2090 lines
89 KiB
C++
Executable File
2090 lines
89 KiB
C++
Executable File
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android-base/unique_fd.h>
|
|
#include <cutils/properties.h>
|
|
#include <net/if.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysmacros.h>
|
|
|
|
#include "hidl_return_util.h"
|
|
#include "hidl_struct_util.h"
|
|
#include "wifi_chip.h"
|
|
#include "wifi_status_util.h"
|
|
|
|
#define P2P_MGMT_DEVICE_PREFIX "p2p-dev-"
|
|
|
|
namespace {
|
|
using android::sp;
|
|
using android::base::unique_fd;
|
|
using android::hardware::hidl_string;
|
|
using android::hardware::hidl_vec;
|
|
using android::hardware::wifi::V1_0::ChipModeId;
|
|
using android::hardware::wifi::V1_0::IfaceType;
|
|
using android::hardware::wifi::V1_0::IWifiChip;
|
|
|
|
constexpr char kCpioMagic[] = "070701";
|
|
constexpr size_t kMaxBufferSizeBytes = 1024 * 1024 * 3;
|
|
constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60 * 10;
|
|
constexpr uint32_t kMaxRingBufferFileNum = 20;
|
|
constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
|
|
constexpr char kActiveWlanIfaceNameProperty[] = "wifi.active.interface";
|
|
constexpr char kNoActiveWlanIfaceNamePropertyValue[] = "";
|
|
constexpr unsigned kMaxWlanIfaces = 5;
|
|
constexpr char kApBridgeIfacePrefix[] = "ap_br_";
|
|
|
|
extern "C" int check_wifi_chip_type_string(char *type);
|
|
static char wifi_type[64] = {0};
|
|
|
|
template <typename Iface>
|
|
void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) {
|
|
iface->invalidate();
|
|
ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface), ifaces.end());
|
|
}
|
|
|
|
template <typename Iface>
|
|
void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) {
|
|
for (const auto& iface : ifaces) {
|
|
iface->invalidate();
|
|
}
|
|
ifaces.clear();
|
|
}
|
|
|
|
template <typename Iface>
|
|
std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) {
|
|
std::vector<hidl_string> names;
|
|
for (const auto& iface : ifaces) {
|
|
names.emplace_back(iface->getName());
|
|
}
|
|
return names;
|
|
}
|
|
|
|
template <typename Iface>
|
|
sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces, const std::string& name) {
|
|
std::vector<hidl_string> names;
|
|
for (const auto& iface : ifaces) {
|
|
if (name == iface->getName()) {
|
|
return iface;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::string getWlanIfaceName(unsigned idx) {
|
|
if (idx >= kMaxWlanIfaces) {
|
|
CHECK(false) << "Requested interface beyond wlan" << kMaxWlanIfaces;
|
|
return {};
|
|
}
|
|
|
|
std::array<char, PROPERTY_VALUE_MAX> buffer;
|
|
if (idx == 0 || idx == 1) {
|
|
const char* altPropName = (idx == 0) ? "wifi.interface" : "wifi.concurrent.interface";
|
|
auto res = property_get(altPropName, buffer.data(), nullptr);
|
|
if (res > 0) return buffer.data();
|
|
}
|
|
std::string propName = "wifi.interface." + std::to_string(idx);
|
|
auto res = property_get(propName.c_str(), buffer.data(), nullptr);
|
|
if (res > 0) return buffer.data();
|
|
|
|
return "wlan" + std::to_string(idx);
|
|
}
|
|
|
|
// Returns the dedicated iface name if defined.
|
|
// Returns two ifaces in bridged mode.
|
|
std::vector<std::string> getPredefinedApIfaceNames(bool is_bridged) {
|
|
std::vector<std::string> ifnames;
|
|
std::array<char, PROPERTY_VALUE_MAX> buffer;
|
|
buffer.fill(0);
|
|
if (property_get("ro.vendor.wifi.sap.interface", buffer.data(), nullptr) == 0) {
|
|
return ifnames;
|
|
}
|
|
ifnames.push_back(buffer.data());
|
|
if (is_bridged) {
|
|
buffer.fill(0);
|
|
if (property_get("ro.vendor.wifi.sap.concurrent.iface", buffer.data(), nullptr) == 0) {
|
|
return ifnames;
|
|
}
|
|
ifnames.push_back(buffer.data());
|
|
}
|
|
return ifnames;
|
|
}
|
|
|
|
std::string getPredefinedP2pIfaceName() {
|
|
std::array<char, PROPERTY_VALUE_MAX> primaryIfaceName;
|
|
char p2pParentIfname[100];
|
|
std::string p2pDevIfName = "";
|
|
std::array<char, PROPERTY_VALUE_MAX> buffer;
|
|
// @Rockchip fix
|
|
if (wifi_type[0] == 0) {
|
|
check_wifi_chip_type_string(wifi_type);
|
|
}
|
|
if ((0 == strncmp(wifi_type, "AP", 2))
|
|
|| (0 == strncmp(wifi_type, "SPRDWL", 6))
|
|
|| (0 == strncmp(wifi_type, "AIC", 3))
|
|
|| (0 == strncmp(wifi_type, "BES2600", 6))) {
|
|
property_set("vendor.wifi.direct.interface", "p2p-dev-wlan0");
|
|
property_get("wifi.direct.interface", buffer.data(), "p2p-dev-wlan0");
|
|
} else {
