1595 lines
61 KiB
C++
1595 lines
61 KiB
C++
/*
|
|
* Copyright (C) 2013-2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Camera3-OutputStream"
|
|
#define ATRACE_TAG ATRACE_TAG_CAMERA
|
|
//#define LOG_NDEBUG 0
|
|
|
|
#include <algorithm>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
|
|
#include <aidl/android/hardware/camera/device/CameraBlob.h>
|
|
#include <aidl/android/hardware/camera/device/CameraBlobId.h>
|
|
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/properties.h>
|
|
#include <ui/GraphicBuffer.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <common/CameraDeviceBase.h>
|
|
#include "api1/client2/JpegProcessor.h"
|
|
#include "Camera3OutputStream.h"
|
|
#include "utils/TraceHFR.h"
|
|
|
|
#ifndef container_of
|
|
#define container_of(ptr, type, member) \
|
|
(type *)((char*)(ptr) - offsetof(type, member))
|
|
#endif
|
|
|
|
namespace android {
|
|
|
|
namespace camera3 {
|
|
|
|
using aidl::android::hardware::camera::device::CameraBlob;
|
|
using aidl::android::hardware::camera::device::CameraBlobId;
|
|
|
|
Camera3OutputStream::Camera3OutputStream(int id,
|
|
sp<Surface> consumer,
|
|
uint32_t width, uint32_t height, int format,
|
|
android_dataspace dataSpace, camera_stream_rotation_t rotation,
|
|
nsecs_t timestampOffset, const String8& physicalCameraId,
|
|
const std::unordered_set<int32_t> &sensorPixelModesUsed, IPCTransport transport,
|
|
int setId, bool isMultiResolution, int64_t dynamicRangeProfile,
|
|
int64_t streamUseCase, bool deviceTimeBaseIsRealtime, int timestampBase,
|
|
int mirrorMode) :
|
|
Camera3IOStreamBase(id, CAMERA_STREAM_OUTPUT, width, height,
|
|
/*maxSize*/0, format, dataSpace, rotation,
|
|
physicalCameraId, sensorPixelModesUsed, setId, isMultiResolution,
|
|
dynamicRangeProfile, streamUseCase, deviceTimeBaseIsRealtime,
|
|
timestampBase),
|
|
mConsumer(consumer),
|
|
mTransform(0),
|
|
mTraceFirstBuffer(true),
|
|
mUseBufferManager(false),
|
|
mTimestampOffset(timestampOffset),
|
|
mUseReadoutTime(false),
|
|
mConsumerUsage(0),
|
|
mDropBuffers(false),
|
|
mMirrorMode(mirrorMode),
|
|
mDequeueBufferLatency(kDequeueLatencyBinSize),
|
|
mIPCTransport(transport) {
|
|
|
|
if (mConsumer == NULL) {
|
|
ALOGE("%s: Consumer is NULL!", __FUNCTION__);
|
|
mState = STATE_ERROR;
|
|
}
|
|
|
|
bool needsReleaseNotify = setId > CAMERA3_STREAM_SET_ID_INVALID;
|
|
mBufferProducerListener = new BufferProducerListener(this, needsReleaseNotify);
|
|
}
|
|
|
|
Camera3OutputStream::Camera3OutputStream(int id,
|
|
sp<Surface> consumer,
|
|
uint32_t width, uint32_t height, size_t maxSize, int format,
|
|
android_dataspace dataSpace, camera_stream_rotation_t rotation,
|
|
nsecs_t timestampOffset, const String8& physicalCameraId,
|
|
const std::unordered_set<int32_t> &sensorPixelModesUsed, IPCTransport transport,
|
|
int setId, bool isMultiResolution, int64_t dynamicRangeProfile,
|
|
int64_t streamUseCase, bool deviceTimeBaseIsRealtime, int timestampBase,
|
|
int mirrorMode) :
|
|
Camera3IOStreamBase(id, CAMERA_STREAM_OUTPUT, width, height, maxSize,
|
|
format, dataSpace, rotation, physicalCameraId, sensorPixelModesUsed,
|
|
setId, isMultiResolution, dynamicRangeProfile, streamUseCase,
|
|
deviceTimeBaseIsRealtime, timestampBase),
|
|
mConsumer(consumer),
|
|
mTransform(0),
|
|
mTraceFirstBuffer(true),
|
|
mUseBufferManager(false),
|
|
mTimestampOffset(timestampOffset),
|
|
mUseReadoutTime(false),
|
|
mConsumerUsage(0),
|
|
mDropBuffers(false),
|
|
mMirrorMode(mirrorMode),
|
|
mDequeueBufferLatency(kDequeueLatencyBinSize),
|
|
mIPCTransport(transport) {
|
|
|
|
if (format != HAL_PIXEL_FORMAT_BLOB && format != HAL_PIXEL_FORMAT_RAW_OPAQUE) {
|
|
ALOGE("%s: Bad format for size-only stream: %d", __FUNCTION__,
|
|
format);
|
|
mState = STATE_ERROR;
|
|
}
|
|
|
|
if (mConsumer == NULL) {
|
|
ALOGE("%s: Consumer is NULL!", __FUNCTION__);
|
|
mState = STATE_ERROR;
|
|
}
|
|
|
|
bool needsReleaseNotify = setId > CAMERA3_STREAM_SET_ID_INVALID;
|
|
mBufferProducerListener = new BufferProducerListener(this, needsReleaseNotify);
|
|
}
|
|
|
|
Camera3OutputStream::Camera3OutputStream(int id,
|
|
uint32_t width, uint32_t height, int format,
|
|
uint64_t consumerUsage, android_dataspace dataSpace,
|
|
camera_stream_rotation_t rotation, nsecs_t timestampOffset,
|
|
const String8& physicalCameraId,
|
|
const std::unordered_set<int32_t> &sensorPixelModesUsed, IPCTransport transport,
|
|
int setId, bool isMultiResolution, int64_t dynamicRangeProfile,
|
|
int64_t streamUseCase, bool deviceTimeBaseIsRealtime, int timestampBase,
|
|
int mirrorMode) :
|
|
Camera3IOStreamBase(id, CAMERA_STREAM_OUTPUT, width, height,
|
|
/*maxSize*/0, format, dataSpace, rotation,
|
|
physicalCameraId, sensorPixelModesUsed, setId, isMultiResolution,
|
|
dynamicRangeProfile, streamUseCase, deviceTimeBaseIsRealtime,
|
|
timestampBase),
|
|
mConsumer(nullptr),
|
|
mTransform(0),
|
|
mTraceFirstBuffer(true),
|
|
mUseBufferManager(false),
|
|
mTimestampOffset(timestampOffset),
|
|
mUseReadoutTime(false),
|
|
mConsumerUsage(consumerUsage),
|
|
mDropBuffers(false),
|
|
mMirrorMode(mirrorMode),
|
|
mDequeueBufferLatency(kDequeueLatencyBinSize),
|
|
mIPCTransport(transport) {
|
|
// Deferred consumer only support preview surface format now.
|
|
if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
|
|
ALOGE("%s: Deferred consumer only supports IMPLEMENTATION_DEFINED format now!",
|
|
__FUNCTION__);
|
|
mState = STATE_ERROR;
|
|
}
|
|
|
|
// Validation check for the consumer usage flag.
