486 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			486 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
/* deflate.c - deflate/inflate code for gzip and friends
 | 
						|
 *
 | 
						|
 * Copyright 2014 Rob Landley <rob@landley.net>
 | 
						|
 *
 | 
						|
 * See RFCs 1950 (zlib), 1951 (deflate), and 1952 (gzip)
 | 
						|
 * LSB 4.1 has gzip, gunzip, and zcat
 | 
						|
 *
 | 
						|
 * TODO: zip -d DIR -x LIST -list -quiet -no overwrite -overwrite -p to stdout
 | 
						|
 */
 | 
						|
 | 
						|
#include "toys.h"
 | 
						|
 | 
						|
struct deflate {
 | 
						|
  // Huffman codes: base offset and extra bits tables (length and distance)
 | 
						|
  char lenbits[29], distbits[30];
 | 
						|
  unsigned short lenbase[29], distbase[30];
 | 
						|
  void *fixdisthuff, *fixlithuff;
 | 
						|
 | 
						|
  // CRC
 | 
						|
  void (*crcfunc)(struct deflate *dd, char *data, int len);
 | 
						|
  unsigned crctable[256], crc;
 | 
						|
 | 
						|
 | 
						|
  // Tables only used for deflation
 | 
						|
  unsigned short *hashhead, *hashchain;
 | 
						|
 | 
						|
  // Compressed data buffer (extra space malloced at end)
 | 
						|
  unsigned pos, len;
 | 
						|
  int infd, outfd;
 | 
						|
  char data[];
 | 
						|
};
 | 
						|
 | 
						|
// little endian bit buffer
 | 
						|
struct bitbuf {
 | 
						|
  int fd, bitpos, len, max;
 | 
						|
  char buf[];
 | 
						|
};
 | 
						|
 | 
						|
// malloc a struct bitbuf
 | 
						|
static struct bitbuf *bitbuf_init(int fd, int size)
 | 
						|
{
 | 
						|
  struct bitbuf *bb = xzalloc(sizeof(struct bitbuf)+size);
 | 
						|
 | 
						|
  bb->max = size;
 | 
						|
  bb->fd = fd;
 | 
						|
 | 
						|
  return bb;
 | 
						|
}
 | 
						|
 | 
						|
// Advance bitpos without the overhead of recording bits
 | 
						|
// Loads more data when input buffer empty
 | 
						|
static void bitbuf_skip(struct bitbuf *bb, int bits)
 | 
						|
{
 | 
						|
  int pos = bb->bitpos + bits, len = bb->len << 3;
 | 
						|
 | 
						|
  while (pos >= len) {
 | 
						|
    pos -= len;
 | 
						|
    len = (bb->len = read(bb->fd, bb->buf, bb->max)) << 3;
 | 
						|
    if (bb->len < 1) perror_exit("inflate EOF");
 | 
						|
  }
 | 
						|
  bb->bitpos = pos;
 | 
						|
}
 | 
						|
 | 
						|
// Optimized single bit inlined version
 | 
						|
static inline int bitbuf_bit(struct bitbuf *bb)
 | 
						|
{
 | 
						|
  int bufpos = bb->bitpos>>3;
 | 
						|
 | 
						|
  if (bufpos == bb->len) {
 | 
						|
    bitbuf_skip(bb, 0);
 | 
						|
    bufpos = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return (bb->buf[bufpos]>>(bb->bitpos++&7))&1;
 | 
						|
}
 | 
						|
 | 
						|
// Fetch the next X bits from the bitbuf, little endian
 | 
						|
static unsigned bitbuf_get(struct bitbuf *bb, int bits)
 | 
						|
{
 | 
						|
  int result = 0, offset = 0;
 | 
						|
 | 
						|
  while (bits) {
 | 
						|
    int click = bb->bitpos >> 3, blow, blen;
 | 
						|
 | 
						|
    // Load more data if buffer empty
 | 
						|
    if (click == bb->len) bitbuf_skip(bb, click = 0);
 | 
						|
 | 
						|
    // grab bits from next byte
 | 
						|
    blow = bb->bitpos & 7;
 | 
						|
    blen = 8-blow;
 | 
						|
