android13/hardware/google/pixel/vibrator/cs40l25/tests/test-vibrator.cpp

708 lines
27 KiB
C++

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/android/hardware/vibrator/BnVibratorCallback.h>
#include <android-base/logging.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <future>
#include "Vibrator.h"
#include "mocks.h"
#include "types.h"
#include "utils.h"
namespace aidl {
namespace android {
namespace hardware {
namespace vibrator {
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Assign;
using ::testing::AtLeast;
using ::testing::AtMost;
using ::testing::Combine;
using ::testing::DoAll;
using ::testing::DoDefault;
using ::testing::Exactly;
using ::testing::Expectation;
using ::testing::ExpectationSet;
using ::testing::Ge;
using ::testing::Mock;
using ::testing::MockFunction;
using ::testing::Range;
using ::testing::Return;
using ::testing::Sequence;
using ::testing::SetArgPointee;
using ::testing::Test;
using ::testing::TestParamInfo;
using ::testing::ValuesIn;
using ::testing::WithParamInterface;
// Forward Declarations
static EffectQueue Queue(const QueueEffect &effect);
static EffectQueue Queue(const QueueDelay &delay);
template <typename T, typename U, typename... Args>
static EffectQueue Queue(const T &first, const U &second, Args... rest);
static EffectLevel Level(float intensity);
static EffectScale Scale(float intensity);
// Constants With Arbitrary Values
static constexpr uint32_t CAL_VERSION = 1;
static constexpr std::array<EffectLevel, 6> V_LEVELS{40, 50, 60, 70, 80, 90};
static constexpr std::array<EffectDuration, 10> EFFECT_DURATIONS{0, 0, 11, 0, 300,
132, 150, 500, 101, 5};
// Constants With Prescribed Values
static const std::map<Effect, EffectIndex> EFFECT_INDEX{
{Effect::CLICK, 2},
{Effect::TICK, 2},
{Effect::HEAVY_CLICK, 2},
{Effect::TEXTURE_TICK, 9},
};
static constexpr EffectIndex QUEUE_INDEX{65534};
static const EffectScale ON_GLOBAL_SCALE{levelToScale(V_LEVELS[5])};
static const EffectIndex ON_EFFECT_INDEX{0};
static constexpr uint32_t WAVEFORM_DOUBLE_CLICK_SILENCE_MS = 100;
static constexpr int8_t MAX_COLD_START_LATENCY_MS = 6; // I2C Transaction + DSP Return-From-Standby
static constexpr int8_t MAX_PAUSE_TIMING_ERROR_MS = 1; // ALERT Irq Handling
static constexpr auto POLLING_TIMEOUT = 20;
static const std::map<EffectTuple, EffectScale> EFFECT_SCALE{
{{Effect::CLICK, EffectStrength::LIGHT}, Scale(0.7f * 0.5f)},
{{Effect::CLICK, EffectStrength::MEDIUM}, Scale(0.7f * 0.7f)},
{{Effect::CLICK, EffectStrength::STRONG}, Scale(0.7f * 1.0f)},
{{Effect::TICK, EffectStrength::LIGHT}, Scale(0.5f * 0.5f)},
{{Effect::TICK, EffectStrength::MEDIUM}, Scale(0.5f * 0.7f)},
{{Effect::TICK, EffectStrength::STRONG}, Scale(0.5f * 1.0f)},
{{Effect::HEAVY_CLICK, EffectStrength::LIGHT}, Scale(1.0f * 0.5f)},
{{Effect::HEAVY_CLICK, EffectStrength::MEDIUM}, Scale(1.0f * 0.7f)},
{{Effect::HEAVY_CLICK, EffectStrength::STRONG}, Scale(1.0f * 1.0f)},
{{Effect::TEXTURE_TICK, EffectStrength::LIGHT}, Scale(0.5f * 0.5f)},
{{Effect::TEXTURE_TICK, EffectStrength::MEDIUM}, Scale(0.5f * 0.7f)},
{{Effect::TEXTURE_TICK, EffectStrength::STRONG}, Scale(0.5f * 1.0f)},
};
static const std::map<EffectTuple, EffectQueue> EFFECT_QUEUE{
{{Effect::DOUBLE_CLICK, EffectStrength::LIGHT},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(0.7f * 0.5f)},
WAVEFORM_DOUBLE_CLICK_SILENCE_MS,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(1.0f * 0.5f)})},