|
|
if ((consumerUsage & GraphicBuffer::USAGE_HW_TEXTURE) == 0 &&
|
|
(consumerUsage & GraphicBuffer::USAGE_HW_COMPOSER) == 0) {
|
|
ALOGE("%s: Deferred consumer usage flag is illegal %" PRIu64 "!",
|
|
__FUNCTION__, consumerUsage);
|
|
mState = STATE_ERROR;
|
|
}
|
|
|
|
mConsumerName = String8("Deferred");
|
|
bool needsReleaseNotify = setId > CAMERA3_STREAM_SET_ID_INVALID;
|
|
mBufferProducerListener = new BufferProducerListener(this, needsReleaseNotify);
|
|
}
|
|
|
|
Camera3OutputStream::Camera3OutputStream(int id, camera_stream_type_t type,
|
|
uint32_t width, uint32_t height,
|
|
int format,
|
|
android_dataspace dataSpace,
|
|
camera_stream_rotation_t rotation,
|
|
const String8& physicalCameraId,
|
|
const std::unordered_set<int32_t> &sensorPixelModesUsed,
|
|
IPCTransport transport,
|
|
uint64_t consumerUsage, nsecs_t timestampOffset,
|
|
int setId, bool isMultiResolution,
|
|
int64_t dynamicRangeProfile, int64_t streamUseCase,
|
|
bool deviceTimeBaseIsRealtime, int timestampBase,
|
|
int mirrorMode) :
|
|
Camera3IOStreamBase(id, type, width, height,
|
|
/*maxSize*/0,
|
|
format, dataSpace, rotation,
|
|
physicalCameraId, sensorPixelModesUsed, setId, isMultiResolution,
|
|
dynamicRangeProfile, streamUseCase, deviceTimeBaseIsRealtime,
|
|
timestampBase),
|
|
mTransform(0),
|
|
mTraceFirstBuffer(true),
|
|
mUseBufferManager(false),
|
|
mTimestampOffset(timestampOffset),
|
|
mUseReadoutTime(false),
|
|
mConsumerUsage(consumerUsage),
|
|
mDropBuffers(false),
|
|
mMirrorMode(mirrorMode),
|
|
mDequeueBufferLatency(kDequeueLatencyBinSize),
|
|
mIPCTransport(transport) {
|
|
|
|
bool needsReleaseNotify = setId > CAMERA3_STREAM_SET_ID_INVALID;
|
|
mBufferProducerListener = new BufferProducerListener(this, needsReleaseNotify);
|
|
|
|
// Subclasses expected to initialize mConsumer themselves
|
|
}
|
|
|
|
|
|
Camera3OutputStream::~Camera3OutputStream() {
|
|
disconnectLocked();
|
|
}
|
|
|
|
status_t Camera3OutputStream::getBufferLocked(camera_stream_buffer *buffer,
|
|
const std::vector<size_t>&) {
|
|
ATRACE_HFR_CALL();
|
|
|
|
ANativeWindowBuffer* anb;
|
|
int fenceFd = -1;
|
|
|
|
status_t res;
|
|
res = getBufferLockedCommon(&anb, &fenceFd);
|
|
if (res != OK) {
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* FenceFD now owned by HAL except in case of error,
|
|
* in which case we reassign it to acquire_fence
|
|
*/
|
|
handoutBufferLocked(*buffer, &(anb->handle), /*acquireFence*/fenceFd,
|
|
/*releaseFence*/-1, CAMERA_BUFFER_STATUS_OK, /*output*/true);
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::getBuffersLocked(std::vector<OutstandingBuffer>* outBuffers) {
|
|
status_t res;
|
|
|
|
if ((res = getBufferPreconditionCheckLocked()) != OK) {
|
|
return res;
|
|
}
|
|
|
|
if (mUseBufferManager) {
|
|
ALOGE("%s: stream %d is managed by buffer manager and does not support batch operation",
|
|
__FUNCTION__, mId);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
sp<Surface> consumer = mConsumer;
|
|
/**
|
|
* Release the lock briefly to avoid deadlock for below scenario:
|
|
* Thread 1: StreamingProcessor::startStream -> Camera3Stream::isConfiguring().
|
|
* This thread acquired StreamingProcessor lock and try to lock Camera3Stream lock.
|
|
* Thread 2: Camera3Stream::returnBuffer->StreamingProcessor::onFrameAvailable().
|
|
* This thread acquired Camera3Stream lock and bufferQueue lock, and try to lock
|
|
* StreamingProcessor lock.
|
|
* Thread 3: Camera3Stream::getBuffer(). This thread acquired Camera3Stream lock
|
|
* and try to lock bufferQueue lock.
|
|
* Then there is circular locking dependency.
|
|
*/
|
|
mLock.unlock();
|
|
|
|
size_t numBuffersRequested = outBuffers->size();
|
|
std::vector<Surface::BatchBuffer> buffers(numBuffersRequested);
|
|
|
|
nsecs_t dequeueStart = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
res = consumer->dequeueBuffers(&buffers);
|
|
nsecs_t dequeueEnd = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mDequeueBufferLatency.add(dequeueStart, dequeueEnd);
|
|
|
|
mLock.lock();
|
|
|
|
if (res != OK) {
|
|
if (shouldLogError(res, mState)) {
|
|
ALOGE("%s: Stream %d: Can't dequeue %zu output buffers: %s (%d)",
|
|
__FUNCTION__, mId, numBuffersRequested, strerror(-res), res);
|
|
}
|
|
checkRetAndSetAbandonedLocked(res);
|
|
return res;
|
|
}
|
|
checkRemovedBuffersLocked();
|
|
|
|
/**
|
|
* FenceFD now owned by HAL except in case of error,
|
|
* in which case we reassign it to acquire_fence
|
|
*/
|
|
for (size_t i = 0; i < numBuffersRequested; i++) {
|
|
handoutBufferLocked(*(outBuffers->at(i).outBuffer),
|
|
&(buffers[i].buffer->handle), /*acquireFence*/buffers[i].fenceFd,
|
|
/*releaseFence*/-1, CAMERA_BUFFER_STATUS_OK, /*output*/true);
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::queueBufferToConsumer(sp<ANativeWindow>& consumer,
|
|
ANativeWindowBuffer* buffer, int anwReleaseFence,
|
|
const std::vector<size_t>&) {
|
|
return consumer->queueBuffer(consumer.get(), buffer, anwReleaseFence);
|
|
}
|
|
|
|
status_t Camera3OutputStream::returnBufferLocked(
|
|
const camera_stream_buffer &buffer,
|
|
nsecs_t timestamp, nsecs_t readoutTimestamp,
|
|
int32_t transform, const std::vector<size_t>& surface_ids) {
|
|
ATRACE_HFR_CALL();
|
|
|
|
if (mHandoutTotalBufferCount == 1) {
|
|
returnPrefetchedBuffersLocked();
|
|
}
|
|
|
|
status_t res = returnAnyBufferLocked(buffer, timestamp, readoutTimestamp,
|
|
/*output*/true, transform, surface_ids);
|
|
|
|
if (res != OK) {
|
|
return res;
|
|
}
|
|
|
|
mLastTimestamp = timestamp;
|
|
mFrameCount++;
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::fixUpHidlJpegBlobHeader(ANativeWindowBuffer* anwBuffer, int fence) {
|
|
// Lock the JPEG buffer for CPU read
|
|
sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(anwBuffer);
|
|
void* mapped = nullptr;
|
|
base::unique_fd fenceFd(dup(fence));
|
|
// Use USAGE_SW_WRITE_RARELY since we're going to re-write the CameraBlob
|
|
// header.
|
|
GraphicBufferLocker gbLocker(graphicBuffer);
|
|
status_t res =
|
|
gbLocker.lockAsync(
|
|
GraphicBuffer::USAGE_SW_READ_OFTEN | GraphicBuffer::USAGE_SW_WRITE_RARELY,
|
|
&mapped, fenceFd.get());
|
|
if (res != OK) {
|
|
ALOGE("%s: Failed to lock the buffer: %s (%d)", __FUNCTION__, strerror(-res), res);
|
|
return res;
|
|
}
|
|
|
|
uint8_t *hidlHeaderStart =
|
|
static_cast<uint8_t*>(mapped) + graphicBuffer->getWidth() - sizeof(camera_jpeg_blob_t);
|
|
// Check that the jpeg buffer is big enough to contain HIDL camera blob
|
|
if (hidlHeaderStart < static_cast<uint8_t *>(mapped)) {
|
|
ALOGE("%s, jpeg buffer not large enough to fit HIDL camera blob %" PRIu32, __FUNCTION__,
|
|
graphicBuffer->getWidth());
|
|
return BAD_VALUE;
|
|
}
|
|
camera_jpeg_blob_t *hidlBlobHeader = reinterpret_cast<camera_jpeg_blob_t *>(hidlHeaderStart);
|
|
|
|
// Check that the blob is indeed the jpeg blob id.
