187 lines
4.8 KiB
C
187 lines
4.8 KiB
C
/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*/
|
|
|
|
/* Implementation of RSA signature verification which uses a pre-processed
|
|
* key for computation. The code extends Android's RSA verification code to
|
|
* support multiple RSA key lengths and hash digest algorithms.
|
|
*/
|
|
|
|
#include "sysincludes.h"
|
|
|
|
#include "cryptolib.h"
|
|
#include "vboot_api.h"
|
|
#include "utility.h"
|
|
|
|
/* a[] -= mod */
|
|
static void subM(const RSAPublicKey *key, uint32_t *a) {
|
|
int64_t A = 0;
|
|
uint32_t i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
A += (uint64_t)a[i] - key->n[i];
|
|
a[i] = (uint32_t)A;
|
|
A >>= 32;
|
|
}
|
|
}
|
|
|
|
/* return a[] >= mod */
|
|
static int geM(const RSAPublicKey *key, uint32_t *a) {
|
|
uint32_t i;
|
|
for (i = key->len; i;) {
|
|
--i;
|
|
if (a[i] < key->n[i]) return 0;
|
|
if (a[i] > key->n[i]) return 1;
|
|
}
|
|
return 1; /* equal */
|
|
}
|
|
|
|
/* montgomery c[] += a * b[] / R % mod */
|
|
static void montMulAdd(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
const uint32_t a,
|
|
const uint32_t* b) {
|
|
uint64_t A = (uint64_t)a * b[0] + c[0];
|
|
uint32_t d0 = (uint32_t)A * key->n0inv;
|
|
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
|
|
uint32_t i;
|
|
|
|
for (i = 1; i < key->len; ++i) {
|
|
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
|
|
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
|
|
c[i - 1] = (uint32_t)B;
|
|
}
|
|
|
|
A = (A >> 32) + (B >> 32);
|
|
|
|
c[i - 1] = (uint32_t)A;
|
|
|
|
if (A >> 32) {
|
|
subM(key, c);
|
|
}
|
|
}
|
|
|
|
/* montgomery c[] = a[] * b[] / R % mod */
|
|
static void montMul(const RSAPublicKey *key,
|
|
uint32_t* c,
|
|
uint32_t* a,
|
|
uint32_t* b) {
|
|
uint32_t i;
|
|
for (i = 0; i < key->len; ++i) {
|
|
c[i] = 0;
|
|
}
|
|
for (i = 0; i < key->len; ++i) {
|
|
montMulAdd(key, c, a[i], b);
|
|
}
|
|
}
|
|
|
|
/* In-place public exponentiation. (65537}
|
|
* Input and output big-endian byte array in inout.
|
|
*/
|
|
static void modpowF4(const RSAPublicKey *key,
|
|
uint8_t* inout) {
|
|
uint32_t* a = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
uint32_t* aaR = (uint32_t*) VbExMalloc(key->len * sizeof(uint32_t));
|
|
|
|
uint32_t* aaa = aaR; /* Re-use location. */
|
|
int i;
|
|
|
|
/* Convert from big endian byte array to little endian word array. */
|
|
for (i = 0; i < (int)key->len; ++i) {
|
|
uint32_t tmp =
|
|
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
|
|
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
|
|
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
|
|
(inout[((key->len - 1 - i) * 4) + 3] << 0);
|
|
a[i] = tmp;
|
|
}
|
|
|
|
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
|
|
for (i = 0; i < 16; i+=2) {
|
|
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
|
|
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
|
|
}
|
|
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
|
|
|
|
|
|
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
|
|
if (geM(key, aaa)) {
|
|
subM(key, aaa);
|
|
}
|
|
|
|
/* Convert to bigendian byte array */
|
|
for (i = (int)key->len - 1; i >= 0; --i) {
|
|
uint32_t tmp = aaa[i];
|
|
*inout++ = (uint8_t)(tmp >> 24);
|
|
*inout++ = (uint8_t)(tmp >> 16);
|
|
*inout++ = (uint8_t)(tmp >> 8);
|
|
*inout++ = (uint8_t)(tmp >> 0);
|
|
}
|
|
|
|
VbExFree(a);
|
|
VbExFree(aR);
|
|
VbExFree(aaR);
|
|
}
|
|
|
|
/* Verify a RSA PKCS1.5 signature against an expected hash.
|
|
* Returns 0 on failure, 1 on success.
|
|
*/
|
|
int RSAVerify(const RSAPublicKey *key,
|
|
const uint8_t *sig,
|
|
const uint32_t sig_len,
|
|
const uint8_t sig_type,
|
|
const uint8_t *hash) {
|
|
uint8_t* buf;
|
|
const uint8_t* padding;
|
|
int padding_len;
|
|
int success = 1;
|
|
|
|
if (!key || !sig || !hash)
|
|
return 0;
|
|
|
|
if (sig_len != (key->len * sizeof(uint32_t))) {
|
|
VBDEBUG(("Signature is of incorrect length!\n"));
|
|
return 0;
|
|
}
|
|
|
|
if (sig_type >= kNumAlgorithms) {
|
|
VBDEBUG(("Invalid signature type!\n"));
|
|
return 0;
|
|
}
|
|
|
|
if (key->len != siglen_map[sig_type] / sizeof(uint32_t)) {
|
|
VBDEBUG(("Wrong key passed in!\n"));
|
|
return 0;
|
|
}
|
|
|
|
buf = (uint8_t*) VbExMalloc(sig_len);
|
|
if (!buf)
|
|
return 0;
|
|
Memcpy(buf, sig, sig_len);
|
|
|
|
modpowF4(key, buf);
|
|
|
|
/* Determine padding to use depending on the signature type. */
|
|
padding = padding_map[sig_type];
|
|
padding_len = padding_size_map[sig_type];
|
|
|
|
/* Even though there are probably no timing issues here, we use
|
|
* SafeMemcmp() just to be on the safe side. */
|
|
|
|
/* Check pkcs1.5 padding bytes. */
|
|
if (SafeMemcmp(buf, padding, padding_len)) {
|
|
VBDEBUG(("In RSAVerify(): Padding check failed!\n"));
|
|
success = 0;
|
|
}
|
|
|
|
/* Check hash. */
|
|
if (SafeMemcmp(buf + padding_len, hash, sig_len - padding_len)) {
|
|
VBDEBUG(("In RSAVerify(): Hash check failed!\n"));
|
|
success = 0;
|
|
}
|
|
VbExFree(buf);
|
|
|
|
return success;
|
|
}
|