    if (blen > bits) blen = bits;
 | 
						|
    result |= ((bb->buf[click] >> blow) & ((1<<blen)-1)) << offset;
 | 
						|
    offset += blen;
 | 
						|
    bits -= blen;
 | 
						|
    bb->bitpos += blen;
 | 
						|
  }
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
static void bitbuf_flush(struct bitbuf *bb)
 | 
						|
{
 | 
						|
  if (!bb->bitpos) return;
 | 
						|
 | 
						|
  xwrite(bb->fd, bb->buf, (bb->bitpos+7)>>3);
 | 
						|
  memset(bb->buf, 0, bb->max);
 | 
						|
  bb->bitpos = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void bitbuf_put(struct bitbuf *bb, int data, int len)
 | 
						|
{
 | 
						|
  while (len) {
 | 
						|
    int click = bb->bitpos >> 3, blow, blen;
 | 
						|
 | 
						|
    // Flush buffer if necessary
 | 
						|
    if (click == bb->max) {
 | 
						|
      bitbuf_flush(bb);
 | 
						|
      click = 0;
 | 
						|
    }
 | 
						|
    blow = bb->bitpos & 7;
 | 
						|
    blen = 8-blow;
 | 
						|
    if (blen > len) blen = len;
 | 
						|
    bb->buf[click] |= data << blow;
 | 
						|
    bb->bitpos += blen;
 | 
						|
    data >>= blen;
 | 
						|
    len -= blen;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void output_byte(struct deflate *dd, char sym)
 | 
						|
{
 | 
						|
  int pos = dd->pos++ & 32767;
 | 
						|
 | 
						|
  dd->data[pos] = sym;
 | 
						|
 | 
						|
  if (pos == 32767) {
 | 
						|
    xwrite(dd->outfd, dd->data, 32768);
 | 
						|
    if (dd->crcfunc) dd->crcfunc(dd, dd->data, 32768);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Huffman coding uses bits to traverse a binary tree to a leaf node,
 | 
						|
// By placing frequently occurring symbols at shorter paths, frequently
 | 
						|
// used symbols may be represented in fewer bits than uncommon symbols.
 | 
						|
// (length[0] isn't used but code's clearer if it's there.)
 | 
						|
 | 
						|
struct huff {
 | 
						|
  unsigned short length[16];  // How many symbols have this bit length?
 | 
						|
  unsigned short symbol[288]; // sorted by bit length, then ascending order
 | 
						|
};
 | 
						|
 | 
						|
// Create simple huffman tree from array of bit lengths.
 | 
						|
 | 
						|
// The symbols in the huffman trees are sorted (first by bit length
 | 
						|
// of the code to reach them, then by symbol number). This means that given
 | 
						|
// the bit length of each symbol, we can construct a unique tree.
 | 
						|
static void len2huff(struct huff *huff, char bitlen[], int len)
 | 
						|
{
 | 
						|
  int offset[16];
 | 
						|
  int i;
 | 
						|
 | 
						|
  // Count number of codes at each bit length
 | 
						|
  memset(huff, 0, sizeof(struct huff));
 | 
						|
  for (i = 0; i<len; i++) huff->length[bitlen[i]]++;
 | 
						|
 | 
						|
  // Sort symbols by bit length, then symbol. Get list of starting positions
 | 
						|
  // for each group, then write each symbol to next position within its group.
 | 
						|
  *huff->length = *offset = 0;
 | 
						|
  for (i = 1; i<16; i++) offset[i] = offset[i-1] + huff->length[i-1];
 | 
						|
  for (i = 0; i<len; i++) if (bitlen[i]) huff->symbol[offset[bitlen[i]]++] = i;
 | 
						|
}
 | 
						|
 | 
						|
// Fetch and decode next huffman coded symbol from bitbuf.