|
|
if (hidlBlobHeader->jpeg_blob_id != CAMERA_JPEG_BLOB_ID) {
|
|
ALOGE("%s, jpeg blob id %d is not correct", __FUNCTION__, hidlBlobHeader->jpeg_blob_id);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// Retrieve id and blob size
|
|
CameraBlobId blobId = static_cast<CameraBlobId>(hidlBlobHeader->jpeg_blob_id);
|
|
uint32_t blobSizeBytes = hidlBlobHeader->jpeg_size;
|
|
|
|
if (blobSizeBytes > (graphicBuffer->getWidth() - sizeof(camera_jpeg_blob_t))) {
|
|
ALOGE("%s, blobSize in HIDL jpeg blob : %d is corrupt, buffer size %" PRIu32, __FUNCTION__,
|
|
blobSizeBytes, graphicBuffer->getWidth());
|
|
}
|
|
|
|
uint8_t *aidlHeaderStart =
|
|
static_cast<uint8_t*>(mapped) + graphicBuffer->getWidth() - sizeof(CameraBlob);
|
|
|
|
// Check that the jpeg buffer is big enough to contain AIDL camera blob
|
|
if (aidlHeaderStart < static_cast<uint8_t *>(mapped)) {
|
|
ALOGE("%s, jpeg buffer not large enough to fit AIDL camera blob %" PRIu32, __FUNCTION__,
|
|
graphicBuffer->getWidth());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (static_cast<uint8_t*>(mapped) + blobSizeBytes > aidlHeaderStart) {
|
|
ALOGE("%s, jpeg blob with size %d , buffer size %" PRIu32 " not large enough to fit"
|
|
" AIDL camera blob without corrupting jpeg", __FUNCTION__, blobSizeBytes,
|
|
graphicBuffer->getWidth());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// Fill in JPEG header
|
|
CameraBlob aidlHeader = {
|
|
.blobId = blobId,
|
|
.blobSizeBytes = static_cast<int32_t>(blobSizeBytes)
|
|
};
|
|
memcpy(aidlHeaderStart, &aidlHeader, sizeof(CameraBlob));
|
|
graphicBuffer->unlock();
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::returnBufferCheckedLocked(
|
|
const camera_stream_buffer &buffer,
|
|
nsecs_t timestamp,
|
|
nsecs_t readoutTimestamp,
|
|
bool output,
|
|
int32_t transform,
|
|
const std::vector<size_t>& surface_ids,
|
|
/*out*/
|
|
sp<Fence> *releaseFenceOut) {
|
|
|
|
(void)output;
|
|
ALOG_ASSERT(output, "Expected output to be true");
|
|
|
|
status_t res;
|
|
|
|
// Fence management - always honor release fence from HAL
|
|
sp<Fence> releaseFence = new Fence(buffer.release_fence);
|
|
int anwReleaseFence = releaseFence->dup();
|
|
|
|
/**
|
|
* Release the lock briefly to avoid deadlock with
|
|
* StreamingProcessor::startStream -> Camera3Stream::isConfiguring (this
|
|
* thread will go into StreamingProcessor::onFrameAvailable) during
|
|
* queueBuffer
|
|
*/
|
|
sp<ANativeWindow> currentConsumer = mConsumer;
|
|
StreamState state = mState;
|
|
mLock.unlock();
|
|
|
|
ANativeWindowBuffer *anwBuffer = container_of(buffer.buffer, ANativeWindowBuffer, handle);
|
|
bool bufferDeferred = false;
|
|
/**
|
|
* Return buffer back to ANativeWindow
|
|
*/
|
|
if (buffer.status == CAMERA_BUFFER_STATUS_ERROR || mDropBuffers || timestamp == 0) {
|
|
// Cancel buffer
|
|
if (mDropBuffers) {
|
|
ALOGV("%s: Dropping a frame for stream %d.", __FUNCTION__, mId);
|
|
} else if (buffer.status == CAMERA_BUFFER_STATUS_ERROR) {
|
|
ALOGV("%s: A frame is dropped for stream %d due to buffer error.", __FUNCTION__, mId);
|
|
} else {
|
|
ALOGE("%s: Stream %d: timestamp shouldn't be 0", __FUNCTION__, mId);
|
|
}
|
|
|
|
res = currentConsumer->cancelBuffer(currentConsumer.get(),
|
|
anwBuffer,
|
|
anwReleaseFence);
|
|
if (shouldLogError(res, state)) {
|
|
ALOGE("%s: Stream %d: Error cancelling buffer to native window:"
|
|
" %s (%d)", __FUNCTION__, mId, strerror(-res), res);
|
|
}
|
|
|
|
notifyBufferReleased(anwBuffer);
|
|
if (mUseBufferManager) {
|
|
// Return this buffer back to buffer manager.
|
|
mBufferProducerListener->onBufferReleased();
|
|
}
|
|
} else {
|
|
if (mTraceFirstBuffer && (stream_type == CAMERA_STREAM_OUTPUT)) {
|
|
{
|
|
char traceLog[48];
|
|
snprintf(traceLog, sizeof(traceLog), "Stream %d: first full buffer\n", mId);
|
|
ATRACE_NAME(traceLog);
|
|
}
|
|
mTraceFirstBuffer = false;
|
|
}
|
|
// Fix CameraBlob id type discrepancy between HIDL and AIDL, details : http://b/229688810
|
|
if (getFormat() == HAL_PIXEL_FORMAT_BLOB && getDataSpace() == HAL_DATASPACE_V0_JFIF) {
|
|
if (mIPCTransport == IPCTransport::HIDL) {
|
|
//fixUpHidlJpegBlobHeader(anwBuffer, anwReleaseFence);
|
|
}
|
|
// If this is a JPEG output, and image dump mask is set, save image to
|
|
// disk.
|
|
if (mImageDumpMask) {
|
|
dumpImageToDisk(timestamp, anwBuffer, anwReleaseFence);
|
|
}
|
|
}
|
|
|
|
nsecs_t captureTime = (mUseReadoutTime && readoutTimestamp != 0 ?
|
|
readoutTimestamp : timestamp) - mTimestampOffset;
|
|
if (mPreviewFrameSpacer != nullptr) {
|
|
nsecs_t readoutTime = (readoutTimestamp != 0 ? readoutTimestamp : timestamp)
|
|
- mTimestampOffset;
|
|
res = mPreviewFrameSpacer->queuePreviewBuffer(captureTime, readoutTime,
|
|
transform, anwBuffer, anwReleaseFence);
|
|
if (res != OK) {
|
|
ALOGE("%s: Stream %d: Error queuing buffer to preview buffer spacer: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
return res;
|
|
}
|
|
bufferDeferred = true;
|
|
} else {
|
|
nsecs_t presentTime = mSyncToDisplay ?
|
|
syncTimestampToDisplayLocked(captureTime) : captureTime;
|
|
|
|
setTransform(transform, true/*mayChangeMirror*/);
|
|
res = native_window_set_buffers_timestamp(mConsumer.get(), presentTime);
|
|
if (res != OK) {
|
|
ALOGE("%s: Stream %d: Error setting timestamp: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
return res;
|
|
}
|
|
|
|
queueHDRMetadata(anwBuffer->handle, currentConsumer, dynamic_range_profile);
|
|
|
|
res = queueBufferToConsumer(currentConsumer, anwBuffer, anwReleaseFence, surface_ids);
|
|
if (shouldLogError(res, state)) {
|
|
ALOGE("%s: Stream %d: Error queueing buffer to native window:"
|
|
" %s (%d)", __FUNCTION__, mId, strerror(-res), res);
|
|
}
|
|
}
|
|
}
|
|
mLock.lock();
|
|
|
|
if (bufferDeferred) {
|
|
mCachedOutputBufferCount++;
|
|
}
|
|
|
|
// Once a valid buffer has been returned to the queue, can no longer
|
|
// dequeue all buffers for preallocation.
|
|
if (buffer.status != CAMERA_BUFFER_STATUS_ERROR) {
|
|
mStreamUnpreparable = true;
|
|
}
|
|
|
|
if (res != OK) {
|
|
close(anwReleaseFence);
|
|
}
|
|
|
|
*releaseFenceOut = releaseFence;
|
|
|
|
return res;
|
|
}
|
|
|
|
void Camera3OutputStream::dump(int fd, const Vector<String16> &args) const {
|
|
(void) args;
|
|
String8 lines;
|
|
lines.appendFormat(" Stream[%d]: Output\n", mId);
|
|
lines.appendFormat(" Consumer name: %s\n", mConsumerName.string());
|
|
write(fd, lines.string(), lines.size());
|
|
|
|
Camera3IOStreamBase::dump(fd, args);
|
|
|
|
mDequeueBufferLatency.dump(fd,
|
|
" DequeueBuffer latency histogram:");
|
|
}
|
|
|
|
status_t Camera3OutputStream::setTransform(int transform, bool mayChangeMirror) {
|
|
ATRACE_CALL();
|
|
Mutex::Autolock l(mLock);
|
|
if (mMirrorMode != OutputConfiguration::MIRROR_MODE_AUTO && mayChangeMirror) {
|
|
// If the mirroring mode is not AUTO, do not allow transform update
|
|
// which may change mirror.
|
|
return OK;
|
|
}
|
|
|
|
return setTransformLocked(transform);
|
|
}
|
|
|
|
status_t Camera3OutputStream::setTransformLocked(int transform) {
|
|
status_t res = OK;
|
|
|
|
if (transform == -1) return res;
|
|
|
|
if (mState == STATE_ERROR) {
|
|
ALOGE("%s: Stream in error state", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
mTransform = transform;
|
|
if (mState == STATE_CONFIGURED) {
|
|
res = native_window_set_buffers_transform(mConsumer.get(),
|
|
transform);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream transform to %x: %s (%d)",
|
|
__FUNCTION__, transform, strerror(-res), res);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
status_t Camera3OutputStream::configureQueueLocked() {
|
|
status_t res;
|
|
|
|
mTraceFirstBuffer = true;
|
|
if ((res = Camera3IOStreamBase::configureQueueLocked()) != OK) {
|
|
return res;
|
|
}
|
|
|
|
if ((res = configureConsumerQueueLocked(true /*allowPreviewRespace*/)) != OK) {
|
|
return res;
|
|
}
|
|
|
|
// Set dequeueBuffer/attachBuffer timeout if the consumer is not hw composer or hw texture.
|
|
// We need skip these cases as timeout will disable the non-blocking (async) mode.
|
|
if (!(isConsumedByHWComposer() || isConsumedByHWTexture())) {
|
|
if (mUseBufferManager) {
|
|
// When buffer manager is handling the buffer, we should have available buffers in
|
|
// buffer queue before we calls into dequeueBuffer because buffer manager is tracking
|
|
// free buffers.
|
|
// There are however some consumer side feature (ImageReader::discardFreeBuffers) that
|
|
// can discard free buffers without notifying buffer manager. We want the timeout to
|
|
// happen immediately here so buffer manager can try to update its internal state and
|
|
// try to allocate a buffer instead of waiting.
