218 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
/*
 | 
						|
 * Copyright (C) 2016 The Android Open Source Project
 | 
						|
 *
 | 
						|
 * Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
 * you may not use this file except in compliance with the License.
 | 
						|
 * You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *      http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 * See the License for the specific language governing permissions and
 | 
						|
 * limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
/////////////////////////////////////////////////////////////////////////
 | 
						|
/*
 | 
						|
 * This module contains vector math utilities for the following datatypes:
 | 
						|
 * -) Vec3 structures for 3-dimensional vectors
 | 
						|
 * -) Vec4 structures for 4-dimensional vectors
 | 
						|
 * -) floating point arrays for N-dimensional vectors.
 | 
						|
 *
 | 
						|
 * Note that the Vec3 and Vec4 utilties were ported from the Android
 | 
						|
 * repository and maintain dependenices in that separate codebase. As a
 | 
						|
 * result, the function signatures were left untouched for compatibility with
 | 
						|
 * this legacy code, despite certain style violations. In particular, for this
 | 
						|
 * module the function argument ordering is outputs before inputs. This style
 | 
						|
 * violation will be addressed once the full set of dependencies in Android
 | 
						|
 * have been brought into this repository.
 | 
						|
 */
 | 
						|
#ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
 | 
						|
#define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
 | 
						|
 | 
						|
#ifdef NANOHUB_NON_CHRE_API
 | 
						|
#include <nanohub_math.h>
 | 
						|
#else
 | 
						|
#include <math.h>
 | 
						|
#endif  // NANOHUB_NON_CHRE_API
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
 | 
						|
#include "chre/util/nanoapp/assert.h"
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
struct Vec3 {
 | 
						|
  float x, y, z;
 | 
						|
};
 | 
						|
 | 
						|
struct Vec4 {
 | 
						|
  float x, y, z, w;
 | 
						|
};
 | 
						|
 | 
						|
// 3-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
 | 
						|
static inline void initVec3(struct Vec3 *v, float x, float y, float z) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  v->x = x;
 | 
						|
  v->y = y;
 | 
						|
  v->z = z;
 | 
						|
}
 | 
						|
 | 
						|
// Updates v as the sum of v and w.
 | 
						|
static inline void vec3Add(struct Vec3 *v, const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  v->x += w->x;
 | 
						|
  v->y += w->y;
 | 
						|
  v->z += w->z;
 | 
						|
}
 | 
						|
 | 
						|
// Sets u as the sum of v and w.
 | 
						|
static inline void vec3AddVecs(struct Vec3 *u, const struct Vec3 *v,
 | 
						|
                               const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(u);
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  u->x = v->x + w->x;
 | 
						|
  u->y = v->y + w->y;
 | 
						|
  u->z = v->z + w->z;
 | 
						|
}
 | 
						|
 | 
						|
// Updates v as the subtraction of w from v.
 | 
						|
static inline void vec3Sub(struct Vec3 *v, const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  v->x -= w->x;
 | 
						|
  v->y -= w->y;
 | 
						|
  v->z -= w->z;
 | 
						|
}
 | 
						|
 | 
						|
// Sets u as the difference of v and w.
 | 
						|
static inline void vec3SubVecs(struct Vec3 *u, const struct Vec3 *v,
 | 
						|
                               const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(u);
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  u->x = v->x - w->x;
 | 
						|
  u->y = v->y - w->y;
 | 
						|
  u->z = v->z - w->z;
 | 
						|
}
 | 
						|
 | 
						|
// Scales v by the scalar c, i.e. v = c * v.
 | 
						|
static inline void vec3ScalarMul(struct Vec3 *v, float c) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  v->x *= c;
 | 
						|
  v->y *= c;
 | 
						|
  v->z *= c;
 | 
						|
}
 | 
						|
 | 
						|
// Returns the dot product of v and w.
 | 
						|
static inline float vec3Dot(const struct Vec3 *v, const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  return v->x * w->x + v->y * w->y + v->z * w->z;
 | 
						|
}
 | 
						|
 | 
						|
// Returns the square of the L2-norm of the given vector.
 | 
						|
static inline float vec3NormSquared(const struct Vec3 *v) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  return vec3Dot(v, v);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the L2-norm of the given vector.