{{Effect::DOUBLE_CLICK, EffectStrength::MEDIUM},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(0.7f * 0.7f)},
WAVEFORM_DOUBLE_CLICK_SILENCE_MS,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(1.0f * 0.7f)})},
{{Effect::DOUBLE_CLICK, EffectStrength::STRONG},
Queue(QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(0.7f * 1.0f)},
WAVEFORM_DOUBLE_CLICK_SILENCE_MS,
QueueEffect{EFFECT_INDEX.at(Effect::CLICK), Level(1.0f * 1.0f)})},
};
EffectQueue Queue(const QueueEffect &effect) {
auto index = std::get<0>(effect);
auto level = std::get<1>(effect);
auto string = std::to_string(index) + "." + std::to_string(level);
auto duration = EFFECT_DURATIONS[index];
return {string, duration};
}
EffectQueue Queue(const QueueDelay &delay) {
auto string = std::to_string(delay);
return {string, delay};
}
template <typename T, typename U, typename... Args>
EffectQueue Queue(const T &first, const U &second, Args... rest) {
auto head = Queue(first);
auto tail = Queue(second, rest...);
auto string = std::get<0>(head) + "," + std::get<0>(tail);
auto duration = std::get<1>(head) + std::get<1>(tail);
return {string, duration};
}
static EffectLevel Level(float intensity) {
auto vMin = std::max(V_LEVELS[0] - (V_LEVELS[4] - V_LEVELS[0]) / 4.0f, 4.0f);
auto vMax = V_LEVELS[4];
return std::lround(intensity * (vMax - vMin)) + vMin;
}
static EffectScale Scale(float intensity) {
return levelToScale(Level(intensity));
}
class VibratorTest : public Test {
public:
void SetUp() override {
std::unique_ptr<MockApi> mockapi;
std::unique_ptr<MockCal> mockcal;
createMock(&mockapi, &mockcal);
createVibrator(std::move(mockapi), std::move(mockcal));
}
void TearDown() override { deleteVibrator(); }
protected:
void createMock(std::unique_ptr<MockApi> *mockapi, std::unique_ptr<MockCal> *mockcal) {
*mockapi = std::make_unique<MockApi>();
*mockcal = std::make_unique<MockCal>();
mMockApi = mockapi->get();
mMockCal = mockcal->get();
ON_CALL(*mMockApi, destructor()).WillByDefault(Assign(&mMockApi, nullptr));
ON_CALL(*mMockApi, getEffectCount(_))
.WillByDefault(DoAll(SetArgPointee<0>(EFFECT_DURATIONS.size()), Return(true)));
ON_CALL(*mMockApi, setEffectIndex(_))
.WillByDefault(Invoke(this, &VibratorTest::setEffectIndex));
ON_CALL(*mMockApi, getEffectDuration(_))
.WillByDefault(Invoke(this, &VibratorTest::getEffectDuration));
ON_CALL(*mMockCal, destructor()).WillByDefault(Assign(&mMockCal, nullptr));
ON_CALL(*mMockCal, getVersion(_))
.WillByDefault(DoAll(SetArgPointee<0>(CAL_VERSION), Return(true)));
ON_CALL(*mMockCal, getVolLevels(_))
.WillByDefault(DoAll(SetArgPointee<0>(V_LEVELS), Return(true)));
relaxMock(false);
}
void createVibrator(std::unique_ptr<MockApi> mockapi, std::unique_ptr<MockCal> mockcal,
bool relaxed = true) {
if (relaxed) {
relaxMock(true);
}
mVibrator = ndk::SharedRefBase::make<Vibrator>(std::move(mockapi), std::move(mockcal));
if (relaxed) {
relaxMock(false);
}
}
void deleteVibrator(bool relaxed = true) {
if (relaxed) {
relaxMock(true);
}
mVibrator.reset();
}
bool setEffectIndex(EffectIndex index) {
mEffectIndex = index;
return true;
}
bool getEffectDuration(EffectDuration *duration) {
if (mEffectIndex < EFFECT_DURATIONS.size()) {
*duration = msToCycles(EFFECT_DURATIONS[mEffectIndex]);
return true;
} else {
return false;
}
}
private:
void relaxMock(bool relax) {
auto times = relax ? AnyNumber() : Exactly(0);
Mock::VerifyAndClearExpectations(mMockApi);
Mock::VerifyAndClearExpectations(mMockCal);
EXPECT_CALL(*mMockApi, destructor()).Times(times);