|
|
mConsumer->setDequeueTimeout(0);
|
|
} else {
|
|
mConsumer->setDequeueTimeout(kDequeueBufferTimeout);
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::configureConsumerQueueLocked(bool allowPreviewRespace) {
|
|
status_t res;
|
|
|
|
mTraceFirstBuffer = true;
|
|
|
|
ALOG_ASSERT(mConsumer != 0, "mConsumer should never be NULL");
|
|
|
|
// Configure consumer-side ANativeWindow interface. The listener may be used
|
|
// to notify buffer manager (if it is used) of the returned buffers.
|
|
res = mConsumer->connect(NATIVE_WINDOW_API_CAMERA,
|
|
/*reportBufferRemoval*/true,
|
|
/*listener*/mBufferProducerListener);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to connect to native window for stream %d",
|
|
__FUNCTION__, mId);
|
|
return res;
|
|
}
|
|
|
|
mConsumerName = mConsumer->getConsumerName();
|
|
|
|
res = native_window_set_usage(mConsumer.get(), mUsage);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure usage %" PRIu64 " for stream %d",
|
|
__FUNCTION__, mUsage, mId);
|
|
return res;
|
|
}
|
|
|
|
res = native_window_set_scaling_mode(mConsumer.get(),
|
|
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream scaling: %s (%d)",
|
|
__FUNCTION__, strerror(-res), res);
|
|
return res;
|
|
}
|
|
|
|
if (mMaxSize == 0) {
|
|
// For buffers of known size
|
|
res = native_window_set_buffers_dimensions(mConsumer.get(),
|
|
camera_stream::width, camera_stream::height);
|
|
} else {
|
|
// For buffers with bounded size
|
|
res = native_window_set_buffers_dimensions(mConsumer.get(),
|
|
mMaxSize, 1);
|
|
}
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream buffer dimensions"
|
|
" %d x %d (maxSize %zu) for stream %d",
|
|
__FUNCTION__, camera_stream::width, camera_stream::height,
|
|
mMaxSize, mId);
|
|
return res;
|
|
}
|
|
res = native_window_set_buffers_format(mConsumer.get(),
|
|
camera_stream::format);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream buffer format %#x for stream %d",
|
|
__FUNCTION__, camera_stream::format, mId);
|
|
return res;
|
|
}
|
|
|
|
res = native_window_set_buffers_data_space(mConsumer.get(),
|
|
camera_stream::data_space);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream dataspace %#x for stream %d",
|
|
__FUNCTION__, camera_stream::data_space, mId);
|
|
return res;
|
|
}
|
|
|
|
int maxConsumerBuffers;
|
|
res = static_cast<ANativeWindow*>(mConsumer.get())->query(
|
|
mConsumer.get(),
|
|
NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &maxConsumerBuffers);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to query consumer undequeued"
|
|
" buffer count for stream %d", __FUNCTION__, mId);
|
|
return res;
|
|
}
|
|
|
|
ALOGV("%s: Consumer wants %d buffers, HAL wants %d", __FUNCTION__,
|
|
maxConsumerBuffers, camera_stream::max_buffers);
|
|
if (camera_stream::max_buffers == 0) {
|
|
ALOGE("%s: Camera HAL requested max_buffer count: %d, requires at least 1",
|
|
__FUNCTION__, camera_stream::max_buffers);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
mTotalBufferCount = maxConsumerBuffers + camera_stream::max_buffers;
|
|
|
|
int timestampBase = getTimestampBase();
|
|
bool isDefaultTimeBase = (timestampBase ==
|
|
OutputConfiguration::TIMESTAMP_BASE_DEFAULT);
|
|
if (allowPreviewRespace) {
|
|
bool forceChoreographer = (timestampBase ==
|
|
OutputConfiguration::TIMESTAMP_BASE_CHOREOGRAPHER_SYNCED);
|
|
bool defaultToChoreographer = (isDefaultTimeBase &&
|
|
isConsumedByHWComposer());
|
|
bool defaultToSpacer = (isDefaultTimeBase &&
|
|
isConsumedByHWTexture() &&
|
|
!isConsumedByCPU() &&
|
|
!isVideoStream());
|
|
if (forceChoreographer || defaultToChoreographer) {
|
|
mSyncToDisplay = true;
|
|
// For choreographer synced stream, extra buffers aren't kept by
|
|
// camera service. So no need to update mMaxCachedBufferCount.
|
|
mTotalBufferCount += kDisplaySyncExtraBuffer;
|
|
} else if (defaultToSpacer) {
|
|
mPreviewFrameSpacer = new PreviewFrameSpacer(this, mConsumer);
|
|
// For preview frame spacer, the extra buffer is kept by camera
|
|
// service. So update mMaxCachedBufferCount.
|
|
mMaxCachedBufferCount = 1;
|
|
mTotalBufferCount += mMaxCachedBufferCount;
|
|
res = mPreviewFrameSpacer->run(String8::format("PreviewSpacer-%d", mId).string());
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to start preview spacer", __FUNCTION__);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
mHandoutTotalBufferCount = 0;
|
|
mFrameCount = 0;
|
|
mLastTimestamp = 0;
|
|
|
|
mUseReadoutTime =
|
|
(timestampBase == OutputConfiguration::TIMESTAMP_BASE_READOUT_SENSOR || mSyncToDisplay);
|
|
|
|
if (isDeviceTimeBaseRealtime()) {
|
|
if (isDefaultTimeBase && !isConsumedByHWComposer() && !isVideoStream()) {
|
|
// Default time base, but not hardware composer or video encoder
|
|
mTimestampOffset = 0;
|
|
} else if (timestampBase == OutputConfiguration::TIMESTAMP_BASE_REALTIME ||
|
|
timestampBase == OutputConfiguration::TIMESTAMP_BASE_SENSOR ||
|
|
timestampBase == OutputConfiguration::TIMESTAMP_BASE_READOUT_SENSOR) {
|
|
mTimestampOffset = 0;
|
|
}
|
|
// If timestampBase is CHOREOGRAPHER SYNCED or MONOTONIC, leave
|
|
// timestamp offset as bootTime - monotonicTime.
|
|
} else {
|
|
if (timestampBase == OutputConfiguration::TIMESTAMP_BASE_REALTIME) {
|
|
// Reverse offset for monotonicTime -> bootTime
|
|
mTimestampOffset = -mTimestampOffset;
|
|
} else {
|
|
// If timestampBase is DEFAULT, MONOTONIC, SENSOR, READOUT_SENSOR or
|
|
// CHOREOGRAPHER_SYNCED, timestamp offset is 0.
|
|
mTimestampOffset = 0;
|
|
}
|
|
}
|
|
|
|
res = native_window_set_buffer_count(mConsumer.get(),
|
|
mTotalBufferCount);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to set buffer count for stream %d",
|
|
__FUNCTION__, mId);
|
|
return res;
|
|
}
|
|
|
|
res = native_window_set_buffers_transform(mConsumer.get(),
|
|
mTransform);
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to configure stream transform to %x: %s (%d)",
|
|
__FUNCTION__, mTransform, strerror(-res), res);
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Camera3 Buffer manager is only supported by HAL3.3 onwards, as the older HALs requires
|
|
* buffers to be statically allocated for internal static buffer registration, while the
|
|
* buffers provided by buffer manager are really dynamically allocated. Camera3Device only
|
|
* sets the mBufferManager if device version is > HAL3.2, which guarantees that the buffer
|
|
* manager setup is skipped in below code. Note that HAL3.2 is also excluded here, as some
|
|
* HAL3.2 devices may not support the dynamic buffer registeration.
|
|
* Also Camera3BufferManager does not support display/texture streams as they have its own
|
|
* buffer management logic.
|
|
*/
|
|
if (mBufferManager != 0 && mSetId > CAMERA3_STREAM_SET_ID_INVALID &&
|
|
!(isConsumedByHWComposer() || isConsumedByHWTexture())) {
|
|
uint64_t consumerUsage = 0;
|
|
getEndpointUsage(&consumerUsage);
|
|
uint32_t width = (mMaxSize == 0) ? getWidth() : mMaxSize;
|
|
uint32_t height = (mMaxSize == 0) ? getHeight() : 1;
|
|
StreamInfo streamInfo(
|
|
getId(), getStreamSetId(), width, height, getFormat(), getDataSpace(),
|
|
mUsage | consumerUsage, mTotalBufferCount,
|
|
/*isConfigured*/true, isMultiResolution());
|
|
wp<Camera3OutputStream> weakThis(this);
|
|
res = mBufferManager->registerStream(weakThis,
|
|
streamInfo);
|
|
if (res == OK) {
|
|
// Disable buffer allocation for this BufferQueue, buffer manager will take over
|
|
// the buffer allocation responsibility.