|
|
property_set("vendor.wifi.direct.interface", "p2p0");
|
|
property_get("wifi.direct.interface", buffer.data(), "p2p0");
|
|
}
|
|
// @end
|
|
if (strncmp(buffer.data(), P2P_MGMT_DEVICE_PREFIX, strlen(P2P_MGMT_DEVICE_PREFIX)) == 0) {
|
|
/* Get the p2p parent interface name from p2p device interface name set
|
|
* in property */
|
|
strlcpy(p2pParentIfname, buffer.data() + strlen(P2P_MGMT_DEVICE_PREFIX),
|
|
strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX));
|
|
if (property_get(kActiveWlanIfaceNameProperty, primaryIfaceName.data(), nullptr) == 0) {
|
|
return buffer.data();
|
|
}
|
|
/* Check if the parent interface derived from p2p device interface name
|
|
* is active */
|
|
if (strncmp(p2pParentIfname, primaryIfaceName.data(),
|
|
strlen(buffer.data()) - strlen(P2P_MGMT_DEVICE_PREFIX)) != 0) {
|
|
/*
|
|
* Update the predefined p2p device interface parent interface name
|
|
* with current active wlan interface
|
|
*/
|
|
p2pDevIfName += P2P_MGMT_DEVICE_PREFIX;
|
|
p2pDevIfName += primaryIfaceName.data();
|
|
LOG(INFO) << "update the p2p device interface name to " << p2pDevIfName.c_str();
|
|
return p2pDevIfName;
|
|
}
|
|
}
|
|
return buffer.data();
|
|
}
|
|
|
|
// Returns the dedicated iface name if one is defined.
|
|
std::string getPredefinedNanIfaceName() {
|
|
std::array<char, PROPERTY_VALUE_MAX> buffer;
|
|
if (property_get("wifi.aware.interface", buffer.data(), nullptr) == 0) {
|
|
return {};
|
|
}
|
|
return buffer.data();
|
|
}
|
|
|
|
void setActiveWlanIfaceNameProperty(const std::string& ifname) {
|
|
auto res = property_set(kActiveWlanIfaceNameProperty, ifname.data());
|
|
if (res != 0) {
|
|
PLOG(ERROR) << "Failed to set active wlan iface name property";
|
|
}
|
|
}
|
|
|
|
// delete files that meet either conditions:
|
|
// 1. older than a predefined time in the wifi tombstone dir.
|
|
// 2. Files in excess to a predefined amount, starting from the oldest ones
|
|
bool removeOldFilesInternal() {
|
|
time_t now = time(0);
|
|
const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
|
|
std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(kTombstoneFolderPath), closedir);
|
|
if (!dir_dump) {
|
|
PLOG(ERROR) << "Failed to open directory";
|
|
return false;
|
|
}
|
|
struct dirent* dp;
|
|
bool success = true;
|
|
std::list<std::pair<const time_t, std::string>> valid_files;
|
|
while ((dp = readdir(dir_dump.get()))) {
|
|
if (dp->d_type != DT_REG) {
|
|
continue;
|
|
}
|
|
std::string cur_file_name(dp->d_name);
|
|
struct stat cur_file_stat;
|
|
std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
|
|
if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
|
|
PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
|
|
success = false;
|
|
continue;
|
|
}
|
|
const time_t cur_file_time = cur_file_stat.st_mtime;
|
|
valid_files.push_back(std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
|
|
}
|
|
valid_files.sort(); // sort the list of files by last modified time from
|
|
// small to big.
|
|
uint32_t cur_file_count = valid_files.size();
|
|
for (auto cur_file : valid_files) {
|
|
if (cur_file_count > kMaxRingBufferFileNum || cur_file.first < delete_files_before) {
|
|
if (unlink(cur_file.second.c_str()) != 0) {
|
|
PLOG(ERROR) << "Error deleting file";
|
|
success = false;
|
|
}
|
|
cur_file_count--;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
// Helper function for |cpioArchiveFilesInDir|
|
|
bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name, size_t file_name_len) {
|
|
const int buf_size = 32 * 1024;
|
|
std::array<char, buf_size> read_buf;
|
|
ssize_t llen = snprintf(
|
|
read_buf.data(), buf_size, "%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X",
|
|
kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid, st.st_gid,
|
|
static_cast<int>(st.st_nlink), static_cast<int>(st.st_mtime),
|
|
static_cast<int>(st.st_size), major(st.st_dev), minor(st.st_dev), major(st.st_rdev),
|
|
minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0);
|
|
if (write(out_fd, read_buf.data(), llen < buf_size ? llen : buf_size - 1) == -1) {
|
|
PLOG(ERROR) << "Error writing cpio header to file " << file_name;
|
|
return false;
|
|
}
|
|
if (write(out_fd, file_name, file_name_len) == -1) {
|
|
PLOG(ERROR) << "Error writing filename to file " << file_name;
|
|
return false;
|
|
}
|
|
|
|
// NUL Pad header up to 4 multiple bytes.
