| 
				
					
						 | 
			||
|---|---|---|
| .. | ||
| bench | ||
| cmake | ||
| deps/clog | ||
| include | ||
| scripts | ||
| src | ||
| test | ||
| tools | ||
| .travis.yml | ||
| Android.bp | ||
| CMakeLists.txt | ||
| LICENSE | ||
| METADATA | ||
| MODULE_LICENSE_BSD | ||
| OWNERS | ||
| README.md | ||
| appveyor.yml | ||
| configure.py | ||
| confu.yaml | ||
		
			
				
				README.md
			
		
		
			
			
				
				
			
		
	
	CPU INFOrmation library
cpuinfo is a library to detect essential for performance optimization information about host CPU.
Features
- Cross-platform availability:
- Linux, Windows, macOS, Android, and iOS operating systems
 - x86, x86-64, ARM, and ARM64 architectures
 
 - Modern C/C++ interface
- Thread-safe
 - No memory allocation after initialization
 - No exceptions thrown
 
 - Detection of supported instruction sets, up to AVX512 (x86) and ARMv8.3 extensions
 - Detection of SoC and core information:
- Processor (SoC) name
 - Vendor and microarchitecture for each CPU core
 - ID (MIDR on ARM, CPUID leaf 1 EAX value on x86) for each CPU core
 
 - Detection of cache information:
- Cache type (instruction/data/unified), size and line size
 - Cache associativity
 - Cores and logical processors (hyper-threads) sharing the cache
 
 - Detection of topology information (relative between logical processors, cores, and processor packages)
 - Well-tested production-quality code:
- 60+ mock tests based on data from real devices
 - Includes work-arounds for common bugs in hardware and OS kernels
 - Supports systems with heterogenous cores, such as big.LITTLE and Max.Med.Min
 
 - Permissive open-source license (Simplified BSD)
 
Examples
Log processor name:
cpuinfo_initialize();
printf("Running on %s CPU\n", cpuinfo_get_package(0)->name);
Detect if target is a 32-bit or 64-bit ARM system:
#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64
    /* 32-bit ARM-specific code here */
#endif
Check if the host CPU support ARM NEON
cpuinfo_initialize();
if (cpuinfo_has_arm_neon()) {
    neon_implementation(arguments);
}
Check if the host CPU supports x86 AVX
cpuinfo_initialize();
if (cpuinfo_has_x86_avx()) {
    avx_implementation(arguments);
}
Check if the thread runs on a Cortex-A53 core
cpuinfo_initialize();
switch (cpuinfo_get_current_core()->uarch) {
    case cpuinfo_uarch_cortex_a53:
        cortex_a53_implementation(arguments);
        break;
    default:
        generic_implementation(arguments);
        break;
}
Get the size of level 1 data cache on the fastest core in the processor (e.g. big core in big.LITTLE ARM systems):
cpuinfo_initialize();
const size_t l1_size = cpuinfo_get_processor(0)->cache.l1d->size;
Pin thread to cores sharing L2 cache with the current core (Linux or Android)
cpuinfo_initialize();
cpu_set_t cpu_set;
CPU_ZERO(&cpu_set);
const struct cpuinfo_cache* current_l2 = cpuinfo_get_current_processor()->cache.l2;
for (uint32_t i = 0; i < current_l2->processor_count; i++) {
    CPU_SET(cpuinfo_get_processor(current_l2->processor_start + i)->linux_id, &cpu_set);
}
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_set);
Exposed information
- Processor (SoC) name
 - Microarchitecture
 - Usable instruction sets
 - CPU frequency
 - Cache
- Size
 - Associativity
 - Line size
 - Number of partitions
 - Flags (unified, inclusive, complex hash function)
 - Topology (logical processors that share this cache level)
 
 - TLB
- Number of entries
 - Associativity
 - Covered page types (instruction, data)
 - Covered page sizes
 
