95 lines
3.0 KiB
Python
95 lines
3.0 KiB
Python
import numpy as np
|
|
import cv2
|
|
from rknn.api import RKNN
|
|
|
|
|
|
def show_outputs(outputs):
|
|
np.save('./functions_model_pruning_0.npy', outputs[0])
|
|
output = outputs[0].reshape(-1)
|
|
output_sorted = sorted(output, reverse=True)
|
|
top5_str = 'mobilenet\n-----TOP 5-----\n'
|
|
for i in range(5):
|
|
value = output_sorted[i]
|
|
index = np.where(output == value)
|
|
for j in range(len(index)):
|
|
if (i + j) >= 5:
|
|
break
|
|
if value > 0:
|
|
topi = '{}: {}\n'.format(index[j], value)
|
|
else:
|
|
topi = '-1: 0.0\n'
|
|
top5_str += topi
|
|
print(top5_str)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# Create RKNN object
|
|
rknn = RKNN(verbose=True)
|
|
|
|
# Pre-process config
|
|
print('--> Config model')
|
|
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566', model_pruning=True)
|
|
print('done')
|
|
|
|
# Load model (from https://github.com/shicai/MobileNet-Caffe)
|
|
print('--> Loading model')
|
|
ret = rknn.load_caffe(model='./mobilenet_deploy.prototxt',
|
|
blobs='./mobilenet.caffemodel')
|
|
if ret != 0:
|
|
print('Load model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Build model
|
|
print('--> Building model')
|
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
|
|
if ret != 0:
|
|
print('Build model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Tips
|
|
print('')
|
|
print('======================================== Tips ==========================================================')
|
|
print('When verbose is set to True, the following similar prompts will appear during the build process, ')
|
|
print('indicating that model pruning has been effective for this model. (This means that approximately 6.9% ')
|
|
print('of the weights have been removed, resulting in a saving of about 13.4% of the computational workload.)')
|
|
print('Please note that not all models can be pruned, only models with sparse weights are likely to benefit from pruning.')
|
|
print('')
|
|
print(' I model_pruning ...')
|
|
print(' I model_pruning results:')
|
|
print(' I -1.12144 MB (-6.9%)')
|
|
print(' I -0.00016 T (-13.4%)')
|
|
print(' I model_pruning done.')
|
|
print('')
|
|
print('=========================================+++++++========================================================')
|
|
print('')
|
|
|
|
# Export rknn model
|
|
print('--> Export rknn model')
|
|
ret = rknn.export_rknn('./mobilenet.rknn')
|
|
if ret != 0:
|
|
print('Export rknn model failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Set inputs
|
|
img = cv2.imread('./dog_224x224.jpg')
|
|
|
|
# Init runtime environment
|
|
print('--> Init runtime environment')
|
|
ret = rknn.init_runtime()
|
|
if ret != 0:
|
|
print('Init runtime environment failed!')
|
|
exit(ret)
|
|
print('done')
|
|
|
|
# Inference
|
|
print('--> Running model')
|
|
outputs = rknn.inference(inputs=[img])
|
|
show_outputs(outputs)
|
|
print('done')
|
|
|
|
rknn.release()
|