|
|
llen = (llen + file_name_len) % 4;
|
|
if (llen != 0) {
|
|
const uint32_t zero = 0;
|
|
if (write(out_fd, &zero, 4 - llen) == -1) {
|
|
PLOG(ERROR) << "Error padding 0s to file " << file_name;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Helper function for |cpioArchiveFilesInDir|
|
|
size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) {
|
|
// writing content of file
|
|
std::array<char, 32 * 1024> read_buf;
|
|
ssize_t llen = st.st_size;
|
|
size_t n_error = 0;
|
|
while (llen > 0) {
|
|
ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size());
|
|
if (bytes_read == -1) {
|
|
PLOG(ERROR) << "Error reading file";
|
|
return ++n_error;
|
|
}
|
|
llen -= bytes_read;
|
|
if (write(out_fd, read_buf.data(), bytes_read) == -1) {
|
|
PLOG(ERROR) << "Error writing data to file";
|
|
return ++n_error;
|
|
}
|
|
if (bytes_read == 0) { // this should never happen, but just in case
|
|
// to unstuck from while loop
|
|
PLOG(ERROR) << "Unexpected read result";
|
|
n_error++;
|
|
break;
|
|
}
|
|
}
|
|
llen = st.st_size % 4;
|
|
if (llen != 0) {
|
|
const uint32_t zero = 0;
|
|
if (write(out_fd, &zero, 4 - llen) == -1) {
|
|
PLOG(ERROR) << "Error padding 0s to file";
|
|
return ++n_error;
|
|
}
|
|
}
|
|
return n_error;
|
|
}
|
|
|
|
// Helper function for |cpioArchiveFilesInDir|
|
|
bool cpioWriteFileTrailer(int out_fd) {
|
|
const int buf_size = 4096;
|
|
std::array<char, buf_size> read_buf;
|
|
read_buf.fill(0);
|
|
ssize_t llen = snprintf(read_buf.data(), 4096, "070701%040X%056X%08XTRAILER!!!", 1, 0x0b, 0);
|
|
if (write(out_fd, read_buf.data(), (llen < buf_size ? llen : buf_size - 1) + 4) == -1) {
|
|
PLOG(ERROR) << "Error writing trailing bytes";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Archives all files in |input_dir| and writes result into |out_fd|
|
|
// Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive"
|
|
// portion
|
|
size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) {
|
|
struct dirent* dp;
|
|
size_t n_error = 0;
|
|
std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(input_dir), closedir);
|
|
if (!dir_dump) {
|
|
PLOG(ERROR) << "Failed to open directory";
|
|
return ++n_error;
|
|
}
|
|
while ((dp = readdir(dir_dump.get()))) {
|
|
if (dp->d_type != DT_REG) {
|
|
continue;
|
|
}
|
|
std::string cur_file_name(dp->d_name);
|
|
struct stat st;
|
|
const std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
|
|
if (stat(cur_file_path.c_str(), &st) == -1) {
|
|
PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
|
|
n_error++;
|
|
continue;
|
|
}
|
|
const int fd_read = open(cur_file_path.c_str(), O_RDONLY);
|
|
if (fd_read == -1) {
|
|
PLOG(ERROR) << "Failed to open file " << cur_file_path;
|
|
n_error++;
|
|
continue;
|
|
}
|
|
std::string file_name_with_last_modified_time =
|
|
cur_file_name + "-" + std::to_string(st.st_mtime);
|
|
// string.size() does not include the null terminator. The cpio FreeBSD
|
|
// file header expects the null character to be included in the length.
|
|
const size_t file_name_len = file_name_with_last_modified_time.size() + 1;
|
|
unique_fd file_auto_closer(fd_read);
|
|
if (!cpioWriteHeader(out_fd, st, file_name_with_last_modified_time.c_str(),
|
|
file_name_len)) {
|
|
return ++n_error;
|
|
}
|
|
size_t write_error = cpioWriteFileContent(fd_read, out_fd, st);
|
|
if (write_error) {
|
|
return n_error + write_error;
|
|
}
|
|
}
|
|
if (!cpioWriteFileTrailer(out_fd)) {
|
|
return ++n_error;
|
|
}
|
|
return n_error;
|
|
}
|
|
|
|
// Helper function to create a non-const char*.