 | 
						|
// This takes advantage of the sorting to navigate the tree as an array:
 | 
						|
// each time we fetch a bit we have all the codes at that bit level in
 | 
						|
// order with no gaps.
 | 
						|
static unsigned huff_and_puff(struct bitbuf *bb, struct huff *huff)
 | 
						|
{
 | 
						|
  unsigned short *length = huff->length;
 | 
						|
  int start = 0, offset = 0;
 | 
						|
 | 
						|
  // Traverse through the bit lengths until our code is in this range
 | 
						|
  for (;;) {
 | 
						|
    offset = (offset << 1) | bitbuf_bit(bb);
 | 
						|
    start += *++length;
 | 
						|
    if ((offset -= *length) < 0) break;
 | 
						|
    if ((length - huff->length) & 16) error_exit("bad symbol");
 | 
						|
  }
 | 
						|
 | 
						|
  return huff->symbol[start + offset];
 | 
						|
}
 | 
						|
 | 
						|
// Decompress deflated data from bitbuf to dd->outfd.
 | 
						|
static void inflate(struct deflate *dd, struct bitbuf *bb)
 | 
						|
{
 | 
						|
  dd->crc = ~0;
 | 
						|
  // repeat until spanked
 | 
						|
  for (;;) {
 | 
						|
    int final, type;
 | 
						|
 | 
						|
    final = bitbuf_get(bb, 1);
 | 
						|
    type = bitbuf_get(bb, 2);
 | 
						|
 | 
						|
    if (type == 3) error_exit("bad type");
 | 
						|
 | 
						|
    // Uncompressed block?
 | 
						|
    if (!type) {
 | 
						|
      int len, nlen;
 | 
						|
 | 
						|
      // Align to byte, read length
 | 
						|
      bitbuf_skip(bb, (8-bb->bitpos)&7);
 | 
						|
      len = bitbuf_get(bb, 16);
 | 
						|
      nlen = bitbuf_get(bb, 16);
 | 
						|
      if (len != (0xffff & ~nlen)) error_exit("bad len");
 | 
						|
 | 
						|
      // Dump literal output data
 | 
						|
      while (len) {
 | 
						|
        int pos = bb->bitpos >> 3, bblen = bb->len - pos;
 | 
						|
        char *p = bb->buf+pos;
 | 
						|
 | 
						|
        // dump bytes until done or end of current bitbuf contents
 | 
						|
        if (bblen > len) bblen = len;
 | 
						|
        pos = bblen;
 | 
						|
        while (pos--) output_byte(dd, *(p++));
 | 
						|
        bitbuf_skip(bb, bblen << 3);
 | 
						|
        len -= bblen;
 | 
						|
      }
 | 
						|
 | 
						|
    // Compressed block
 | 
						|
    } else {
 | 
						|
      struct huff *disthuff, *lithuff;
 | 
						|
 | 
						|
      // Dynamic huffman codes?