|
|
mConsumer->getIGraphicBufferProducer()->allowAllocation(false);
|
|
mUseBufferManager = true;
|
|
} else {
|
|
ALOGE("%s: Unable to register stream %d to camera3 buffer manager, "
|
|
"(error %d %s), fall back to BufferQueue for buffer management!",
|
|
__FUNCTION__, mId, res, strerror(-res));
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::getBufferLockedCommon(ANativeWindowBuffer** anb, int* fenceFd) {
|
|
ATRACE_HFR_CALL();
|
|
status_t res;
|
|
|
|
if ((res = getBufferPreconditionCheckLocked()) != OK) {
|
|
return res;
|
|
}
|
|
|
|
bool gotBufferFromManager = false;
|
|
|
|
if (mUseBufferManager) {
|
|
sp<GraphicBuffer> gb;
|
|
res = mBufferManager->getBufferForStream(getId(), getStreamSetId(),
|
|
isMultiResolution(), &gb, fenceFd);
|
|
if (res == OK) {
|
|
// Attach this buffer to the bufferQueue: the buffer will be in dequeue state after a
|
|
// successful return.
|
|
*anb = gb.get();
|
|
res = mConsumer->attachBuffer(*anb);
|
|
if (shouldLogError(res, mState)) {
|
|
ALOGE("%s: Stream %d: Can't attach the output buffer to this surface: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
}
|
|
if (res != OK) {
|
|
checkRetAndSetAbandonedLocked(res);
|
|
return res;
|
|
}
|
|
gotBufferFromManager = true;
|
|
ALOGV("Stream %d: Attached new buffer", getId());
|
|
} else if (res == ALREADY_EXISTS) {
|
|
// Have sufficient free buffers already attached, can just
|
|
// dequeue from buffer queue
|
|
ALOGV("Stream %d: Reusing attached buffer", getId());
|
|
gotBufferFromManager = false;
|
|
} else if (res != OK) {
|
|
ALOGE("%s: Stream %d: Can't get next output buffer from buffer manager: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
return res;
|
|
}
|
|
}
|
|
if (!gotBufferFromManager) {
|
|
/**
|
|
* Release the lock briefly to avoid deadlock for below scenario:
|
|
* Thread 1: StreamingProcessor::startStream -> Camera3Stream::isConfiguring().
|
|
* This thread acquired StreamingProcessor lock and try to lock Camera3Stream lock.
|
|
* Thread 2: Camera3Stream::returnBuffer->StreamingProcessor::onFrameAvailable().
|
|
* This thread acquired Camera3Stream lock and bufferQueue lock, and try to lock
|
|
* StreamingProcessor lock.
|
|
* Thread 3: Camera3Stream::getBuffer(). This thread acquired Camera3Stream lock
|
|
* and try to lock bufferQueue lock.
|
|
* Then there is circular locking dependency.
|
|
*/
|
|
sp<Surface> consumer = mConsumer;
|
|
size_t remainingBuffers = (mState == STATE_PREPARING ? mTotalBufferCount :
|
|
camera_stream::max_buffers) - mHandoutTotalBufferCount;
|
|
mLock.unlock();
|
|
|
|
nsecs_t dequeueStart = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
|
|
size_t batchSize = mBatchSize.load();
|
|
if (batchSize == 1) {
|
|
sp<ANativeWindow> anw = consumer;
|
|
res = anw->dequeueBuffer(anw.get(), anb, fenceFd);
|
|
} else {
|
|
std::unique_lock<std::mutex> batchLock(mBatchLock);
|
|
res = OK;
|
|
if (mBatchedBuffers.size() == 0) {
|
|
if (remainingBuffers == 0) {
|
|
ALOGE("%s: cannot get buffer while all buffers are handed out", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
if (batchSize > remainingBuffers) {
|
|
batchSize = remainingBuffers;
|
|
}
|
|
batchLock.unlock();
|
|
// Refill batched buffers
|
|
std::vector<Surface::BatchBuffer> batchedBuffers;
|
|
batchedBuffers.resize(batchSize);
|
|
res = consumer->dequeueBuffers(&batchedBuffers);
|
|
batchLock.lock();
|
|
if (res != OK) {
|
|
ALOGE("%s: batch dequeueBuffers call failed! %s (%d)",
|
|
__FUNCTION__, strerror(-res), res);
|
|
} else {
|
|
mBatchedBuffers = std::move(batchedBuffers);
|
|
}
|
|
}
|
|
|
|
if (res == OK) {
|
|
// Dispatch batch buffers
|
|
*anb = mBatchedBuffers.back().buffer;
|
|
*fenceFd = mBatchedBuffers.back().fenceFd;
|
|
mBatchedBuffers.pop_back();
|
|
}
|
|
}
|
|
|
|
nsecs_t dequeueEnd = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mDequeueBufferLatency.add(dequeueStart, dequeueEnd);
|
|
|
|
mLock.lock();
|
|
|
|
if (mUseBufferManager && res == TIMED_OUT) {
|
|
checkRemovedBuffersLocked();
|
|
|
|
sp<GraphicBuffer> gb;
|
|
res = mBufferManager->getBufferForStream(
|
|
getId(), getStreamSetId(), isMultiResolution(),
|
|
&gb, fenceFd, /*noFreeBuffer*/true);
|
|
|
|
if (res == OK) {
|
|
// Attach this buffer to the bufferQueue: the buffer will be in dequeue state after
|
|
// a successful return.
|
|
*anb = gb.get();
|
|
res = mConsumer->attachBuffer(*anb);
|
|
gotBufferFromManager = true;
|
|
ALOGV("Stream %d: Attached new buffer", getId());
|
|
|
|
if (res != OK) {
|
|
if (shouldLogError(res, mState)) {
|
|
ALOGE("%s: Stream %d: Can't attach the output buffer to this surface:"
|
|
" %s (%d)", __FUNCTION__, mId, strerror(-res), res);
|
|
}
|
|
checkRetAndSetAbandonedLocked(res);
|
|
return res;
|
|
}
|
|
} else {
|
|
ALOGE("%s: Stream %d: Can't get next output buffer from buffer manager:"
|
|
" %s (%d)", __FUNCTION__, mId, strerror(-res), res);
|
|
return res;
|
|
}
|
|
} else if (res != OK) {
|
|
if (shouldLogError(res, mState)) {
|
|
ALOGE("%s: Stream %d: Can't dequeue next output buffer: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
}
|
|
checkRetAndSetAbandonedLocked(res);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (res == OK) {
|
|
checkRemovedBuffersLocked();
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void Camera3OutputStream::checkRemovedBuffersLocked(bool notifyBufferManager) {
|
|
std::vector<sp<GraphicBuffer>> removedBuffers;
|
|
status_t res = mConsumer->getAndFlushRemovedBuffers(&removedBuffers);
|
|
if (res == OK) {
|
|
onBuffersRemovedLocked(removedBuffers);
|
|
|
|
if (notifyBufferManager && mUseBufferManager && removedBuffers.size() > 0) {
|
|
mBufferManager->onBuffersRemoved(getId(), getStreamSetId(), isMultiResolution(),
|
|
removedBuffers.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Camera3OutputStream::checkRetAndSetAbandonedLocked(status_t res) {
|
|
// Only transition to STATE_ABANDONED from STATE_CONFIGURED. (If it is
|
|
// STATE_PREPARING, let prepareNextBuffer handle the error.)
|
|
if ((res == NO_INIT || res == DEAD_OBJECT) && mState == STATE_CONFIGURED) {
|
|
mState = STATE_ABANDONED;
|
|
}
|
|
}
|
|
|
|
bool Camera3OutputStream::shouldLogError(status_t res, StreamState state) {
|
|
if (res == OK) {
|
|
return false;
|
|
}
|
|
if ((res == DEAD_OBJECT || res == NO_INIT) && state == STATE_ABANDONED) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Camera3OutputStream::onCachedBufferQueued() {
|
|
Mutex::Autolock l(mLock);
|
|
mCachedOutputBufferCount--;
|
|
// Signal whoever is waiting for the buffer to be returned to the buffer
|
|
// queue.
|
|
mOutputBufferReturnedSignal.signal();
|
|
}
|
|
|
|
status_t Camera3OutputStream::disconnectLocked() {
|
|
status_t res;
|
|
|
|
if ((res = Camera3IOStreamBase::disconnectLocked()) != OK) {
|
|
return res;
|
|
}
|
|
|
|
// Stream configuration was not finished (can only be in STATE_IN_CONFIG or STATE_CONSTRUCTED
|
|
// state), don't need change the stream state, return OK.