|
|
std::vector<char> makeCharVec(const std::string& str) {
|
|
std::vector<char> vec(str.size() + 1);
|
|
vec.assign(str.begin(), str.end());
|
|
vec.push_back('\0');
|
|
return vec;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace android {
|
|
namespace hardware {
|
|
namespace wifi {
|
|
namespace V1_6 {
|
|
namespace implementation {
|
|
using hidl_return_util::validateAndCall;
|
|
using hidl_return_util::validateAndCallWithLock;
|
|
|
|
WifiChip::WifiChip(ChipId chip_id, bool is_primary,
|
|
const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
|
|
const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
|
|
const std::shared_ptr<iface_util::WifiIfaceUtil> iface_util,
|
|
const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags,
|
|
const std::function<void(const std::string&)>& handler)
|
|
: chip_id_(chip_id),
|
|
legacy_hal_(legacy_hal),
|
|
mode_controller_(mode_controller),
|
|
iface_util_(iface_util),
|
|
is_valid_(true),
|
|
current_mode_id_(feature_flags::chip_mode_ids::kInvalid),
|
|
modes_(feature_flags.lock()->getChipModes(is_primary)),
|
|
debug_ring_buffer_cb_registered_(false),
|
|
subsystemCallbackHandler_(handler) {
|
|
setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
|
|
}
|
|
|
|
void WifiChip::invalidate() {
|
|
if (!writeRingbufferFilesInternal()) {
|
|
LOG(ERROR) << "Error writing files to flash";
|
|
}
|
|
invalidateAndRemoveAllIfaces();
|
|
setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
|
|
legacy_hal_.reset();
|
|
event_cb_handler_.invalidate();
|
|
is_valid_ = false;
|
|
}
|
|
|
|
bool WifiChip::isValid() {
|
|
return is_valid_;
|
|
}
|
|
|
|
std::set<sp<V1_4::IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
|
|
return event_cb_handler_.getCallbacks();
|
|
}
|
|
|
|
Return<void> WifiChip::getId(getId_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID, &WifiChip::getIdInternal,
|
|
hidl_status_cb);
|
|
}
|
|
|
|
// Deprecated support for this callback
|
|
Return<void> WifiChip::registerEventCallback(const sp<V1_0::IWifiChipEventCallback>& event_callback,
|
|
registerEventCallback_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::registerEventCallbackInternal, hidl_status_cb,
|
|
event_callback);
|
|
}
|
|
|
|
Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getCapabilitiesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getAvailableModesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::configureChip(ChipModeId mode_id, configureChip_cb hidl_status_cb) {
|
|
return validateAndCallWithLock(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::configureChipInternal, hidl_status_cb, mode_id);
|
|
}
|
|
|
|
Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getModeInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::requestChipDebugInfo(requestChipDebugInfo_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::requestChipDebugInfoInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::requestDriverDebugDump(requestDriverDebugDump_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::requestDriverDebugDumpInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::requestFirmwareDebugDump(requestFirmwareDebugDump_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::requestFirmwareDebugDumpInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createApIfaceInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::createBridgedApIface(createBridgedApIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createBridgedApIfaceInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getApIfaceNamesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getApIface(const hidl_string& ifname, getApIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getApIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::removeApIface(const hidl_string& ifname, removeApIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::removeApIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::removeIfaceInstanceFromBridgedApIface(
|
|
const hidl_string& ifname, const hidl_string& ifInstanceName,
|
|
removeIfaceInstanceFromBridgedApIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal, hidl_status_cb,
|
|
ifname, ifInstanceName);
|
|
}
|
|
|
|
Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createNanIfaceInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getNanIfaceNamesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getNanIface(const hidl_string& ifname, getNanIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getNanIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::removeNanIface(const hidl_string& ifname, removeNanIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::removeNanIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createP2pIfaceInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getP2pIfaceNamesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getP2pIface(const hidl_string& ifname, getP2pIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getP2pIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::removeP2pIface(const hidl_string& ifname, removeP2pIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::removeP2pIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createStaIfaceInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getStaIfaceNamesInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getStaIface(const hidl_string& ifname, getStaIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getStaIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::removeStaIface(const hidl_string& ifname, removeStaIface_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::removeStaIfaceInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::createRttController(const sp<IWifiIface>& bound_iface,
|
|
createRttController_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createRttControllerInternal, hidl_status_cb, bound_iface);
|
|
}
|
|
|
|
Return<void> WifiChip::getDebugRingBuffersStatus(getDebugRingBuffersStatus_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getDebugRingBuffersStatusInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::startLoggingToDebugRingBuffer(
|
|
const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
|
|
uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes,
|
|
startLoggingToDebugRingBuffer_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::startLoggingToDebugRingBufferInternal, hidl_status_cb,
|
|
ring_name, verbose_level, max_interval_in_sec, min_data_size_in_bytes);
|
|
}
|
|
|
|
Return<void> WifiChip::forceDumpToDebugRingBuffer(const hidl_string& ring_name,
|
|
forceDumpToDebugRingBuffer_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::forceDumpToDebugRingBufferInternal, hidl_status_cb,
|
|
ring_name);
|
|
}
|
|
|
|
Return<void> WifiChip::flushRingBufferToFile(flushRingBufferToFile_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::flushRingBufferToFileInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::stopLoggingToDebugRingBuffer(
|
|
stopLoggingToDebugRingBuffer_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::stopLoggingToDebugRingBufferInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getDebugHostWakeReasonStats(getDebugHostWakeReasonStats_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getDebugHostWakeReasonStatsInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::enableDebugErrorAlerts(bool enable,
|
|
enableDebugErrorAlerts_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::enableDebugErrorAlertsInternal, hidl_status_cb, enable);
|
|
}
|
|
|
|
Return<void> WifiChip::selectTxPowerScenario(V1_1::IWifiChip::TxPowerScenario scenario,
|
|
selectTxPowerScenario_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::selectTxPowerScenarioInternal, hidl_status_cb, scenario);
|
|
}
|
|
|
|
Return<void> WifiChip::resetTxPowerScenario(resetTxPowerScenario_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::resetTxPowerScenarioInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::setLatencyMode(LatencyMode mode, setLatencyMode_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::setLatencyModeInternal, hidl_status_cb, mode);
|
|
}
|
|
|
|
Return<void> WifiChip::registerEventCallback_1_2(
|
|
const sp<V1_2::IWifiChipEventCallback>& event_callback,
|
|
registerEventCallback_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::registerEventCallbackInternal_1_2, hidl_status_cb,
|
|
event_callback);
|
|
}
|
|
|
|
Return<void> WifiChip::selectTxPowerScenario_1_2(TxPowerScenario scenario,
|
|
selectTxPowerScenario_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::selectTxPowerScenarioInternal_1_2, hidl_status_cb, scenario);
|
|
}
|
|
|
|
Return<void> WifiChip::getCapabilities_1_3(getCapabilities_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getCapabilitiesInternal_1_3, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getCapabilities_1_5(getCapabilities_1_5_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getCapabilitiesInternal_1_5, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::debug(const hidl_handle& handle, const hidl_vec<hidl_string>&) {
|
|
if (handle != nullptr && handle->numFds >= 1) {
|
|
{
|
|
std::unique_lock<std::mutex> lk(lock_t);
|
|
for (const auto& item : ringbuffer_map_) {
|
|
forceDumpToDebugRingBufferInternal(item.first);
|
|
}
|
|
// unique_lock unlocked here
|
|
}
|
|
usleep(100 * 1000); // sleep for 100 milliseconds to wait for
|
|
// ringbuffer updates.