EXPECT_CALL(*mMockApi, setF0(_)).Times(times);
EXPECT_CALL(*mMockApi, setRedc(_)).Times(times);
EXPECT_CALL(*mMockApi, setQ(_)).Times(times);
EXPECT_CALL(*mMockApi, setActivate(_)).Times(times);
EXPECT_CALL(*mMockApi, setDuration(_)).Times(times);
EXPECT_CALL(*mMockApi, getEffectCount(_)).Times(times);
EXPECT_CALL(*mMockApi, getEffectDuration(_)).Times(times);
EXPECT_CALL(*mMockApi, setEffectIndex(_)).Times(times);
EXPECT_CALL(*mMockApi, setEffectQueue(_)).Times(times);
EXPECT_CALL(*mMockApi, hasEffectScale()).Times(times);
EXPECT_CALL(*mMockApi, setEffectScale(_)).Times(times);
EXPECT_CALL(*mMockApi, setGlobalScale(_)).Times(times);
EXPECT_CALL(*mMockApi, setState(_)).Times(times);
EXPECT_CALL(*mMockApi, hasAspEnable()).Times(times);
EXPECT_CALL(*mMockApi, getAspEnable(_)).Times(times);
EXPECT_CALL(*mMockApi, setAspEnable(_)).Times(times);
EXPECT_CALL(*mMockApi, setGpioFallIndex(_)).Times(times);
EXPECT_CALL(*mMockApi, setGpioFallScale(_)).Times(times);
EXPECT_CALL(*mMockApi, setGpioRiseIndex(_)).Times(times);
EXPECT_CALL(*mMockApi, setGpioRiseScale(_)).Times(times);
EXPECT_CALL(*mMockApi, debug(_)).Times(times);
EXPECT_CALL(*mMockCal, destructor()).Times(times);
EXPECT_CALL(*mMockCal, getF0(_)).Times(times);
EXPECT_CALL(*mMockCal, getRedc(_)).Times(times);
EXPECT_CALL(*mMockCal, getQ(_)).Times(times);
EXPECT_CALL(*mMockCal, getVolLevels(_)).Times(times);
EXPECT_CALL(*mMockCal, debug(_)).Times(times);
}
protected:
MockApi *mMockApi;
MockCal *mMockCal;
std::shared_ptr<IVibrator> mVibrator;
uint32_t mEffectIndex;
};
TEST_F(VibratorTest, Constructor) {
std::unique_ptr<MockApi> mockapi;
std::unique_ptr<MockCal> mockcal;
uint32_t f0Val = std::rand();
uint32_t redcVal = std::rand();
uint32_t qVal = std::rand();
uint32_t calVer;
Expectation volGet;
Sequence f0Seq, redcSeq, qSeq, volSeq, durSeq;
EXPECT_CALL(*mMockApi, destructor()).WillOnce(DoDefault());
EXPECT_CALL(*mMockCal, destructor()).WillOnce(DoDefault());
deleteVibrator(false);
createMock(&mockapi, &mockcal);
EXPECT_CALL(*mMockCal, getF0(_))
.InSequence(f0Seq)
.WillOnce(DoAll(SetArgPointee<0>(f0Val), Return(true)));
EXPECT_CALL(*mMockApi, setF0(f0Val)).InSequence(f0Seq).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getRedc(_))
.InSequence(redcSeq)
.WillOnce(DoAll(SetArgPointee<0>(redcVal), Return(true)));
EXPECT_CALL(*mMockApi, setRedc(redcVal)).InSequence(redcSeq).WillOnce(Return(true));
EXPECT_CALL(*mMockCal, getQ(_))
.InSequence(qSeq)
.WillOnce(DoAll(SetArgPointee<0>(qVal), Return(true)));
EXPECT_CALL(*mMockApi, setQ(qVal)).InSequence(qSeq).WillOnce(Return(true));
if (mMockCal->getVersion(&calVer) == 1) {
volGet = EXPECT_CALL(*mMockCal, getVolLevels(_)).WillOnce(DoDefault());
} else {
volGet = EXPECT_CALL(*mMockCal, getTickVolLevels(_)).WillOnce(DoDefault());
volGet = EXPECT_CALL(*mMockCal, getClickVolLevels(_)).WillOnce(DoDefault());
volGet = EXPECT_CALL(*mMockCal, getLongVolLevels(_)).WillOnce(DoDefault());
}
EXPECT_CALL(*mMockApi, setState(true)).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, getEffectCount(_)).InSequence(durSeq).WillOnce(DoDefault());
for (auto &d : EFFECT_DURATIONS) {
EXPECT_CALL(*mMockApi, setEffectIndex(&d - &EFFECT_DURATIONS[0]))
.InSequence(durSeq)
.WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, getEffectDuration(_)).InSequence(durSeq).WillOnce(DoDefault());
}
EXPECT_CALL(*mMockApi, hasEffectScale()).WillRepeatedly(Return(true));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillRepeatedly(Return(true));