|
|
if (mConsumer == nullptr) {
|
|
return OK;
|
|
}
|
|
|
|
returnPrefetchedBuffersLocked();
|
|
|
|
if (mPreviewFrameSpacer != nullptr) {
|
|
mPreviewFrameSpacer->requestExit();
|
|
}
|
|
|
|
ALOGV("%s: disconnecting stream %d from native window", __FUNCTION__, getId());
|
|
|
|
res = native_window_api_disconnect(mConsumer.get(),
|
|
NATIVE_WINDOW_API_CAMERA);
|
|
/**
|
|
* This is not an error. if client calling process dies, the window will
|
|
* also die and all calls to it will return DEAD_OBJECT, thus it's already
|
|
* "disconnected"
|
|
*/
|
|
if (res == DEAD_OBJECT) {
|
|
ALOGW("%s: While disconnecting stream %d from native window, the"
|
|
" native window died from under us", __FUNCTION__, mId);
|
|
}
|
|
else if (res != OK) {
|
|
ALOGE("%s: Unable to disconnect stream %d from native window "
|
|
"(error %d %s)",
|
|
__FUNCTION__, mId, res, strerror(-res));
|
|
mState = STATE_ERROR;
|
|
return res;
|
|
}
|
|
|
|
// Since device is already idle, there is no getBuffer call to buffer manager, unregister the
|
|
// stream at this point should be safe.
|
|
if (mUseBufferManager) {
|
|
res = mBufferManager->unregisterStream(getId(), getStreamSetId(), isMultiResolution());
|
|
if (res != OK) {
|
|
ALOGE("%s: Unable to unregister stream %d from buffer manager "
|
|
"(error %d %s)", __FUNCTION__, mId, res, strerror(-res));
|
|
mState = STATE_ERROR;
|
|
return res;
|
|
}
|
|
// Note that, to make prepare/teardown case work, we must not mBufferManager.clear(), as
|
|
// the stream is still in usable state after this call.
|
|
mUseBufferManager = false;
|
|
}
|
|
|
|
mState = (mState == STATE_IN_RECONFIG) ? STATE_IN_CONFIG
|
|
: STATE_CONSTRUCTED;
|
|
|
|
mDequeueBufferLatency.log("Stream %d dequeueBuffer latency histogram", mId);
|
|
mDequeueBufferLatency.reset();
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::getEndpointUsage(uint64_t *usage) const {
|
|
|
|
status_t res;
|
|
|
|
if (mConsumer == nullptr) {
|
|
// mConsumerUsage was sanitized before the Camera3OutputStream was constructed.
|
|
*usage = mConsumerUsage;
|
|
return OK;
|
|
}
|
|
|
|
res = getEndpointUsageForSurface(usage, mConsumer);
|
|
|
|
return res;
|
|
}
|
|
|
|
void Camera3OutputStream::applyZSLUsageQuirk(int format, uint64_t *consumerUsage /*inout*/) {
|
|
if (consumerUsage == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// If an opaque output stream's endpoint is ImageReader, add
|
|
// GRALLOC_USAGE_HW_CAMERA_ZSL to the usage so HAL knows it will be used
|
|
// for the ZSL use case.
|
|
// Assume it's for ImageReader if the consumer usage doesn't have any of these bits set:
|
|
// 1. GRALLOC_USAGE_HW_TEXTURE
|
|
// 2. GRALLOC_USAGE_HW_RENDER
|
|
// 3. GRALLOC_USAGE_HW_COMPOSER
|
|
// 4. GRALLOC_USAGE_HW_VIDEO_ENCODER
|
|
if (format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
|
|
(*consumerUsage & (GRALLOC_USAGE_HW_TEXTURE | GRALLOC_USAGE_HW_RENDER |
|
|
GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_VIDEO_ENCODER)) == 0) {
|
|
*consumerUsage |= GRALLOC_USAGE_HW_CAMERA_ZSL;
|
|
}
|
|
}
|
|
|
|
status_t Camera3OutputStream::getEndpointUsageForSurface(uint64_t *usage,
|
|
const sp<Surface>& surface) const {
|
|
status_t res;
|
|
uint64_t u = 0;
|
|
|
|
res = native_window_get_consumer_usage(static_cast<ANativeWindow*>(surface.get()), &u);
|
|
applyZSLUsageQuirk(camera_stream::format, &u);
|
|
*usage = u;
|
|
return res;
|
|
}
|
|
|
|
bool Camera3OutputStream::isVideoStream() const {
|
|
uint64_t usage = 0;
|
|
status_t res = getEndpointUsage(&usage);
|
|
if (res != OK) {
|
|
ALOGE("%s: getting end point usage failed: %s (%d).", __FUNCTION__, strerror(-res), res);
|
|
return false;
|
|
}
|
|
|
|
return (usage & GRALLOC_USAGE_HW_VIDEO_ENCODER) != 0;
|
|
}
|
|
|
|
status_t Camera3OutputStream::setBufferManager(sp<Camera3BufferManager> bufferManager) {
|
|
Mutex::Autolock l(mLock);
|
|
if (mState != STATE_CONSTRUCTED) {
|
|
ALOGE("%s: this method can only be called when stream in CONSTRUCTED state.",
|
|
__FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
mBufferManager = bufferManager;
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t Camera3OutputStream::updateStream(const std::vector<sp<Surface>> &/*outputSurfaces*/,
|
|
const std::vector<OutputStreamInfo> &/*outputInfo*/,
|
|
const std::vector<size_t> &/*removedSurfaceIds*/,
|
|
KeyedVector<sp<Surface>, size_t> * /*outputMapo*/) {
|
|
ALOGE("%s: this method is not supported!", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
void Camera3OutputStream::BufferProducerListener::onBufferReleased() {
|
|
sp<Camera3OutputStream> stream = mParent.promote();
|
|
if (stream == nullptr) {
|
|
ALOGV("%s: Parent camera3 output stream was destroyed", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
Mutex::Autolock l(stream->mLock);
|
|
if (!(stream->mUseBufferManager)) {
|
|
return;
|
|
}
|
|
|
|
ALOGV("Stream %d: Buffer released", stream->getId());
|
|
bool shouldFreeBuffer = false;
|
|
status_t res = stream->mBufferManager->onBufferReleased(
|
|
stream->getId(), stream->getStreamSetId(), stream->isMultiResolution(),
|
|
&shouldFreeBuffer);
|
|
if (res != OK) {
|
|
ALOGE("%s: signaling buffer release to buffer manager failed: %s (%d).", __FUNCTION__,
|
|
strerror(-res), res);
|
|
stream->mState = STATE_ERROR;
|
|
}
|
|
|
|
if (shouldFreeBuffer) {
|
|
sp<GraphicBuffer> buffer;
|
|
// Detach and free a buffer (when buffer goes out of scope)
|
|
stream->detachBufferLocked(&buffer, /*fenceFd*/ nullptr);
|
|
if (buffer.get() != nullptr) {
|
|
stream->mBufferManager->notifyBufferRemoved(
|
|
stream->getId(), stream->getStreamSetId(), stream->isMultiResolution());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Camera3OutputStream::BufferProducerListener::onBuffersDiscarded(
|
|
const std::vector<sp<GraphicBuffer>>& buffers) {
|
|
sp<Camera3OutputStream> stream = mParent.promote();
|
|
if (stream == nullptr) {
|
|
ALOGV("%s: Parent camera3 output stream was destroyed", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
if (buffers.size() > 0) {
|
|
Mutex::Autolock l(stream->mLock);
|
|
stream->onBuffersRemovedLocked(buffers);
|
|
if (stream->mUseBufferManager) {
|
|
stream->mBufferManager->onBuffersRemoved(stream->getId(),
|
|
stream->getStreamSetId(), stream->isMultiResolution(), buffers.size());
|
|
}
|
|
ALOGV("Stream %d: %zu Buffers discarded.", stream->getId(), buffers.size());
|
|
}
|
|
}
|
|
|
|
void Camera3OutputStream::onBuffersRemovedLocked(
|
|
const std::vector<sp<GraphicBuffer>>& removedBuffers) {
|
|
sp<Camera3StreamBufferFreedListener> callback = mBufferFreedListener.promote();
|
|
if (callback != nullptr) {
|
|
for (const auto& gb : removedBuffers) {
|
|
callback->onBufferFreed(mId, gb->handle);
|
|
}
|
|
}
|
|
}
|
|
|
|
status_t Camera3OutputStream::detachBuffer(sp<GraphicBuffer>* buffer, int* fenceFd) {
|
|
Mutex::Autolock l(mLock);
|
|
return detachBufferLocked(buffer, fenceFd);
|
|
}
|
|
|
|
status_t Camera3OutputStream::detachBufferLocked(sp<GraphicBuffer>* buffer, int* fenceFd) {
|
|
ALOGV("Stream %d: detachBuffer", getId());
|
|
if (buffer == nullptr) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
sp<Fence> fence;
|
|
status_t res = mConsumer->detachNextBuffer(buffer, &fence);
|
|
if (res == NO_MEMORY) {
|
|
// This may rarely happen, which indicates that the released buffer was freed by other
|
|
// call (e.g., attachBuffer, dequeueBuffer etc.) before reaching here. We should notify the
|
|
// buffer manager that this buffer has been freed. It's not fatal, but should be avoided,
|
|
// therefore log a warning.