|
|
int fd = handle->data[0];
|
|
if (!writeRingbufferFilesInternal()) {
|
|
LOG(ERROR) << "Error writing files to flash";
|
|
}
|
|
uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath);
|
|
if (n_error != 0) {
|
|
LOG(ERROR) << n_error << " errors occured in cpio function";
|
|
}
|
|
fsync(fd);
|
|
} else {
|
|
LOG(ERROR) << "File handle error";
|
|
}
|
|
return Void();
|
|
}
|
|
|
|
Return<void> WifiChip::createRttController_1_4(const sp<IWifiIface>& bound_iface,
|
|
createRttController_1_4_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createRttControllerInternal_1_4, hidl_status_cb, bound_iface);
|
|
}
|
|
|
|
Return<void> WifiChip::registerEventCallback_1_4(
|
|
const sp<V1_4::IWifiChipEventCallback>& event_callback,
|
|
registerEventCallback_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::registerEventCallbackInternal_1_4, hidl_status_cb,
|
|
event_callback);
|
|
}
|
|
|
|
Return<void> WifiChip::setMultiStaPrimaryConnection(
|
|
const hidl_string& ifname, setMultiStaPrimaryConnection_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::setMultiStaPrimaryConnectionInternal, hidl_status_cb, ifname);
|
|
}
|
|
|
|
Return<void> WifiChip::setMultiStaUseCase(MultiStaUseCase use_case,
|
|
setMultiStaUseCase_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::setMultiStaUseCaseInternal, hidl_status_cb, use_case);
|
|
}
|
|
|
|
Return<void> WifiChip::setCoexUnsafeChannels(const hidl_vec<CoexUnsafeChannel>& unsafeChannels,
|
|
hidl_bitfield<CoexRestriction> restrictions,
|
|
setCoexUnsafeChannels_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::setCoexUnsafeChannelsInternal, hidl_status_cb, unsafeChannels,
|
|
restrictions);
|
|
}
|
|
|
|
Return<void> WifiChip::setCountryCode(const hidl_array<int8_t, 2>& code,
|
|
setCountryCode_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_IFACE_INVALID,
|
|
&WifiChip::setCountryCodeInternal, hidl_status_cb, code);
|
|
}
|
|
|
|
Return<void> WifiChip::getUsableChannels(
|
|
WifiBand band, hidl_bitfield<V1_5::WifiIfaceMode> ifaceModeMask,
|
|
hidl_bitfield<V1_5::IWifiChip::UsableChannelFilter> filterMask,
|
|
getUsableChannels_cb _hidl_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getUsableChannelsInternal, _hidl_cb, band, ifaceModeMask,
|
|
filterMask);
|
|
}
|
|
|
|
Return<void> WifiChip::triggerSubsystemRestart(triggerSubsystemRestart_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::triggerSubsystemRestartInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::createRttController_1_6(const sp<IWifiIface>& bound_iface,
|
|
createRttController_1_6_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::createRttControllerInternal_1_6, hidl_status_cb, bound_iface);
|
|
}
|
|
|
|
Return<void> WifiChip::getUsableChannels_1_6(
|
|
WifiBand band, hidl_bitfield<V1_5::WifiIfaceMode> ifaceModeMask,
|
|
hidl_bitfield<V1_6::IWifiChip::UsableChannelFilter> filterMask,
|
|
getUsableChannels_1_6_cb _hidl_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getUsableChannelsInternal_1_6, _hidl_cb, band, ifaceModeMask,
|
|
filterMask);
|
|
}
|
|
|
|
Return<void> WifiChip::getSupportedRadioCombinationsMatrix(
|
|
getSupportedRadioCombinationsMatrix_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getSupportedRadioCombinationsMatrixInternal, hidl_status_cb);
|
|
}
|
|
|
|
Return<void> WifiChip::getAvailableModes_1_6(getAvailableModes_1_6_cb hidl_status_cb) {
|
|
return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
|
|
&WifiChip::getAvailableModesInternal_1_6, hidl_status_cb);
|
|
}
|
|
|
|
void WifiChip::invalidateAndRemoveAllIfaces() {
|
|
invalidateAndClearBridgedApAll();
|
|
invalidateAndClearAll(ap_ifaces_);
|
|
invalidateAndClearAll(nan_ifaces_);
|
|
invalidateAndClearAll(p2p_ifaces_);
|
|
invalidateAndClearAll(sta_ifaces_);
|
|
// Since all the ifaces are invalid now, all RTT controller objects
|
|
// using those ifaces also need to be invalidated.
