322 lines
10 KiB
C++
322 lines
10 KiB
C++
/*
|
|
* Copyright 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* Test FlowGraph
|
|
*
|
|
* This file also tests a few different conversion techniques because
|
|
* sometimes that have caused compiler bugs.
|
|
*/
|
|
|
|
#include <iostream>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "flowgraph/ClipToRange.h"
|
|
#include "flowgraph/MonoBlend.h"
|
|
#include "flowgraph/MonoToMultiConverter.h"
|
|
#include "flowgraph/SourceFloat.h"
|
|
#include "flowgraph/RampLinear.h"
|
|
#include "flowgraph/SinkFloat.h"
|
|
#include "flowgraph/SinkI16.h"
|
|
#include "flowgraph/SinkI24.h"
|
|
#include "flowgraph/SinkI32.h"
|
|
#include "flowgraph/SourceI16.h"
|
|
#include "flowgraph/SourceI24.h"
|
|
|
|
using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph;
|
|
|
|
constexpr int kBytesPerI24Packed = 3;
|
|
|
|
constexpr int kNumSamples = 8;
|
|
constexpr std::array<float, kNumSamples> kInputFloat = {
|
|
1.0f, 0.5f, -0.25f, -1.0f,
|
|
0.0f, 53.9f, -87.2f, -1.02f};
|
|
|
|
// Corresponding PCM values as integers.
|
|
constexpr std::array<int16_t, kNumSamples> kExpectedI16 = {
|
|
INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN,
|
|
0, INT16_MAX, INT16_MIN, INT16_MIN};
|
|
|
|
constexpr std::array<int32_t, kNumSamples> kExpectedI32 = {
|
|
INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN,
|
|
0, INT32_MAX, INT32_MIN, INT32_MIN};
|
|
|
|
// =================================== FLOAT to I16 ==============
|
|
|
|
// Simple test that tries to reproduce a Clang compiler bug.
|
|
__attribute__((noinline))
|
|
void local_convert_float_to_int16(const float *input,
|
|
int16_t *output,
|
|
int count) {
|
|
for (int i = 0; i < count; i++) {
|
|
int32_t n = (int32_t) (*input++ * 32768.0f);
|
|
*output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, local_convert_float_int16) {
|
|
std::array<int16_t, kNumSamples> output;
|
|
|
|
// Do it inline, which will probably work even with the buggy compiler.
|
|
// This validates the expected data.
|
|
const float *in = kInputFloat.data();
|
|
int16_t *out = output.data();
|
|
output.fill(777);
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
int32_t n = (int32_t) (*in++ * 32768.0f);
|
|
*out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
|
|
}
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
|
|
// Convert audio signal using the function.
|
|
output.fill(777);
|
|
local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples);
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_sinki16) {
|
|
static constexpr int kNumSamples = 8;
|
|
std::array<int16_t, kNumSamples + 10> output; // larger than input
|
|
|
|
SourceFloat sourceFloat{1};
|
|
SinkI16 sinkI16{1};
|
|
|
|
sourceFloat.setData(kInputFloat.data(), kNumSamples);
|
|
sourceFloat.output.connect(&sinkI16.input);
|
|
|
|
output.fill(777);
|
|
int32_t numRead = sinkI16.read(output.data(), output.size());
|
|
ASSERT_EQ(kNumSamples, numRead);
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
// =================================== FLOAT to I32 ==============
|
|
// Simple test that tries to reproduce a Clang compiler bug.
|
|
__attribute__((noinline))
|
|
static int32_t clamp32FromFloat(float f)
|
|
{
|
|
static const float scale = (float)(1UL << 31);
|
|
static const float limpos = 1.;
|
|
static const float limneg = -1.;
|
|
|
|
if (f <= limneg) {
|
|
return INT32_MIN;
|
|
} else if (f >= limpos) {
|
|
return INT32_MAX;
|
|
}
|
|
f *= scale;
|
|
/* integer conversion is through truncation (though int to float is not).
|
|
* ensure that we round to nearest, ties away from 0.
|
|
*/
|
|
return f > 0 ? f + 0.5 : f - 0.5;
|
|
}
|
|
|
|
void local_convert_float_to_int32(const float *input,
|
|
int32_t *output,
|
|
int count) {
|
|
for (int i = 0; i < count; i++) {
|
|
*output++ = clamp32FromFloat(*input++);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, simple_convert_float_int32) {
|
|
std::array<int32_t, kNumSamples> output;
|
|
|
|
// Do it inline, which will probably work even with a buggy compiler.
|
|
// This validates the expected data.
|
|
const float *in = kInputFloat.data();
|
|
output.fill(777);
|
|
int32_t *out = output.data();
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
int64_t n = (int64_t) (*in++ * 2147483648.0f);
|
|
*out++ = (int32_t)std::min((int64_t)INT32_MAX,
|
|
std::max((int64_t)INT32_MIN, n)); // clip
|
|
}
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, local_convert_float_int32) {
|
|
std::array<int32_t, kNumSamples> output;
|
|
// Convert audio signal using the function.