 - Topology information
- Logical processors
 - Cores
 - Packages (sockets)
 
 
Supported environments:
- Android
- x86 ABI
 - x86_64 ABI
 - armeabi ABI
 - armeabiv7-a ABI
 - arm64-v8a ABI
 mips ABImips64 ABI
 - Linux
- x86
 - x86-64
 - 32-bit ARM (ARMv5T and later)
 - ARM64
 - PowerPC64
 
 - iOS
- x86 (iPhone simulator)
 - x86-64 (iPhone simulator)
 - ARMv7
 - ARM64
 
 - OS X
- x86
 - x86-64
 
 - Windows
- x86
 - x86-64
 
 
Methods
- Processor (SoC) name detection
- Using CPUID leaves 0x80000002–0x80000004 on x86/x86-64
 - Using 
/proc/cpuinfoon ARM - Using 
ro.chipname,ro.board.platform,ro.product.board,ro.mediatek.platform,ro.archproperties (Android) - Using kernel log (
dmesg) on ARM Linux 
 - Vendor and microarchitecture detection
- Intel-designed x86/x86-64 cores (up to Sunny Cove, Goldmont Plus, and Knights Mill)
 - AMD-designed x86/x86-64 cores (up to Puma/Jaguar and Zen 2)
 - VIA-designed x86/x86-64 cores
 - Other x86 cores (DM&P, RDC, Transmeta, Cyrix, Rise)
 - ARM-designed ARM cores (up to Cortex-A55, Cortex-A77, and Neoverse E1/N1)
 - Qualcomm-designed ARM cores (Scorpion, Krait, and Kryo)
 - Nvidia-designed ARM cores (Denver and Carmel)
 - Samsung-designed ARM cores (Exynos)
 - Intel-designed ARM cores (XScale up to 3rd-gen)
 - Apple-designed ARM cores (up to Lightning and Thunder)
 - Cavium-designed ARM cores (ThunderX)
 - AppliedMicro-designed ARM cores (X-Gene)
 
 - Instruction set detection
- Using CPUID (x86/x86-64)
 - Using 
/proc/cpuinfoon 32-bit ARM EABI (Linux) - Using microarchitecture heuristics on (32-bit ARM)
 - Using 
FPSIDandWCIDregisters (32-bit ARM) - Using 
getauxval(Linux/ARM) - Using 
/proc/self/auxv(Android/ARM) - Using instruction probing on ARM (Linux)
 - Using CPUID registers on ARM64 (Linux)
 
 - Cache detection
- Using CPUID leaf 0x00000002 (x86/x86-64)
 - Using CPUID leaf 0x00000004 (non-AMD x86/x86-64)
 - Using CPUID leaves 0x80000005-0x80000006 (AMD x86/x86-64)
 - Using CPUID leaf 0x8000001D (AMD x86/x86-64)
 - Using 
/proc/cpuinfo(Linux/pre-ARMv7) - Using microarchitecture heuristics (ARM)
 - Using chipset name (ARM)
 - Using 
sysctlbyname(Mach) - Using sysfs 
typologydirectories (ARM/Linux) - Using sysfs 
cachedirectories (Linux) 
 - TLB detection
- Using CPUID leaf 0x00000002 (x86/x86-64)
 - Using CPUID leaves 0x80000005-0x80000006 and 0x80000019 (AMD x86/x86-64)
 - Using microarchitecture heuristics (ARM)
 
 - Topology detection
- Using CPUID leaf 0x00000001 on x86/x86-64 (legacy APIC ID)
 - Using CPUID leaf 0x0000000B on x86/x86-64 (Intel APIC ID)
 - Using CPUID leaf 0x8000001E on x86/x86-64 (AMD APIC ID)
 - Using 
/proc/cpuinfo(Linux) - Using 
host_info(Mach) - Using 
GetLogicalProcessorInformationEx(Windows) - Using sysfs (Linux)
 - Using chipset name (ARM/Linux)