|
|
for (const auto& rtt : rtt_controllers_) {
|
|
rtt->invalidate();
|
|
}
|
|
rtt_controllers_.clear();
|
|
}
|
|
|
|
void WifiChip::invalidateAndRemoveDependencies(const std::string& removed_iface_name) {
|
|
for (auto it = nan_ifaces_.begin(); it != nan_ifaces_.end();) {
|
|
auto nan_iface = *it;
|
|
if (nan_iface->getName() == removed_iface_name) {
|
|
nan_iface->invalidate();
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceRemoved(IfaceType::NAN, removed_iface_name).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
|
|
}
|
|
}
|
|
it = nan_ifaces_.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
for (auto it = rtt_controllers_.begin(); it != rtt_controllers_.end();) {
|
|
auto rtt = *it;
|
|
if (rtt->getIfaceName() == removed_iface_name) {
|
|
rtt->invalidate();
|
|
it = rtt_controllers_.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_};
|
|
}
|
|
|
|
WifiStatus WifiChip::registerEventCallbackInternal(
|
|
const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) {
|
|
// Deprecated support for this callback.
|
|
return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
|
|
}
|
|
|
|
std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() {
|
|
// Deprecated support for this callback.
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<V1_0::IWifiChip::ChipMode>>
|
|
WifiChip::getAvailableModesInternal() {
|
|
// Deprecated support -- use getAvailableModes_1_6 for more granular concurrency combinations.
|
|
std::vector<V1_0::IWifiChip::ChipMode> modes_1_0 = {};
|
|
for (const auto& mode_1_6 : modes_) {
|
|
std::vector<V1_0::IWifiChip::ChipIfaceCombination> combos_1_0;
|
|
for (const auto& combo_1_6 : mode_1_6.availableCombinations) {
|
|
std::vector<V1_0::IWifiChip::ChipIfaceCombinationLimit> limits_1_0;
|
|
for (const auto& limit_1_6 : combo_1_6.limits) {
|
|
std::vector<IfaceType> types_1_0;
|
|
for (IfaceConcurrencyType type_1_6 : limit_1_6.types) {
|
|
switch (type_1_6) {
|
|
case IfaceConcurrencyType::STA:
|
|
types_1_0.push_back(IfaceType::STA);
|
|
break;
|
|
case IfaceConcurrencyType::AP:
|
|
types_1_0.push_back(IfaceType::AP);
|
|
break;
|
|
case IfaceConcurrencyType::AP_BRIDGED:
|
|
// Ignore AP_BRIDGED
|
|
break;
|
|
case IfaceConcurrencyType::P2P:
|
|
types_1_0.push_back(IfaceType::P2P);
|
|
break;
|
|
case IfaceConcurrencyType::NAN:
|
|
types_1_0.push_back(IfaceType::NAN);
|
|
break;
|
|
}
|
|
}
|
|
if (types_1_0.empty()) {
|
|
continue;
|
|
}
|
|
V1_0::IWifiChip::ChipIfaceCombinationLimit limit_1_0;
|
|
limit_1_0.types = hidl_vec(types_1_0);
|
|
limit_1_0.maxIfaces = limit_1_6.maxIfaces;
|
|
limits_1_0.push_back(limit_1_0);
|
|
}
|
|
if (limits_1_0.empty()) {
|
|
continue;
|
|
}
|
|
V1_0::IWifiChip::ChipIfaceCombination combo_1_0;
|
|
combo_1_0.limits = hidl_vec(limits_1_0);
|
|
combos_1_0.push_back(combo_1_0);
|
|
}
|
|
if (combos_1_0.empty()) {
|
|
continue;
|
|
}
|
|
V1_0::IWifiChip::ChipMode mode_1_0;
|
|
mode_1_0.id = mode_1_6.id;
|
|
mode_1_0.availableCombinations = hidl_vec(combos_1_0);
|
|
modes_1_0.push_back(mode_1_0);
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), modes_1_0};
|
|
}
|
|
|
|
WifiStatus WifiChip::configureChipInternal(
|
|
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, ChipModeId mode_id) {
|
|
if (!isValidModeId(mode_id)) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
if (mode_id == current_mode_id_) {
|
|
LOG(DEBUG) << "Already in the specified mode " << mode_id;
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
WifiStatus status = handleChipConfiguration(lock, mode_id);
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onChipReconfigureFailure(status).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onChipReconfigureFailure callback";
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onChipReconfigured(mode_id).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
|
|
}
|
|
}
|
|
current_mode_id_ = mode_id;
|
|
LOG(INFO) << "Configured chip in mode " << mode_id;
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
|
|
legacy_hal_.lock()->registerSubsystemRestartCallbackHandler(subsystemCallbackHandler_);
|
|
|
|
return status;
|
|
}
|
|
|
|
std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() {
|
|
if (!isValidModeId(current_mode_id_)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), current_mode_id_};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_};
|
|
}
|
|
|
|
std::pair<WifiStatus, V1_4::IWifiChip::ChipDebugInfo> WifiChip::requestChipDebugInfoInternal() {
|
|
V1_4::IWifiChip::ChipDebugInfo result;
|
|
legacy_hal::wifi_error legacy_status;
|
|
std::string driver_desc;
|
|
const auto ifname = getFirstActiveWlanIfaceName();
|
|
std::tie(legacy_status, driver_desc) = legacy_hal_.lock()->getDriverVersion(ifname);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to get driver version: " << legacyErrorToString(legacy_status);
|
|
WifiStatus status =
|
|
createWifiStatusFromLegacyError(legacy_status, "failed to get driver version");
|
|
return {status, result};
|
|
}
|
|
result.driverDescription = driver_desc.c_str();
|
|