createVibrator(std::move(mockapi), std::move(mockcal), false);
}
TEST_F(VibratorTest, on) {
Sequence s1, s2, s3;
uint16_t duration = std::rand() + 1;
EXPECT_CALL(*mMockApi, setGlobalScale(ON_GLOBAL_SCALE)).InSequence(s1).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setEffectIndex(ON_EFFECT_INDEX)).InSequence(s2).WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, setDuration(Ge(duration))).InSequence(s3).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setActivate(true)).InSequence(s1, s2, s3).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->on(duration, nullptr).isOk());
}
TEST_F(VibratorTest, off) {
EXPECT_CALL(*mMockApi, setActivate(false)).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGlobalScale(0)).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->off().isOk());
}
TEST_F(VibratorTest, supportsAmplitudeControl_supported) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_GT(capabilities & IVibrator::CAP_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, supportsAmplitudeControl_unsupported1) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(false));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, supportsAmplitudeControl_unsupported2) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(false));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(false));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, supportsExternalAmplitudeControl_unsupported) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL, 0);
}
TEST_F(VibratorTest, setAmplitude_supported) {
Sequence s;
EffectAmplitude amplitude = static_cast<float>(std::rand()) / RAND_MAX ?: 1.0f;
// The default mIsUnderExternalControl is false, no need to turn off the External Control
EXPECT_CALL(*mMockApi, setEffectScale(amplitudeToScale(amplitude)))
.InSequence(s)
.WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setAmplitude(amplitude).isOk());
}
TEST_F(VibratorTest, setAmplitude_unsupported) {
// Turn on the External Control and make mIsUnderExternalControl true
Sequence s;
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGlobalScale(ON_GLOBAL_SCALE)).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setAspEnable(true)).InSequence(s).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(true).isOk());
EXPECT_EQ(EX_UNSUPPORTED_OPERATION, mVibrator->setAmplitude(1).getExceptionCode());
}
TEST_F(VibratorTest, supportsExternalControl_supported) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_GT(capabilities & IVibrator::CAP_EXTERNAL_CONTROL, 0);
}
TEST_F(VibratorTest, supportsExternalControl_unsupported) {
EXPECT_CALL(*mMockApi, hasEffectScale()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(false));
int32_t capabilities;
EXPECT_TRUE(mVibrator->getCapabilities(&capabilities).isOk());
EXPECT_EQ(capabilities & IVibrator::CAP_EXTERNAL_CONTROL, 0);
}
TEST_F(VibratorTest, setExternalControl_enable) {
Sequence s;
EXPECT_CALL(*mMockApi, hasAspEnable()).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGlobalScale(ON_GLOBAL_SCALE)).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setAspEnable(true)).InSequence(s).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(true).isOk());
}
TEST_F(VibratorTest, setExternalControl_disable) {
Sequence s;
EXPECT_CALL(*mMockApi, hasAspEnable()).WillRepeatedly(Return(true));
// The default mIsUnderExternalControl is false, so it needs to turn on the External Control
// to make mIsUnderExternalControl become true.