|
|
*buffer = 0;
|
|
ALOGW("%s: the released buffer has already been freed by the buffer queue!", __FUNCTION__);
|
|
} else if (res != OK) {
|
|
// Treat other errors as abandonment
|
|
if (shouldLogError(res, mState)) {
|
|
ALOGE("%s: detach next buffer failed: %s (%d).", __FUNCTION__, strerror(-res), res);
|
|
}
|
|
mState = STATE_ABANDONED;
|
|
return res;
|
|
}
|
|
|
|
if (fenceFd != nullptr) {
|
|
if (fence!= 0 && fence->isValid()) {
|
|
*fenceFd = fence->dup();
|
|
} else {
|
|
*fenceFd = -1;
|
|
}
|
|
}
|
|
|
|
// Here we assume detachBuffer is called by buffer manager so it doesn't need to be notified
|
|
checkRemovedBuffersLocked(/*notifyBufferManager*/false);
|
|
return res;
|
|
}
|
|
|
|
status_t Camera3OutputStream::dropBuffers(bool dropping) {
|
|
Mutex::Autolock l(mLock);
|
|
mDropBuffers = dropping;
|
|
return OK;
|
|
}
|
|
|
|
const String8& Camera3OutputStream::getPhysicalCameraId() const {
|
|
Mutex::Autolock l(mLock);
|
|
return physicalCameraId();
|
|
}
|
|
|
|
status_t Camera3OutputStream::notifyBufferReleased(ANativeWindowBuffer* /*anwBuffer*/) {
|
|
return OK;
|
|
}
|
|
|
|
bool Camera3OutputStream::isConsumerConfigurationDeferred(size_t surface_id) const {
|
|
Mutex::Autolock l(mLock);
|
|
|
|
if (surface_id != 0) {
|
|
ALOGE("%s: surface_id %zu for Camera3OutputStream should be 0!", __FUNCTION__, surface_id);
|
|
}
|
|
return mConsumer == nullptr;
|
|
}
|
|
|
|
status_t Camera3OutputStream::setConsumers(const std::vector<sp<Surface>>& consumers) {
|
|
Mutex::Autolock l(mLock);
|
|
if (consumers.size() != 1) {
|
|
ALOGE("%s: it's illegal to set %zu consumer surfaces!",
|
|
__FUNCTION__, consumers.size());
|
|
return INVALID_OPERATION;
|
|
}
|
|
if (consumers[0] == nullptr) {
|
|
ALOGE("%s: it's illegal to set null consumer surface!", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
if (mConsumer != nullptr) {
|
|
ALOGE("%s: consumer surface was already set!", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
mConsumer = consumers[0];
|
|
return OK;
|
|
}
|
|
|
|
bool Camera3OutputStream::isConsumedByHWComposer() const {
|
|
uint64_t usage = 0;
|
|
status_t res = getEndpointUsage(&usage);
|
|
if (res != OK) {
|
|
ALOGE("%s: getting end point usage failed: %s (%d).", __FUNCTION__, strerror(-res), res);
|
|
return false;
|
|
}
|
|
|
|
return (usage & GRALLOC_USAGE_HW_COMPOSER) != 0;
|
|
}
|
|
|
|
bool Camera3OutputStream::isConsumedByHWTexture() const {
|
|
uint64_t usage = 0;
|
|
status_t res = getEndpointUsage(&usage);
|
|
if (res != OK) {
|
|
ALOGE("%s: getting end point usage failed: %s (%d).", __FUNCTION__, strerror(-res), res);
|
|
return false;
|
|
}
|
|
|
|
return (usage & GRALLOC_USAGE_HW_TEXTURE) != 0;
|
|
}
|
|
|
|
bool Camera3OutputStream::isConsumedByCPU() const {
|
|
uint64_t usage = 0;
|
|
status_t res = getEndpointUsage(&usage);
|
|
if (res != OK) {
|
|
ALOGE("%s: getting end point usage failed: %s (%d).", __FUNCTION__, strerror(-res), res);
|
|
return false;
|
|
}
|
|
|
|
return (usage & GRALLOC_USAGE_SW_READ_MASK) != 0;
|
|
}
|
|
|
|
void Camera3OutputStream::dumpImageToDisk(nsecs_t timestamp,
|
|
ANativeWindowBuffer* anwBuffer, int fence) {
|
|
// Deriver output file name
|
|
std::string fileExtension = "jpg";
|
|
char imageFileName[64];
|
|
time_t now = time(0);
|
|
tm *localTime = localtime(&now);
|
|
snprintf(imageFileName, sizeof(imageFileName), "IMG_%4d%02d%02d_%02d%02d%02d_%" PRId64 ".%s",
|
|
1900 + localTime->tm_year, localTime->tm_mon + 1, localTime->tm_mday,
|
|
localTime->tm_hour, localTime->tm_min, localTime->tm_sec,
|
|
timestamp, fileExtension.c_str());
|
|
|
|
// Lock the image for CPU read
|
|
sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(anwBuffer);
|
|
void* mapped = nullptr;
|
|
base::unique_fd fenceFd(dup(fence));
|
|
status_t res = graphicBuffer->lockAsync(GraphicBuffer::USAGE_SW_READ_OFTEN, &mapped,
|
|
fenceFd.get());
|
|
if (res != OK) {
|
|
ALOGE("%s: Failed to lock the buffer: %s (%d)", __FUNCTION__, strerror(-res), res);
|
|
return;
|
|
}
|
|
|
|
// Figure out actual file size
|
|
auto actualJpegSize = android::camera2::JpegProcessor::findJpegSize((uint8_t*)mapped, mMaxSize);
|
|
if (actualJpegSize == 0) {
|
|
actualJpegSize = mMaxSize;
|
|
}
|
|
|
|
// Output image data to file
|
|
std::string filePath = "/data/misc/cameraserver/";
|
|
filePath += imageFileName;
|
|
std::ofstream imageFile(filePath.c_str(), std::ofstream::binary);
|
|
if (!imageFile.is_open()) {
|
|
ALOGE("%s: Unable to create file %s", __FUNCTION__, filePath.c_str());
|
|
graphicBuffer->unlock();
|
|
return;
|
|
}
|
|
imageFile.write((const char*)mapped, actualJpegSize);
|
|
|
|
graphicBuffer->unlock();
|
|
}
|
|
|
|
status_t Camera3OutputStream::setBatchSize(size_t batchSize) {
|
|
Mutex::Autolock l(mLock);
|
|
if (batchSize == 0) {
|
|
ALOGE("%s: invalid batch size 0", __FUNCTION__);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (mUseBufferManager) {
|
|
ALOGE("%s: batch operation is not supported with buffer manager", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
if (!isVideoStream()) {
|
|
ALOGE("%s: batch operation is not supported with non-video stream", __FUNCTION__);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
if (camera_stream::max_buffers < batchSize) {
|
|
ALOGW("%s: batch size is capped by max_buffers %d", __FUNCTION__,
|
|
camera_stream::max_buffers);
|
|
batchSize = camera_stream::max_buffers;
|
|
}
|
|
|
|
size_t defaultBatchSize = 1;
|
|
if (!mBatchSize.compare_exchange_strong(defaultBatchSize, batchSize)) {
|
|
ALOGE("%s: change batch size from %zu to %zu dynamically is not supported",
|
|
__FUNCTION__, defaultBatchSize, batchSize);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
void Camera3OutputStream::onMinDurationChanged(nsecs_t duration, bool fixedFps) {
|
|
Mutex::Autolock l(mLock);
|
|
mMinExpectedDuration = duration;
|
|
mFixedFps = fixedFps;
|
|
}
|
|
|
|
void Camera3OutputStream::setStreamUseCase(int64_t streamUseCase) {
|
|
Mutex::Autolock l(mLock);
|
|
camera_stream::use_case = streamUseCase;
|
|
}
|
|
|
|
void Camera3OutputStream::returnPrefetchedBuffersLocked() {
|
|
std::vector<Surface::BatchBuffer> batchedBuffers;
|
|
|
|
{
|
|
std::lock_guard<std::mutex> batchLock(mBatchLock);
|
|
if (mBatchedBuffers.size() != 0) {
|
|
ALOGW("%s: %zu extra prefetched buffers detected. Returning",
|
|
__FUNCTION__, mBatchedBuffers.size());
|
|
batchedBuffers = std::move(mBatchedBuffers);
|
|
}
|
|
}
|
|
|
|
if (batchedBuffers.size() > 0) {
|
|
mConsumer->cancelBuffers(batchedBuffers);
|
|
}
|
|
}
|
|
|
|
nsecs_t Camera3OutputStream::syncTimestampToDisplayLocked(nsecs_t t) {
|
|
nsecs_t currentTime = systemTime();
|
|
if (!mFixedFps) {
|
|
mLastCaptureTime = t;
|
|
mLastPresentTime = currentTime;
|
|
return t;
|
|
}
|
|
|
|
ParcelableVsyncEventData parcelableVsyncEventData;
|
|
auto res = mDisplayEventReceiver.getLatestVsyncEventData(&parcelableVsyncEventData);
|
|
if (res != OK) {
|
|
ALOGE("%s: Stream %d: Error getting latest vsync event data: %s (%d)",
|
|
__FUNCTION__, mId, strerror(-res), res);
|
|
mLastCaptureTime = t;
|
|
mLastPresentTime = currentTime;
|
|
return t;
|
|
}
|
|
|
|
const VsyncEventData& vsyncEventData = parcelableVsyncEventData.vsync;
|
|
nsecs_t minPresentT = mLastPresentTime + vsyncEventData.frameInterval / 2;
|
|
|
|
// Find the best presentation time without worrying about previous frame's
|
|
// presentation time if capture interval is more than kSpacingResetIntervalNs.