|
|
std::string firmware_desc;
|
|
std::tie(legacy_status, firmware_desc) = legacy_hal_.lock()->getFirmwareVersion(ifname);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to get firmware version: " << legacyErrorToString(legacy_status);
|
|
WifiStatus status =
|
|
createWifiStatusFromLegacyError(legacy_status, "failed to get firmware version");
|
|
return {status, result};
|
|
}
|
|
result.firmwareDescription = firmware_desc.c_str();
|
|
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), result};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<uint8_t>> WifiChip::requestDriverDebugDumpInternal() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
std::vector<uint8_t> driver_dump;
|
|
std::tie(legacy_status, driver_dump) =
|
|
legacy_hal_.lock()->requestDriverMemoryDump(getFirstActiveWlanIfaceName());
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to get driver debug dump: " << legacyErrorToString(legacy_status);
|
|
return {createWifiStatusFromLegacyError(legacy_status), std::vector<uint8_t>()};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<uint8_t>> WifiChip::requestFirmwareDebugDumpInternal() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
std::vector<uint8_t> firmware_dump;
|
|
std::tie(legacy_status, firmware_dump) =
|
|
legacy_hal_.lock()->requestFirmwareMemoryDump(getFirstActiveWlanIfaceName());
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to get firmware debug dump: " << legacyErrorToString(legacy_status);
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump};
|
|
}
|
|
|
|
WifiStatus WifiChip::createVirtualApInterface(const std::string& apVirtIf) {
|
|
legacy_hal::wifi_error legacy_status;
|
|
legacy_status = legacy_hal_.lock()->createVirtualInterface(
|
|
apVirtIf, hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::AP));
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to add interface: " << apVirtIf << " "
|
|
<< legacyErrorToString(legacy_status);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
sp<WifiApIface> WifiChip::newWifiApIface(std::string& ifname) {
|
|
std::vector<std::string> ap_instances;
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
if (it.first == ifname) {
|
|
ap_instances = it.second;
|
|
}
|
|
}
|
|
sp<WifiApIface> iface = new WifiApIface(ifname, ap_instances, legacy_hal_, iface_util_);
|
|
ap_ifaces_.push_back(iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
|
|
}
|
|
}
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
return iface;
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::createApIfaceInternal() {
|
|
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
std::string ifname = allocateApIfaceName();
|
|
WifiStatus status = createVirtualApInterface(ifname);
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
return {status, {}};
|
|
}
|
|
sp<WifiApIface> iface = newWifiApIface(ifname);
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::createBridgedApIfaceInternal() {
|
|
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::AP_BRIDGED)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
std::vector<std::string> ap_instances = allocateBridgedApInstanceNames();
|
|
if (ap_instances.size() < 2) {
|
|
LOG(ERROR) << "Fail to allocate two instances";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
std::string br_ifname = kApBridgeIfacePrefix + ap_instances[0];
|
|
for (int i = 0; i < 2; i++) {
|
|
WifiStatus status = createVirtualApInterface(ap_instances[i]);
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
if (i != 0) { // The failure happened when creating second virtual
|
|
// iface.
|
|
legacy_hal_.lock()->deleteVirtualInterface(
|
|
ap_instances.front()); // Remove the first virtual iface.
|
|
}
|
|
return {status, {}};
|
|
}
|
|
}
|
|
br_ifaces_ap_instances_[br_ifname] = ap_instances;
|
|
if (!iface_util_->createBridge(br_ifname)) {
|
|
LOG(ERROR) << "Failed createBridge - br_name=" << br_ifname.c_str();
|
|
deleteApIface(br_ifname);
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
for (auto const& instance : ap_instances) {
|
|
// Bind ap instance interface to AP bridge
|
|
if (!iface_util_->addIfaceToBridge(br_ifname, instance)) {
|
|
LOG(ERROR) << "Failed add if to Bridge - if_name=" << instance.c_str();
|
|
deleteApIface(br_ifname);
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
}
|
|
sp<WifiApIface> iface = newWifiApIface(br_ifname);
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getApIfaceNamesInternal() {
|
|
if (ap_ifaces_.empty()) {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_5::IWifiApIface>> WifiChip::getApIfaceInternal(
|
|
const std::string& ifname) {
|
|
const auto iface = findUsingName(ap_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
|
|
const auto iface = findUsingName(ap_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
// Invalidate & remove any dependent objects first.
|
|
// Note: This is probably not required because we never create
|
|
// nan/rtt objects over AP iface. But, there is no harm to do it
|
|
// here and not make that assumption all over the place.