EXPECT_CALL(*mMockApi, setGlobalScale(ON_GLOBAL_SCALE)).InSequence(s).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setAspEnable(true)).InSequence(s).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(true).isOk());
EXPECT_CALL(*mMockApi, setAspEnable(false)).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGlobalScale(0)).WillOnce(Return(true));
EXPECT_TRUE(mVibrator->setExternalControl(false).isOk());
}
class EffectsTest : public VibratorTest, public WithParamInterface<EffectTuple> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
auto param = info.param;
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
return toString(effect) + "_" + toString(strength);
}
};
TEST_P(EffectsTest, perform) {
auto param = GetParam();
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
auto scale = EFFECT_SCALE.find(param);
auto queue = EFFECT_QUEUE.find(param);
EffectDuration duration;
auto callback = ndk::SharedRefBase::make<MockVibratorCallback>();
std::promise<void> promise;
std::future<void> future{promise.get_future()};
auto complete = [&promise] {
promise.set_value();
return ndk::ScopedAStatus::ok();
};
ExpectationSet eSetup;
Expectation eActivate, ePollStop;
if (scale != EFFECT_SCALE.end()) {
EffectIndex index = EFFECT_INDEX.at(effect);
duration = EFFECT_DURATIONS[index] + MAX_COLD_START_LATENCY_MS;
eSetup += EXPECT_CALL(*mMockApi, setEffectIndex(index)).WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, setEffectScale(scale->second)).WillOnce(Return(true));
} else if (queue != EFFECT_QUEUE.end()) {
duration = std::get<1>(queue->second) + MAX_COLD_START_LATENCY_MS * 2 +
MAX_PAUSE_TIMING_ERROR_MS;
eSetup += EXPECT_CALL(*mMockApi, setEffectIndex(QUEUE_INDEX)).WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, setEffectQueue(std::get<0>(queue->second)))
.WillOnce(Return(true));
eSetup += EXPECT_CALL(*mMockApi, setEffectScale(0)).WillOnce(Return(true));
} else {
duration = 0;
}
if (duration) {
eSetup += EXPECT_CALL(*mMockApi, setDuration(Ge(duration))).WillOnce(Return(true));
eActivate = EXPECT_CALL(*mMockApi, setActivate(true)).After(eSetup).WillOnce(Return(true));
ePollStop = EXPECT_CALL(*mMockApi, pollVibeState(false, duration + POLLING_TIMEOUT))
.After(eActivate)
.WillOnce(DoDefault());
EXPECT_CALL(*mMockApi, setActivate(false)).After(ePollStop).WillOnce(Return(true));
EXPECT_CALL(*callback, onComplete()).After(ePollStop).WillOnce(complete);
}
int32_t lengthMs;
ndk::ScopedAStatus status = mVibrator->perform(effect, strength, callback, &lengthMs);
if (status.isOk()) {
EXPECT_LE(duration, lengthMs);
} else {
EXPECT_EQ(EX_UNSUPPORTED_OPERATION, status.getExceptionCode());
EXPECT_EQ(0, lengthMs);
}
if (duration) {
EXPECT_EQ(future.wait_for(std::chrono::milliseconds(100)), std::future_status::ready);
}
}
TEST_P(EffectsTest, alwaysOnEnable) {
auto param = GetParam();
auto effect = std::get<0>(param);
auto strength = std::get<1>(param);
auto scale = EFFECT_SCALE.find(param);
bool supported = (scale != EFFECT_SCALE.end());
if (supported) {
