode. When coming
|
|
// back to normal mode, a grace period is given with DisplayPowerTimer.
|
|
if (mDisplayPowerTimer &&
|
|
(mPolicy.displayPowerMode != hal::PowerMode::ON ||
|
|
mPolicy.displayPowerTimer == TimerState::Reset)) {
|
|
constexpr GlobalSignals kNoSignals;
|
|
return {configs->getMaxRefreshRateByPolicy(), kNoSignals};
|
|
}
|
|
|
|
const GlobalSignals signals{.touch = mTouchTimer && mPolicy.touch == TouchState::Active,
|
|
.idle = mPolicy.idleTimer == TimerState::Expired};
|
|
|
|
return configs->getBestRefreshRate(mPolicy.contentRequirements, signals);
|
|
}
|
|
|
|
DisplayModePtr Scheduler::getPreferredDisplayMode() {
|
|
std::lock_guard<std::mutex> lock(mPolicyLock);
|
|
// Make sure the stored mode is up to date.
|
|
mPolicy.mode = chooseDisplayMode().first;
|
|
return mPolicy.mode;
|
|
}
|
|
|
|
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
|
|
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
|
|
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
|
|
|
|
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
|
|
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
|
|
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
|
|
}
|
|
}
|
|
|
|
bool Scheduler::onPostComposition(nsecs_t presentTime) {
|
|
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
|
|
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
|
|
if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) {
|
|
// We need to composite again as refreshTimeNanos is still in the future.
|
|
return true;
|
|
}
|
|
|
|
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
|
|
mLayerHistory.setDisplayArea(displayArea);
|
|
}
|
|
|
|
void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) {
|
|
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
|
|
return;
|
|
}
|
|
|
|
mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride);
|
|
}
|
|
|
|
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
|
|
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
|
|
return;
|
|
}
|
|
|
|
mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride);
|
|
}
|
|
|
|
std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom(
|
|
nsecs_t expectedPresentTime) const {
|
|
const auto presentTime = std::chrono::nanoseconds(expectedPresentTime);
|
|
const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule->getTracker().currentPeriod());
|
|
return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod);
|
|
}
|
|
|
|
} // namespace android::scheduler
|