31 lines
1.9 KiB
Plaintext
31 lines
1.9 KiB
Plaintext
The directory structure of examples is as follows:
|
|
.
|
|
├── caffe
|
|
│ ├── mobilenet_v2 # mobilenet_v2 float model
|
|
│ └── vgg-ssd # vgg-ssd float model
|
|
├── onnx
|
|
│ ├── resnet50v2 # resnet50v2 float model
|
|
│ └── yolov5 # yolov5 float model
|
|
├── pytorch
|
|
│ ├── resnet18 # resnet18 float model
|
|
│ ├── resnet18_qat # resnet18 QAT model
|
|
│ ├── resnet18_export_onnx # how to export onnx model from pytorch
|
|
│ └── yolov5 # yolov5 float model
|
|
├── tensorflow
|
|
│ ├── ssd_mobilenet_v1 # ssd_mobilenet_v1 float model
|
|
│ └── inception_v3_qat # inception_v3 QAT model
|
|
├── tflite
|
|
│ ├── mobilenet_v1 # mobilenet_v1 float model
|
|
│ └── mobilenet_v1_qat # mobilenet_v1 QAT model
|
|
├── darknet
|
|
│ └── yolov3_416x416 # yolov3 float model
|
|
└── functions
|
|
├── accuracy_analysis # how to use accuracy-analysis function
|
|
├── batch_size # how to expand batch for use multi-batch function
|
|
├── board_test # how to connect the board for debugging
|
|
├── dynamic_input # how to use dynamic_input function
|
|
├── gen_cpp_rknn_deploy_demo # how to generate c++ deployment demo when converting model
|
|
├── hybrid_quant # how to use hybrid-quantization function
|
|
├── mmse # how to use mmse function
|
|
├── model_pruning # how to use model_pruning function
|
|
└── multi_input_test # How to convert multi-input model |