251 lines
6.9 KiB
Java
251 lines
6.9 KiB
Java
/*
|
|
* Copyright (C) 2011 The Guava Authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package com.google.common.math;
|
|
|
|
import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
|
|
import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
|
|
import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
|
|
import static com.google.common.math.MathBenchmarking.randomBigInteger;
|
|
import static com.google.common.math.MathBenchmarking.randomNonNegativeBigInteger;
|
|
|
|
import com.google.caliper.BeforeExperiment;
|
|
import com.google.caliper.Benchmark;
|
|
import com.google.caliper.Param;
|
|
|
|
/**
|
|
* Benchmarks against the Apache Commons Math utilities.
|
|
*
|
|
* <p>Note: the Apache benchmarks are not open sourced to avoid the extra dependency.
|
|
*
|
|
* @author Louis Wasserman
|
|
*/
|
|
public class ApacheBenchmark {
|
|
private enum Impl {
|
|
GUAVA {
|
|
@Override
|
|
public double factorialDouble(int n) {
|
|
return DoubleMath.factorial(n);
|
|
}
|
|
|
|
@Override
|
|
public int gcdInt(int a, int b) {
|
|
return IntMath.gcd(a, b);
|
|
}
|
|
|
|
@Override
|
|
public long gcdLong(long a, long b) {
|
|
return LongMath.gcd(a, b);
|
|
}
|
|
|
|
@Override
|
|
public long binomialCoefficient(int n, int k) {
|
|
return LongMath.binomial(n, k);
|
|
}
|
|
|
|
@Override
|
|
public boolean noAddOverflow(int a, int b) {
|
|
try {
|
|
int unused = IntMath.checkedAdd(a, b);
|
|
return true;
|
|
} catch (ArithmeticException e) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean noAddOverflow(long a, long b) {
|
|
try {
|
|
long unused = LongMath.checkedAdd(a, b);
|
|
return true;
|
|
} catch (ArithmeticException e) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean noMulOverflow(int a, int b) {
|
|
try {
|
|
int unused = IntMath.checkedMultiply(a, b);
|
|
return true;
|
|
} catch (ArithmeticException e) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
@Override
|
|
public boolean noMulOverflow(long a, long b) {
|
|
try {
|
|
long unused = LongMath.checkedMultiply(a, b);
|
|
return true;
|
|
} catch (ArithmeticException e) {
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
public abstract double factorialDouble(int n);
|
|
|
|
public abstract long binomialCoefficient(int n, int k);
|
|
|
|
public abstract int gcdInt(int a, int b);
|
|
|
|
public abstract long gcdLong(long a, long b);
|
|
|
|
public abstract boolean noAddOverflow(int a, int b);
|
|
|
|
public abstract boolean noAddOverflow(long a, long b);
|
|
|
|
public abstract boolean noMulOverflow(int a, int b);
|
|
|
|
public abstract boolean noMulOverflow(long a, long b);
|
|
}
|
|
|
|
private final int[] factorials = new int[ARRAY_SIZE];
|
|
private final int[][] binomials = new int[ARRAY_SIZE][2];
|
|
private final int[][] nonnegInt = new int[ARRAY_SIZE][2];
|
|
private final long[][] nonnegLong = new long[ARRAY_SIZE][2];
|
|
private final int[][] intsToAdd = new int[ARRAY_SIZE][2];
|
|
private final int[][] intsToMul = new int[ARRAY_SIZE][2];
|
|
private final long[][] longsToAdd = new long[ARRAY_SIZE][2];
|
|
private final long[][] longsToMul = new long[ARRAY_SIZE][2];
|
|
|
|
@Param({"APACHE", "GUAVA"})
|
|
Impl impl;
|
|
|
|
@BeforeExperiment
|
|
void setUp() {
|
|
for (int i = 0; i < ARRAY_SIZE; i++) {
|
|
factorials[i] = RANDOM_SOURCE.nextInt(200);
|
|
for (int j = 0; j < 2; j++) {
|
|
nonnegInt[i][j] = randomNonNegativeBigInteger(Integer.SIZE - 2).intValue();
|
|
nonnegLong[i][j] = randomNonNegativeBigInteger(Long.SIZE - 2).longValue();
|
|
}
|
|
do {
|
|
for (int j = 0; j < 2; j++) {
|
|
intsToAdd[i][j] = randomBigInteger(Integer.SIZE - 2).intValue();
|
|
}
|
|
} while (!Impl.GUAVA.noAddOverflow(intsToAdd[i][0], intsToAdd[i][1]));
|
|
do {
|
|
for (int j = 0; j < 2; j++) {
|
|
longsToAdd[i][j] = randomBigInteger(Long.SIZE - 2).longValue();
|
|
}
|
|
} while (!Impl.GUAVA.noAddOverflow(longsToAdd[i][0], longsToAdd[i][1]));
|
|
do {
|
|
for (int j = 0; j < 2; j++) {
|
|
intsToMul[i][j] = randomBigInteger(Integer.SIZE - 2).intValue();
|
|
}
|
|
} while (!Impl.GUAVA.noMulOverflow(intsToMul[i][0], intsToMul[i][1]));
|
|
do {
|
|
for (int j = 0; j < 2; j++) {
|
|
longsToMul[i][j] = randomBigInteger(Long.SIZE - 2).longValue();
|
|
}
|
|
} while (!Impl.GUAVA.noMulOverflow(longsToMul[i][0], longsToMul[i][1]));
|
|
|
|
int k = binomials[i][1] = RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials.length);
|
|
binomials[i][0] = RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials[k] - k) + k;
|
|
}
|
|
}
|
|
|
|
@Benchmark
|
|
long factorialDouble(int reps) {
|
|
long tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
tmp += Double.doubleToRawLongBits(impl.factorialDouble(factorials[j]));
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
int intGCD(int reps) {
|
|
int tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
tmp += impl.gcdInt(nonnegInt[j][0], nonnegInt[j][1]);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
long longGCD(int reps) {
|
|
long tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
tmp += impl.gcdLong(nonnegLong[j][0], nonnegLong[j][1]);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
long binomialCoefficient(int reps) {
|
|
long tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
tmp += impl.binomialCoefficient(binomials[j][0], binomials[j][1]);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
int intAddOverflow(int reps) {
|
|
int tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
if (impl.noAddOverflow(intsToAdd[j][0], intsToAdd[j][1])) {
|
|
tmp++;
|
|
}
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
int longAddOverflow(int reps) {
|
|
int tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
if (impl.noAddOverflow(longsToAdd[j][0], longsToAdd[j][1])) {
|
|
tmp++;
|
|
}
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
int intMulOverflow(int reps) {
|
|
int tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
if (impl.noMulOverflow(intsToMul[j][0], intsToMul[j][1])) {
|
|
tmp++;
|
|
}
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
@Benchmark
|
|
int longMulOverflow(int reps) {
|
|
int tmp = 0;
|
|
for (int i = 0; i < reps; i++) {
|
|
int j = i & ARRAY_MASK;
|
|
if (impl.noMulOverflow(longsToMul[j][0], longsToMul[j][1])) {
|
|
tmp++;
|
|
}
|
|
}
|
|
return tmp;
|
|
}
|
|
}
|