|
|
//
|
|
// When frame interval is more than 50 ms apart (3 vsyncs for 60hz refresh rate),
|
|
// there is little risk in starting over and finding the earliest vsync to latch onto.
|
|
// - Update captureToPresentTime offset to be used for later frames.
|
|
// - Example use cases:
|
|
// - when frame rate drops down to below 20 fps, or
|
|
// - A new streaming session starts (stopPreview followed by
|
|
// startPreview)
|
|
//
|
|
nsecs_t captureInterval = t - mLastCaptureTime;
|
|
if (captureInterval > kSpacingResetIntervalNs) {
|
|
for (size_t i = 0; i < VsyncEventData::kFrameTimelinesLength; i++) {
|
|
const auto& timeline = vsyncEventData.frameTimelines[i];
|
|
if (timeline.deadlineTimestamp >= currentTime &&
|
|
timeline.expectedPresentationTime > minPresentT) {
|
|
nsecs_t presentT = vsyncEventData.frameTimelines[i].expectedPresentationTime;
|
|
mCaptureToPresentOffset = presentT - t;
|
|
mLastCaptureTime = t;
|
|
mLastPresentTime = presentT;
|
|
|
|
// Move the expected presentation time back by 1/3 of frame interval to
|
|
// mitigate the time drift. Due to time drift, if we directly use the
|
|
// expected presentation time, often times 2 expected presentation time
|
|
// falls into the same VSYNC interval.
|
|
return presentT - vsyncEventData.frameInterval/3;
|
|
}
|
|
}
|
|
}
|
|
|
|
nsecs_t idealPresentT = t + mCaptureToPresentOffset;
|
|
nsecs_t expectedPresentT = mLastPresentTime;
|
|
nsecs_t minDiff = INT64_MAX;
|
|
|
|
// In fixed FPS case, when frame durations are close to multiples of display refresh
|
|
// rate, derive minimum intervals between presentation times based on minimal
|
|
// expected duration. The minimum number of Vsyncs is:
|
|
// - 0 if minFrameDuration in (0, 1.5] * vSyncInterval,
|
|
// - 1 if minFrameDuration in (1.5, 2.5] * vSyncInterval,
|
|
// - and so on.
|
|
//
|
|
// This spaces out the displaying of the frames so that the frame
|
|
// presentations are roughly in sync with frame captures.
|
|
int minVsyncs = (mMinExpectedDuration - vsyncEventData.frameInterval / 2) /
|
|
vsyncEventData.frameInterval;
|
|
if (minVsyncs < 0) minVsyncs = 0;
|
|
nsecs_t minInterval = minVsyncs * vsyncEventData.frameInterval;
|
|
|
|
// In fixed FPS case, if the frame duration deviates from multiples of
|
|
// display refresh rate, find the closest Vsync without requiring a minimum
|
|
// number of Vsync.
|
|
//
|
|
// Example: (24fps camera, 60hz refresh):
|
|
// capture readout: | t1 | t1 | .. | t1 | .. | t1 | .. | t1 |
|
|
// display VSYNC: | t2 | t2 | ... | t2 | ... | t2 | ... | t2 |
|
|
// | : 1 frame
|
|
// t1 : 41.67ms
|
|
// t2 : 16.67ms
|
|
// t1/t2 = 2.5
|
|
//
|
|
// 24fps is a commonly used video frame rate. Because the capture
|
|
// interval is 2.5 times of display refresh interval, the minVsyncs
|
|
// calculation will directly fall at the boundary condition. In this case,
|
|
// we should fall back to the basic logic of finding closest vsync
|
|
// timestamp without worrying about minVsyncs.
|
|
float captureToVsyncIntervalRatio = 1.0f * mMinExpectedDuration / vsyncEventData.frameInterval;
|
|
float ratioDeviation = std::fabs(
|
|
captureToVsyncIntervalRatio - std::roundf(captureToVsyncIntervalRatio));
|
|
bool captureDeviateFromVsync = ratioDeviation >= kMaxIntervalRatioDeviation;
|
|
bool cameraDisplayInSync = (mFixedFps && !captureDeviateFromVsync);
|
|
|
|
// Find best timestamp in the vsync timelines:
|
|
// - Only use at most kMaxTimelines timelines to avoid long latency
|
|
// - closest to the ideal presentation time,
|
|
// - deadline timestamp is greater than the current time, and
|
|
// - For fixed FPS, if the capture interval doesn't deviate too much from refresh interval,
|
|
// the candidate presentation time is at least minInterval in the future compared to last
|
|
// presentation time.
|
|
// - For variable FPS, or if the capture interval deviates from refresh
|
|
// interval for more than 5%, find a presentation time closest to the
|
|
// (lastPresentationTime + captureToPresentOffset) instead.
|
|
int maxTimelines = std::min(kMaxTimelines, (int)VsyncEventData::kFrameTimelinesLength);
|
|
float biasForShortDelay = 1.0f;
|
|
for (int i = 0; i < maxTimelines; i ++) {
|
|
const auto& vsyncTime = vsyncEventData.frameTimelines[i];
|
|
if (minVsyncs > 0) {
|
|
// Bias towards using smaller timeline index:
|
|
// i = 0: bias = 1
|
|
// i = maxTimelines-1: bias = -1
|
|
biasForShortDelay = 1.0 - 2.0 * i / (maxTimelines - 1);
|
|
}
|
|
if (std::abs(vsyncTime.expectedPresentationTime - idealPresentT) < minDiff &&
|
|
vsyncTime.deadlineTimestamp >= currentTime &&
|
|
((!cameraDisplayInSync && vsyncTime.expectedPresentationTime > minPresentT) ||
|
|
(cameraDisplayInSync && vsyncTime.expectedPresentationTime >
|
|
mLastPresentTime + minInterval +
|
|
static_cast<nsecs_t>(biasForShortDelay * kTimelineThresholdNs)))) {
|
|
expectedPresentT = vsyncTime.expectedPresentationTime;
|
|
minDiff = std::abs(vsyncTime.expectedPresentationTime - idealPresentT);
|
|
}
|
|
}
|
|
|
|
if (expectedPresentT == mLastPresentTime && expectedPresentT <
|
|
vsyncEventData.frameTimelines[maxTimelines-1].expectedPresentationTime) {
|
|
// Couldn't find a reasonable presentation time. Using last frame's
|
|
// presentation time would cause a frame drop. The best option now
|
|
// is to use the next VSync as long as the last presentation time
|
|
// doesn't already has the maximum latency, in which case dropping the
|
|
// buffer is more desired than increasing latency.
|
|
//
|
|
// Example: (60fps camera, 59.9hz refresh):
|
|
// capture readout: | t1 | t1 | .. | t1 | .. | t1 | .. | t1 |
|
|
// \ \ \ \ \ \ \ \ \
|
|
// queue to BQ: | | | | | | | | |
|
|
// \ \ \ \ \ \ \ \ \
|
|
// display VSYNC: | t2 | t2 | ... | t2 | ... | t2 | ... | t2 |
|
|
//
|
|
// |: 1 frame
|
|
// t1 : 16.67ms
|
|
// t2 : 16.69ms
|
|
//
|
|
// It takes 833 frames for capture readout count and display VSYNC count to be off
|
|
// by 1.
|
|
// - At frames [0, 832], presentationTime is set to timeline[0]
|
|
// - At frames [833, 833*2-1], presentationTime is set to timeline[1]
|
|
// - At frames [833*2, 833*3-1] presentationTime is set to timeline[2]
|
|
// - At frame 833*3, no presentation time is found because we only
|
|
// search for timeline[0..2].
|
|
// - Drop one buffer is better than further extend the presentation
|
|
// time.
|
|
//
|
|
// However, if frame 833*2 arrives 16.67ms early (right after frame
|
|
// 833*2-1), no presentation time can be found because
|
|
// getLatestVsyncEventData is called early. In that case, it's better to
|
|
// set presentation time by offseting last presentation time.
|
|
expectedPresentT += vsyncEventData.frameInterval;
|
|
}
|
|
|
|
mLastCaptureTime = t;
|
|
mLastPresentTime = expectedPresentT;
|
|
|
|
// Move the expected presentation time back by 1/3 of frame interval to
|
|
// mitigate the time drift. Due to time drift, if we directly use the
|
|
// expected presentation time, often times 2 expected presentation time
|
|
// falls into the same VSYNC interval.
|
|
return expectedPresentT - vsyncEventData.frameInterval/3;
|
|
}
|
|
|
|
bool Camera3OutputStream::shouldLogError(status_t res) {
|
|
Mutex::Autolock l(mLock);
|
|
return shouldLogError(res, mState);
|
|
}
|
|
|
|
}; // namespace camera3
|
|
|
|
}; // namespace android
|