|
|
output.fill(777);
|
|
local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples);
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_sinki32) {
|
|
std::array<int32_t, kNumSamples + 10> output; // larger than input
|
|
|
|
SourceFloat sourceFloat{1};
|
|
SinkI32 sinkI32{1};
|
|
|
|
sourceFloat.setData(kInputFloat.data(), kNumSamples);
|
|
sourceFloat.output.connect(&sinkI32.input);
|
|
|
|
output.fill(777);
|
|
int32_t numRead = sinkI32.read(output.data(), output.size());
|
|
ASSERT_EQ(kNumSamples, numRead);
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_mono_to_stereo) {
|
|
static const float input[] = {1.0f, 2.0f, 3.0f};
|
|
float output[100] = {};
|
|
SourceFloat sourceFloat{1};
|
|
MonoToMultiConverter monoToStereo{2};
|
|
SinkFloat sinkFloat{2};
|
|
|
|
sourceFloat.setData(input, 3);
|
|
|
|
sourceFloat.output.connect(&monoToStereo.input);
|
|
monoToStereo.output.connect(&sinkFloat.input);
|
|
|
|
int32_t numRead = sinkFloat.read(output, 8);
|
|
ASSERT_EQ(3, numRead);
|
|
EXPECT_EQ(input[0], output[0]);
|
|
EXPECT_EQ(input[0], output[1]);
|
|
EXPECT_EQ(input[1], output[2]);
|
|
EXPECT_EQ(input[1], output[3]);
|
|
}
|
|
|
|
TEST(test_flowgraph, module_ramp_linear) {
|
|
constexpr int singleNumOutput = 1;
|
|
constexpr int rampSize = 5;
|
|
constexpr int numOutput = 100;
|
|
constexpr float value = 1.0f;
|
|
constexpr float initialTarget = 10.0f;
|
|
constexpr float finalTarget = 100.0f;
|
|
constexpr float tolerance = 0.0001f; // arbitrary
|
|
float output[numOutput] = {};
|
|
RampLinear rampLinear{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
rampLinear.input.setValue(value);
|
|
rampLinear.setLengthInFrames(rampSize);
|
|
rampLinear.output.connect(&sinkFloat.input);
|
|
|
|
// Check that the values go to the initial target instantly.
|
|
rampLinear.setTarget(initialTarget);
|
|
int32_t singleNumRead = sinkFloat.read(output, singleNumOutput);
|
|
ASSERT_EQ(singleNumRead, singleNumOutput);
|
|
EXPECT_NEAR(value * initialTarget, output[0], tolerance);
|
|
|
|
// Now set target and check that the linear ramp works as expected.
|
|
rampLinear.setTarget(finalTarget);
|
|
int32_t numRead = sinkFloat.read(output, numOutput);
|
|
const float incrementSize = (finalTarget - initialTarget) / rampSize;
|
|
ASSERT_EQ(numOutput, numRead);
|
|
|
|
int i = 0;
|
|
for (; i < rampSize; i++) {
|
|
float expected = value * (initialTarget + i * incrementSize);
|
|
EXPECT_NEAR(expected, output[i], tolerance);
|
|
}
|
|
for (; i < numOutput; i++) {
|
|
float expected = value * finalTarget;
|
|
EXPECT_NEAR(expected, output[i], tolerance);
|
|
}
|
|
}
|
|
|
|
// It is easiest to represent packed 24-bit data as a byte array.
|
|
// This test will read from input, convert to float, then write
|
|
// back to output as bytes.
|
|
TEST(test_flowgraph, module_packed_24) {
|
|
static const uint8_t input[] = {0x01, 0x23, 0x45,
|
|
0x67, 0x89, 0xAB,
|
|
0xCD, 0xEF, 0x5A};
|
|
uint8_t output[99] = {};
|
|
SourceI24 sourceI24{1};
|
|
SinkI24 sinkI24{1};
|
|
|
|
int numInputFrames = sizeof(input) / kBytesPerI24Packed;
|
|
sourceI24.setData(input, numInputFrames);
|
|
sourceI24.output.connect(&sinkI24.input);
|
|
|
|
int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
for (size_t i = 0; i < sizeof(input); i++) {
|
|
EXPECT_EQ(input[i], output[i]);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_clip_to_range) {
|
|
constexpr float myMin = -2.0f;
|
|
constexpr float myMax = 1.5f;
|
|
|
|
static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
|
|
static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
|
|
float output[100];
|
|
SourceFloat sourceFloat{1};
|
|
ClipToRange clipper{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
int numInputFrames = sizeof(input) / sizeof(input[0]);
|
|
sourceFloat.setData(input, numInputFrames);
|
|
|
|
clipper.setMinimum(myMin);
|
|
clipper.setMaximum(myMax);
|
|
|
|
sourceFloat.output.connect(&clipper.input);
|
|
clipper.output.connect(&sinkFloat.input);
|
|
|
|
int numOutputFrames = sizeof(output) / sizeof(output[0]);
|
|
int32_t numRead = sinkFloat.read(output, numOutputFrames);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
constexpr float tolerance = 0.000001f; // arbitrary
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_NEAR(expected[i], output[i], tolerance);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_mono_blend) {
|
|
// Two channel to two channel with 3 inputs and outputs.
|
|
constexpr int numChannels = 2;
|
|
constexpr int numFrames = 3;
|
|
|
|
static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000};
|
|
static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500};
|
|
float output[100];
|
|
SourceFloat sourceFloat{numChannels};
|
|
MonoBlend monoBlend{numChannels};
|
|
SinkFloat sinkFloat{numChannels};
|
|
|
|
sourceFloat.setData(input, numFrames);
|
|
|
|
sourceFloat.output.connect(&monoBlend.input);
|
|
monoBlend.output.connect(&sinkFloat.input);
|
|
|
|
int32_t numRead = sinkFloat.read(output, numFrames);
|
|
ASSERT_EQ(numRead, numFrames);
|
|
constexpr float tolerance = 0.000001f; // arbitrary
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_NEAR(expected[i], output[i], tolerance);
|
|
}
|
|
}
|
|
|