 | 
						|
      if (type == 2) {
 | 
						|
        struct huff *h2 = ((struct huff *)libbuf)+1;
 | 
						|
        int i, litlen, distlen, hufflen;
 | 
						|
        char *hufflen_order = "\x10\x11\x12\0\x08\x07\x09\x06\x0a\x05\x0b"
 | 
						|
                              "\x04\x0c\x03\x0d\x02\x0e\x01\x0f", *bits;
 | 
						|
 | 
						|
        // The huffman trees are stored as a series of bit lengths
 | 
						|
        litlen = bitbuf_get(bb, 5)+257;  // max 288
 | 
						|
        distlen = bitbuf_get(bb, 5)+1;   // max 32
 | 
						|
        hufflen = bitbuf_get(bb, 4)+4;   // max 19
 | 
						|
 | 
						|
        // The literal and distance codes are themselves compressed, in
 | 
						|
        // a complicated way: an array of bit lengths (hufflen many
 | 
						|
        // entries, each 3 bits) is used to fill out an array of 19 entries
 | 
						|
        // in a magic order, leaving the rest 0. Then make a tree out of it:
 | 
						|
        memset(bits = libbuf+1, 0, 19);
 | 
						|
        for (i=0; i<hufflen; i++) bits[hufflen_order[i]] = bitbuf_get(bb, 3);
 | 
						|
        len2huff(h2, bits, 19);
 | 
						|
 | 
						|
        // Use that tree to read in the literal and distance bit lengths
 | 
						|
        for (i = 0; i < litlen + distlen;) {
 | 
						|
          int sym = huff_and_puff(bb, h2);
 | 
						|
 | 
						|
          // 0-15 are literals, 16 = repeat previous code 3-6 times,
 | 
						|
          // 17 = 3-10 zeroes (3 bit), 18 = 11-138 zeroes (7 bit)
 | 
						|
          if (sym < 16) bits[i++] = sym;
 | 
						|
          else {
 | 
						|
            int len = sym & 2;
 | 
						|
 | 
						|
            len = bitbuf_get(bb, sym-14+len+(len>>1)) + 3 + (len<<2);
 | 
						|
            memset(bits+i, bits[i-1] * !(sym&3), len);
 | 
						|
            i += len;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (i > litlen+distlen) error_exit("bad tree");
 | 
						|
 | 
						|
        len2huff(lithuff = h2, bits, litlen);
 | 
						|
        len2huff(disthuff = ((struct huff *)libbuf)+2, bits+litlen, distlen);
 | 
						|
 | 
						|
      // Static huffman codes
 | 
						|
      } else {
 | 
						|
        lithuff = dd->fixlithuff;
 | 
						|
        disthuff = dd->fixdisthuff;
 | 
						|
      }
 | 
						|
 | 
						|
      // Use huffman tables to decode block of compressed symbols
 | 
						|
      for (;;) {
 | 
						|
        int sym = huff_and_puff(bb, lithuff);
 | 
						|
 | 
						|
        // Literal?
 | 
						|
        if (sym < 256) output_byte(dd, sym);
 | 
						|
 | 
						|
        // Copy range?
 | 
						|
        else if (sym > 256) {
 | 
						|
          int len, dist;
 | 
						|
 | 
						|
          sym -= 257;
 | 
						|
          len = dd->lenbase[sym] + bitbuf_get(bb, dd->lenbits[sym]);
 | 
						|
          sym = huff_and_puff(bb, disthuff);
 | 
						|
          dist = dd->distbase[sym] + bitbuf_get(bb, dd->distbits[sym]);
 | 
						|
          sym = dd->pos & 32767;
 | 
						|
 | 
						|
          while (len--) output_byte(dd, dd->data[(dd->pos-dist) & 32767]);
 | 
						|
 | 
						|
        // End of block
 | 
						|
        } else break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Was that the last block?
 | 
						|
    if (final) break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (dd->pos & 32767) {
 | 
						|
    xwrite(dd->outfd, dd->data, dd->pos&32767);
 | 
						|
    if (dd->crcfunc) dd->crcfunc(dd, dd->data, dd->pos&32767);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Deflate from dd->infd to bitbuf
 | 
						|
// For deflate, dd->len = input read, dd->pos = input consumed
 | 
						|
static void deflate(struct deflate *dd, struct bitbuf *bb)
 | 
						|
{
 | 
						|
  char *data = dd->data;
 | 
						|
  int len, final = 0;
 | 
						|
 | 
						|
  dd->crc = ~0;
 | 
						|
 | 
						|
  while (!final) {
 | 
						|
    // Read next half-window of data if we haven't hit EOF yet.