EXPECT_CALL(*mMockApi, setGpioRiseIndex(EFFECT_INDEX.at(effect))).WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGpioRiseScale(scale->second)).WillOnce(Return(true));
}
ndk::ScopedAStatus status = mVibrator->alwaysOnEnable(0, effect, strength);
if (supported) {
EXPECT_EQ(EX_NONE, status.getExceptionCode());
} else {
EXPECT_EQ(EX_UNSUPPORTED_OPERATION, status.getExceptionCode());
}
}
const std::vector<Effect> kEffects{ndk::enum_range<Effect>().begin(),
ndk::enum_range<Effect>().end()};
const std::vector<EffectStrength> kEffectStrengths{ndk::enum_range<EffectStrength>().begin(),
ndk::enum_range<EffectStrength>().end()};
INSTANTIATE_TEST_CASE_P(VibratorTests, EffectsTest,
Combine(ValuesIn(kEffects.begin(), kEffects.end()),
ValuesIn(kEffectStrengths.begin(), kEffectStrengths.end())),
EffectsTest::PrintParam);
struct PrimitiveParam {
CompositePrimitive primitive;
EffectIndex index;
};
class PrimitiveTest : public VibratorTest, public WithParamInterface<PrimitiveParam> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
return toString(info.param.primitive);
}
};
const std::vector<PrimitiveParam> kPrimitiveParams = {
{CompositePrimitive::NOOP, 0}, {CompositePrimitive::CLICK, 2},
{CompositePrimitive::THUD, 4}, {CompositePrimitive::SPIN, 5},
{CompositePrimitive::QUICK_RISE, 6}, {CompositePrimitive::SLOW_RISE, 7},
{CompositePrimitive::QUICK_FALL, 8},
};
TEST_P(PrimitiveTest, getPrimitiveDuration) {
auto param = GetParam();
auto primitive = param.primitive;
auto index = param.index;
int32_t duration;
EXPECT_EQ(EX_NONE, mVibrator->getPrimitiveDuration(primitive, &duration).getExceptionCode());
EXPECT_EQ(EFFECT_DURATIONS[index], duration);
}
INSTANTIATE_TEST_CASE_P(VibratorTests, PrimitiveTest,
ValuesIn(kPrimitiveParams.begin(), kPrimitiveParams.end()),
PrimitiveTest::PrintParam);
struct ComposeParam {
std::string name;
std::vector<CompositeEffect> composite;
EffectQueue queue;
};
class ComposeTest : public VibratorTest, public WithParamInterface<ComposeParam> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) { return info.param.name; }
};
TEST_P(ComposeTest, compose) {
auto param = GetParam();
auto composite = param.composite;
auto queue = std::get<0>(param.queue);
auto duration = std::get<1>(param.queue);
ExpectationSet eSetup;
Expectation eActivate, ePollStop;
auto callback = ndk::SharedRefBase::make<MockVibratorCallback>();
std::promise<void> promise;
std::future<void> future{promise.get_future()};
auto complete = [&promise] {
promise.set_value();
return ndk::ScopedAStatus::ok();
};
eSetup += EXPECT_CALL(*mMockApi, setEffectIndex(QUEUE_INDEX)).WillOnce(DoDefault());
eSetup += EXPECT_CALL(*mMockApi, setEffectQueue(queue)).WillOnce(Return(true));
eSetup += EXPECT_CALL(*mMockApi, setEffectScale(0)).WillOnce(Return(true));
eSetup += EXPECT_CALL(*mMockApi, setDuration(UINT32_MAX)).WillOnce(Return(true));
eActivate = EXPECT_CALL(*mMockApi, setActivate(true)).After(eSetup).WillOnce(Return(true));
ePollStop = EXPECT_CALL(*mMockApi, pollVibeState(false, duration + POLLING_TIMEOUT))
