193 lines
7.3 KiB
C++
193 lines
7.3 KiB
C++
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "GeneratedTestHarness.h"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
|
|
#include <android/hardware/neuralnetworks/1.0/types.h>
|
|
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
|
|
#include <android/hidl/allocator/1.0/IAllocator.h>
|
|
#include <android/hidl/memory/1.0/IMemory.h>
|
|
#include <hidlmemory/mapping.h>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <iostream>
|
|
|
|
#include "1.0/Callbacks.h"
|
|
#include "1.0/Utils.h"
|
|
#include "MemoryUtils.h"
|
|
#include "TestHarness.h"
|
|
#include "VtsHalNeuralnetworks.h"
|
|
|
|
namespace android::hardware::neuralnetworks::V1_1::vts::functional {
|
|
|
|
using namespace test_helper;
|
|
using hidl::memory::V1_0::IMemory;
|
|
using V1_0::DataLocation;
|
|
using V1_0::ErrorStatus;
|
|
using V1_0::IPreparedModel;
|
|
using V1_0::Operand;
|
|
using V1_0::OperandLifeTime;
|
|
using V1_0::OperandType;
|
|
using V1_0::Request;
|
|
using V1_0::implementation::ExecutionCallback;
|
|
using V1_0::implementation::PreparedModelCallback;
|
|
|
|
Model createModel(const TestModel& testModel) {
|
|
// Model operands.
|
|
CHECK_EQ(testModel.referenced.size(), 0u); // Not supported in 1.1.
|
|
hidl_vec<Operand> operands(testModel.main.operands.size());
|
|
size_t constCopySize = 0, constRefSize = 0;
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
|
|
DataLocation loc = {};
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
|
|
loc = {.poolIndex = 0,
|
|
.offset = static_cast<uint32_t>(constCopySize),
|
|
.length = static_cast<uint32_t>(op.data.size())};
|
|
constCopySize += op.data.alignedSize();
|
|
} else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
|
|
loc = {.poolIndex = 0,
|
|
.offset = static_cast<uint32_t>(constRefSize),
|
|
.length = static_cast<uint32_t>(op.data.size())};
|
|
constRefSize += op.data.alignedSize();
|
|
}
|
|
|
|
operands[i] = {.type = static_cast<OperandType>(op.type),
|
|
.dimensions = op.dimensions,
|
|
.numberOfConsumers = op.numberOfConsumers,
|
|
.scale = op.scale,
|
|
.zeroPoint = op.zeroPoint,
|
|
.lifetime = static_cast<OperandLifeTime>(op.lifetime),
|
|
.location = loc};
|
|
}
|
|
|
|
// Model operations.
|
|
hidl_vec<Operation> operations(testModel.main.operations.size());
|
|
std::transform(testModel.main.operations.begin(), testModel.main.operations.end(),
|
|
operations.begin(), [](const TestOperation& op) -> Operation {
|
|
return {.type = static_cast<OperationType>(op.type),
|
|
.inputs = op.inputs,
|
|
.outputs = op.outputs};
|
|
});
|
|
|
|
// Constant copies.
|
|
hidl_vec<uint8_t> operandValues(constCopySize);
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
|
|
const uint8_t* begin = op.data.get<uint8_t>();
|
|
const uint8_t* end = begin + op.data.size();
|
|
std::copy(begin, end, operandValues.data() + operands[i].location.offset);
|
|
}
|
|
}
|
|
|
|
// Shared memory.
|
|
hidl_vec<hidl_memory> pools;
|
|
if (constRefSize > 0) {
|
|
hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
|
|
CHECK_NE(pools[0].size(), 0u);
|
|
|
|
// load data
|
|
sp<IMemory> mappedMemory = mapMemory(pools[0]);
|
|
CHECK(mappedMemory.get() != nullptr);
|
|
uint8_t* mappedPtr =
|
|
reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
|
|
CHECK(mappedPtr != nullptr);
|
|
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
|
|
const uint8_t* begin = op.data.get<uint8_t>();
|
|
const uint8_t* end = begin + op.data.size();
|
|
std::copy(begin, end, mappedPtr + operands[i].location.offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
return {.operands = std::move(operands),
|
|
.operations = std::move(operations),
|
|
.inputIndexes = testModel.main.inputIndexes,
|
|
.outputIndexes = testModel.main.outputIndexes,
|
|
.operandValues = std::move(operandValues),
|
|
.pools = std::move(pools),
|
|
.relaxComputationFloat32toFloat16 = testModel.isRelaxed};
|
|
}
|
|
|
|
// Top level driver for models and examples generated by test_generator.py
|
|
// Test driver for those generated from ml/nn/runtime/test/spec
|
|
void Execute(const sp<IDevice>& device, const TestModel& testModel) {
|
|
const Model model = createModel(testModel);
|
|
|
|
ExecutionContext context;
|
|
const Request request = context.createRequest(testModel);
|
|
|
|
// Create IPreparedModel.
|
|
sp<IPreparedModel> preparedModel;
|
|
createPreparedModel(device, model, &preparedModel);
|
|
if (preparedModel == nullptr) return;
|
|
|
|
// Launch execution.
|
|
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
|
Return<ErrorStatus> executionLaunchStatus = preparedModel->execute(request, executionCallback);
|
|
ASSERT_TRUE(executionLaunchStatus.isOk());
|
|
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
|
|
|
|
// Retrieve execution status.
|
|
executionCallback->wait();
|
|
ASSERT_EQ(ErrorStatus::NONE, executionCallback->getStatus());
|
|
|
|
// Retrieve execution results.
|
|
const std::vector<TestBuffer> outputs = context.getOutputBuffers(request);
|
|
|
|
// We want "close-enough" results.
|
|
checkResults(testModel, outputs);
|
|
}
|
|
|
|
void GeneratedTestBase::SetUp() {
|
|
testing::TestWithParam<GeneratedTestParam>::SetUp();
|
|
ASSERT_NE(kDevice, nullptr);
|
|
const bool deviceIsResponsive = kDevice->ping().isOk();
|
|
ASSERT_TRUE(deviceIsResponsive);
|
|
}
|
|
|
|
std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
|
|
return TestModelManager::get().getTestModels(filter);
|
|
}
|
|
|
|
std::vector<NamedModel> getNamedModels(const FilterNameFn& filter) {
|
|
return TestModelManager::get().getTestModels(filter);
|
|
}
|
|
|
|
std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
|
|
const auto& [namedDevice, namedModel] = info.param;
|
|
return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
|
|
}
|
|
|
|
// Tag for the generated tests
|
|
class GeneratedTest : public GeneratedTestBase {};
|
|
|
|
TEST_P(GeneratedTest, Test) {
|
|
Execute(kDevice, kTestModel);
|
|
}
|
|
|
|
INSTANTIATE_GENERATED_TEST(GeneratedTest,
|
|
[](const TestModel& testModel) { return !testModel.expectFailure; });
|
|
|
|
} // namespace android::hardware::neuralnetworks::V1_1::vts::functional
|