 | 
						|
    len = readall(dd->infd, data+(dd->len&32768), 32768);
 | 
						|
    if (len < 0) perror_exit("read"); // todo: add filename
 | 
						|
    if (len != 32768) final++;
 | 
						|
    if (dd->crcfunc) dd->crcfunc(dd, data+(dd->len&32768), len);
 | 
						|
    // dd->len += len;  crcfunc advances len TODO
 | 
						|
 | 
						|
    // store block as literal
 | 
						|
    bitbuf_put(bb, final, 1);
 | 
						|
    bitbuf_put(bb, 0, 1);
 | 
						|
 | 
						|
    bitbuf_put(bb, 0, (8-bb->bitpos)&7);
 | 
						|
    bitbuf_put(bb, len, 16);
 | 
						|
    bitbuf_put(bb, 0xffff & ~len, 16);
 | 
						|
 | 
						|
    // repeat until spanked
 | 
						|
    while (dd->pos != dd->len) {
 | 
						|
      unsigned pos = dd->pos&65535;
 | 
						|
 | 
						|
      bitbuf_put(bb, data[pos], 8);
 | 
						|
 | 
						|
      // need to refill buffer?
 | 
						|
      if (!(32767 & ++dd->pos) && !final) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  bitbuf_flush(bb);
 | 
						|
}
 | 
						|
 | 
						|
// Allocate memory for deflate/inflate.
 | 
						|
static struct deflate *init_deflate(int compress)
 | 
						|
{
 | 
						|
  int i, n = 1;
 | 
						|
  struct deflate *dd = xmalloc(sizeof(struct deflate)+32768*(compress ? 4 : 1));
 | 
						|
 | 
						|
  memset(dd, 0, sizeof(struct deflate));
 | 
						|
  // decompress needs 32k history, compress adds 64k hashhead and 32k hashchain
 | 
						|
  if (compress) {
 | 
						|
    dd->hashhead = (unsigned short *)(dd->data+65536);
 | 
						|
    dd->hashchain = (unsigned short *)(dd->data+65536+32768);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate lenbits, lenbase, distbits, distbase
 | 
						|
  *dd->lenbase = 3;
 | 
						|
  for (i = 0; i<sizeof(dd->lenbits)-1; i++) {
 | 
						|
    if (i>4) {
 | 
						|
      if (!(i&3)) {
 | 
						|
        dd->lenbits[i]++;
 | 
						|
        n <<= 1;
 | 
						|
      }
 | 
						|
      if (i == 27) n--;
 | 
						|
      else dd->lenbits[i+1] = dd->lenbits[i];
 | 
						|
    }
 | 
						|
    dd->lenbase[i+1] = n + dd->lenbase[i];
 | 
						|
  }
 | 
						|
  n = 0;
 | 
						|
  for (i = 0; i<sizeof(dd->distbits); i++) {
 | 
						|
    dd->distbase[i] = 1<<n;
 | 
						|
    if (i) dd->distbase[i] += dd->distbase[i-1];
 | 
						|
    if (i>3 && !(i&1)) n++;
 | 
						|
    dd->distbits[i] = n;
 | 
						|
  }
 | 
						|
 | 
						|
// TODO layout and lifetime of this?
 | 
						|
  // Init fixed huffman tables
 | 
						|
  for (i=0; i<288; i++) libbuf[i] = 8 + (i>143) - ((i>255)<<1) + (i>279);
 | 
						|
  len2huff(dd->fixlithuff = ((struct huff *)libbuf)+3, libbuf, 288);
 | 
						|
  memset(libbuf, 5, 30);
 | 
						|
  len2huff(dd->fixdisthuff = ((struct huff *)libbuf)+4, libbuf, 30);
 | 
						|
 | 
						|
  return dd;
 | 
						|
}
 | 
						|
 | 
						|
// Return true/false whether we consumed a gzip header.