.After(eActivate)
.WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setActivate(false)).After(ePollStop).WillOnce(Return(true));
EXPECT_CALL(*callback, onComplete()).After(ePollStop).WillOnce(complete);
EXPECT_EQ(EX_NONE, mVibrator->compose(composite, callback).getExceptionCode());
EXPECT_EQ(future.wait_for(std::chrono::milliseconds(100)), std::future_status::ready);
}
const std::vector<ComposeParam> kComposeParams = {
{"click", {{0, CompositePrimitive::CLICK, 1.0f}}, Queue(QueueEffect(2, Level(1.0f)), 0)},
{"thud", {{1, CompositePrimitive::THUD, 0.8f}}, Queue(1, QueueEffect(4, Level(0.8f)), 0)},
{"spin", {{2, CompositePrimitive::SPIN, 0.6f}}, Queue(2, QueueEffect(5, Level(0.6f)), 0)},
{"quick_rise",
{{3, CompositePrimitive::QUICK_RISE, 0.4f}},
Queue(3, QueueEffect(6, 0.4f * V_LEVELS[5]), 0)},
{"slow_rise",
{{4, CompositePrimitive::SLOW_RISE, 0.0f}},
Queue(4, QueueEffect(7, Level(0.0f)), 0)},
{"quick_fall",
{{5, CompositePrimitive::QUICK_FALL, 1.0f}},
Queue(5, QueueEffect(8, 1.0f * V_LEVELS[5]), 0)},
{"pop",
{{6, CompositePrimitive::SLOW_RISE, 1.0f}, {50, CompositePrimitive::THUD, 1.0f}},
Queue(6, QueueEffect(7, Level(1.0f)), 50, QueueEffect(4, Level(1.0f)), 0)},
{"snap",
{{7, CompositePrimitive::QUICK_RISE, 1.0f}, {0, CompositePrimitive::QUICK_FALL, 1.0f}},
Queue(7, QueueEffect(6, 1.0f * V_LEVELS[5]), QueueEffect(8, 1.0f * V_LEVELS[5]), 0)},
};
INSTANTIATE_TEST_CASE_P(VibratorTests, ComposeTest,
ValuesIn(kComposeParams.begin(), kComposeParams.end()),
ComposeTest::PrintParam);
class AlwaysOnTest : public VibratorTest, public WithParamInterface<int32_t> {
public:
static auto PrintParam(const TestParamInfo<ParamType> &info) {
return std::to_string(info.param);
}
};
TEST_P(AlwaysOnTest, alwaysOnEnable) {
auto param = GetParam();
auto scale = EFFECT_SCALE.begin();
std::advance(scale, std::rand() % EFFECT_SCALE.size());
auto effect = std::get<0>(scale->first);
auto strength = std::get<1>(scale->first);
switch (param) {
case 0:
EXPECT_CALL(*mMockApi, setGpioRiseIndex(EFFECT_INDEX.at(effect)))
.WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGpioRiseScale(scale->second)).WillOnce(Return(true));
break;
case 1:
EXPECT_CALL(*mMockApi, setGpioFallIndex(EFFECT_INDEX.at(effect)))
.WillOnce(Return(true));
EXPECT_CALL(*mMockApi, setGpioFallScale(scale->second)).WillOnce(Return(true));
break;
}
ndk::ScopedAStatus status = mVibrator->alwaysOnEnable(param, effect, strength);
EXPECT_EQ(EX_NONE, status.getExceptionCode());
}
TEST_P(AlwaysOnTest, alwaysOnDisable) {
auto param = GetParam();
switch (param) {
case 0:
EXPECT_CALL(*mMockApi, setGpioRiseIndex(0)).WillOnce(Return(true));
break;
case 1:
EXPECT_CALL(*mMockApi, setGpioFallIndex(0)).WillOnce(Return(true));
break;
}
ndk::ScopedAStatus status = mVibrator->alwaysOnDisable(param);
EXPECT_EQ(EX_NONE, status.getExceptionCode());
}
INSTANTIATE_TEST_CASE_P(VibratorTests, AlwaysOnTest, Range(0, 1), AlwaysOnTest::PrintParam);
} // namespace vibrator
} // namespace hardware
} // namespace android
} // namespace aidl