 | 
						|
static inline float vec3Norm(const struct Vec3 *v) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  return sqrtf(vec3NormSquared(v));
 | 
						|
}
 | 
						|
 | 
						|
// Normalizes the provided vector to unit norm. If the provided vector has a
 | 
						|
// norm of zero, the vector will be unchanged.
 | 
						|
static inline void vec3Normalize(struct Vec3 *v) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  float norm = vec3Norm(v);
 | 
						|
  CHRE_ASSERT(norm > 0);
 | 
						|
  // Only normalize if norm is non-zero.
 | 
						|
  if (norm > 0) {
 | 
						|
    float invNorm = 1.0f / norm;
 | 
						|
    v->x *= invNorm;
 | 
						|
    v->y *= invNorm;
 | 
						|
    v->z *= invNorm;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Updates u as the cross product of v and w.
 | 
						|
static inline void vec3Cross(struct Vec3 *u, const struct Vec3 *v,
 | 
						|
                             const struct Vec3 *w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(u);
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  CHRE_ASSERT_NOT_NULL(w);
 | 
						|
  u->x = v->y * w->z - v->z * w->y;
 | 
						|
  u->y = v->z * w->x - v->x * w->z;
 | 
						|
  u->z = v->x * w->y - v->y * w->x;
 | 
						|
}
 | 
						|
 | 
						|
// Finds a vector orthogonal to the vector [inX, inY, inZ] and returns
 | 
						|
// this in the components [outX, outY, outZ].  The vector is chosen such
 | 
						|
// that the smallest component of [inX, inY, inZ] is set to zero in the
 | 
						|
// output vector. For example, for the in vector [0.01, 4.0, 5.0], this
 | 
						|
// function will return [0, 5.0, -4.0].
 | 
						|
void findOrthogonalVector(float inX, float inY, float inZ, float *outX,
 | 
						|
                          float *outY, float *outZ);
 | 
						|
 | 
						|
 | 
						|
// 4-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
 | 
						|
// Initialize the Vec4 structure with the provided component values.
 | 
						|
static inline void initVec4(struct Vec4 *v, float x, float y, float z,
 | 
						|
                            float w) {
 | 
						|
  CHRE_ASSERT_NOT_NULL(v);
 | 
						|
  v->x = x;
 | 
						|
  v->y = y;
 | 
						|
  v->z = z;
 | 
						|
  v->w = w;
 | 
						|
}
 | 
						|
 | 
						|
// N-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
 | 
						|
// Dimension specified by the last argument in all functions below.
 | 
						|
 | 
						|
// Adds two vectors and returns the sum in the provided vector, i.e.
 | 
						|
// u = v + w.
 | 
						|
void vecAdd(float *u, const float *v, const float *w, size_t dim);
 | 
						|
 | 
						|
// Adds two vectors and returns the sum in the first vector, i.e.
 | 
						|
// v = v + w.
 | 
						|
void vecAddInPlace(float *v, const float *w, size_t dim);
 | 
						|
 | 
						|
// Subtracts two vectors and returns in the provided vector, i.e.
 | 
						|
// u = v - w.
 | 
						|
void vecSub(float *u, const float *v, const float *w, size_t dim);
 | 
						|
 | 
						|
// Scales vector by a scalar and returns in the provided vector, i.e.
 | 
						|
// u = c * v.
 | 
						|
void vecScalarMul(float *u, const float *v, float c, size_t dim);
 | 
						|
 | 
						|
// Scales vector by a scalar and returns in the same vector, i.e.
 | 
						|
// v = c * v.
 | 
						|
void vecScalarMulInPlace(float *v, float c, size_t dim);
 | 
						|
 | 
						|
// Returns the L2-norm of the given vector.
 | 
						|
float vecNorm(const float *v, size_t dim);
 | 
						|
 | 
						|
// Returns the square of the L2-norm of the given vector.
 | 
						|
float vecNormSquared(const float *v, size_t dim);
 | 
						|
 | 
						|
// Returns the dot product of v and w.
 | 
						|
float vecDot(const float *v, const float *w, size_t dim);
 | 
						|
 | 
						|
// Returns the maximum absolute value in vector.
 | 
						|
float vecMaxAbsoluteValue(const float *v, size_t dim);
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif  // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
 |