 | 
						|
static int is_gzip(struct bitbuf *bb)
 | 
						|
{
 | 
						|
  int flags;
 | 
						|
 | 
						|
  // Confirm signature
 | 
						|
  if (bitbuf_get(bb, 24) != 0x088b1f || (flags = bitbuf_get(bb, 8)) > 31)
 | 
						|
    return 0;
 | 
						|
  bitbuf_skip(bb, 6*8);
 | 
						|
 | 
						|
  // Skip extra, name, comment, header CRC fields
 | 
						|
  if (flags & 4) bitbuf_skip(bb, bitbuf_get(bb, 16) * 8);
 | 
						|
  if (flags & 8) while (bitbuf_get(bb, 8));
 | 
						|
  if (flags & 16) while (bitbuf_get(bb, 8));
 | 
						|
  if (flags & 2) bitbuf_skip(bb, 16);
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void gzip_crc(struct deflate *dd, char *data, int len)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  unsigned crc, *crc_table = dd->crctable;
 | 
						|
 | 
						|
  crc = dd->crc;
 | 
						|
  for (i=0; i<len; i++) crc = crc_table[(crc^data[i])&0xff] ^ (crc>>8);
 | 
						|
  dd->crc = crc;
 | 
						|
  dd->len += len;
 | 
						|
}
 | 
						|
 | 
						|
long long gzip_fd(int infd, int outfd)
 | 
						|
{
 | 
						|
  struct bitbuf *bb = bitbuf_init(outfd, 4096);
 | 
						|
  struct deflate *dd = init_deflate(1);
 | 
						|
  long long rc;
 | 
						|
 | 
						|
  // Header from RFC 1952 section 2.2:
 | 
						|
  // 2 ID bytes (1F, 8b), gzip method byte (8=deflate), FLAG byte (none),
 | 
						|
  // 4 byte MTIME (zeroed), Extra Flags (2=maximum compression),
 | 
						|
  // Operating System (FF=unknown)
 | 
						|
 
 | 
						|
  dd->infd = infd;
 | 
						|
  xwrite(bb->fd, "\x1f\x8b\x08\0\0\0\0\0\x02\xff", 10);
 | 
						|
 | 
						|
  // Little endian crc table
 | 
						|
  crc_init(dd->crctable, 1);
 | 
						|
  dd->crcfunc = gzip_crc;
 | 
						|
 | 
						|
  deflate(dd, bb);
 | 
						|
 | 
						|
  // tail: crc32, len32
 | 
						|
 | 
						|
  bitbuf_put(bb, 0, (8-bb->bitpos)&7);
 | 
						|
  bitbuf_put(bb, ~dd->crc, 32);
 | 
						|
  bitbuf_put(bb, dd->len, 32);
 | 
						|
  rc = dd->len;
 | 
						|
 | 
						|
  bitbuf_flush(bb);
 | 
						|
  free(bb);
 | 
						|
  free(dd);
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 | 
						|
 | 
						|
long long gunzip_fd(int infd, int outfd)
 | 
						|
{
 | 
						|
  struct bitbuf *bb = bitbuf_init(infd, 4096);
 | 
						|
  struct deflate *dd = init_deflate(0);
 | 
						|
  long long rc;
 | 
						|
 | 
						|
  if (!is_gzip(bb)) error_exit("not gzip");
 | 
						|
  dd->outfd = outfd;
 | 
						|
 | 
						|
  // Little endian crc table
 | 
						|
  crc_init(dd->crctable, 1);
 | 
						|
  dd->crcfunc = gzip_crc;
 | 
						|
 | 
						|
  inflate(dd, bb);
 | 
						|
 | 
						|
  // tail: crc32, len32
 | 
						|
 | 
						|
  bitbuf_skip(bb, (8-bb->bitpos)&7);
 | 
						|
  if (~dd->crc != bitbuf_get(bb, 32) || dd->len != bitbuf_get(bb, 32))
 | 
						|
    error_exit("bad crc");
 | 
						|
 | 
						|
  rc = dd->len;
 | 
						|
  free(bb);
 | 
						|
  free(dd);
 | 
						|
 | 
						|
  return rc;
 | 
						|
}
 |