|
|
invalidateAndRemoveDependencies(ifname);
|
|
deleteApIface(ifname);
|
|
invalidateAndClear(ap_ifaces_, iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
|
|
}
|
|
}
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
WifiStatus WifiChip::removeIfaceInstanceFromBridgedApIfaceInternal(
|
|
const std::string& ifname, const std::string& ifInstanceName) {
|
|
const auto iface = findUsingName(ap_ifaces_, ifname);
|
|
if (!iface.get() || ifInstanceName.empty()) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
// Requires to remove one of the instance in bridge mode
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
if (it.first == ifname) {
|
|
std::vector<std::string> ap_instances = it.second;
|
|
for (auto const& iface : ap_instances) {
|
|
if (iface == ifInstanceName) {
|
|
if (!iface_util_->removeIfaceFromBridge(it.first, iface)) {
|
|
LOG(ERROR) << "Failed to remove interface: " << ifInstanceName << " from "
|
|
<< ifname;
|
|
return createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE);
|
|
}
|
|
legacy_hal::wifi_error legacy_status =
|
|
legacy_hal_.lock()->deleteVirtualInterface(iface);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to del interface: " << iface << " "
|
|
<< legacyErrorToString(legacy_status);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
ap_instances.erase(
|
|
std::remove(ap_instances.begin(), ap_instances.end(), ifInstanceName),
|
|
ap_instances.end());
|
|
br_ifaces_ap_instances_[ifname] = ap_instances;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
iface->removeInstance(ifInstanceName);
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_4::IWifiNanIface>> WifiChip::createNanIfaceInternal() {
|
|
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::NAN)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
bool is_dedicated_iface = true;
|
|
std::string ifname = getPredefinedNanIfaceName();
|
|
if (ifname.empty() || !iface_util_->ifNameToIndex(ifname)) {
|
|
// Use the first shared STA iface (wlan0) if a dedicated aware iface is
|
|
// not defined.
|
|
ifname = getFirstActiveWlanIfaceName();
|
|
is_dedicated_iface = false;
|
|
}
|
|
sp<WifiNanIface> iface = new WifiNanIface(ifname, is_dedicated_iface, legacy_hal_, iface_util_);
|
|
nan_ifaces_.push_back(iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
|
|
}
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getNanIfaceNamesInternal() {
|
|
if (nan_ifaces_.empty()) {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_4::IWifiNanIface>> WifiChip::getNanIfaceInternal(
|
|
const std::string& ifname) {
|
|
const auto iface = findUsingName(nan_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
|
|
const auto iface = findUsingName(nan_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
invalidateAndClear(nan_ifaces_, iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
|
|
}
|
|
}
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() {
|
|
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::P2P)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
std::string ifname = getPredefinedP2pIfaceName();
|
|
sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_);
|
|
p2p_ifaces_.push_back(iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
|
|
}
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getP2pIfaceNamesInternal() {
|
|
if (wifi_type[0] == 0) {
|
|
check_wifi_chip_type_string(wifi_type);
|
|
}
|
|
if ((0 == strncmp(wifi_type, "AP", 2))
|
|
|| (0 == strncmp(wifi_type, "SPRDWL", 6))
|
|
|| (0 == strncmp(wifi_type, "AIC", 3))
|
|
|| (0 == strncmp(wifi_type, "BES2600", 6))) {
|
|
property_set("vendor.wifi.direct.interface", "p2p-dev-wlan0");
|
|
} else {
|
|
property_set("vendor.wifi.direct.interface", "p2p0");
|
|
}
|
|
if (p2p_ifaces_.empty()) {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(const std::string& ifname) {
|
|
const auto iface = findUsingName(p2p_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
|
|
const auto iface = findUsingName(p2p_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
invalidateAndClear(p2p_ifaces_, iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
|
|
}
|
|
}
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_6::IWifiStaIface>> WifiChip::createStaIfaceInternal() {
|
|
if (!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
std::string ifname = allocateStaIfaceName();
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->createVirtualInterface(
|
|
ifname, hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::STA));
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to add interface: " << ifname << " "
|
|
<< legacyErrorToString(legacy_status);
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_, iface_util_);
|
|
sta_ifaces_.push_back(iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
|
|
}
|
|
}
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<hidl_string>> WifiChip::getStaIfaceNamesInternal() {
|
|
if (sta_ifaces_.empty()) {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_6::IWifiStaIface>> WifiChip::getStaIfaceInternal(
|
|
const std::string& ifname) {
|
|
const auto iface = findUsingName(sta_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
|
|
}
|
|
|
|
WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
|
|
const auto iface = findUsingName(sta_ifaces_, ifname);
|
|
if (!iface.get()) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
// Invalidate & remove any dependent objects first.
|
|
invalidateAndRemoveDependencies(ifname);
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(ifname);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to remove interface: " << ifname << " "
|
|
<< legacyErrorToString(legacy_status);
|
|
}
|
|
invalidateAndClear(sta_ifaces_, iface);
|
|
for (const auto& callback : event_cb_handler_.getCallbacks()) {
|
|
if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
|
|
}
|
|
}
|
|
setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_0::IWifiRttController>> WifiChip::createRttControllerInternal(
|
|
const sp<IWifiIface>& /*bound_iface*/) {
|
|
LOG(ERROR) << "createRttController is not supported on this HAL";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>>
|
|
WifiChip::getDebugRingBuffersStatusInternal() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
std::vector<legacy_hal::wifi_ring_buffer_status> legacy_ring_buffer_status_vec;
|
|
std::tie(legacy_status, legacy_ring_buffer_status_vec) =
|
|
legacy_hal_.lock()->getRingBuffersStatus(getFirstActiveWlanIfaceName());
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec;
|
|
if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl(
|
|
legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_ring_buffer_status_vec};
|
|
}
|
|
|
|
WifiStatus WifiChip::startLoggingToDebugRingBufferInternal(
|
|
const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
|
|
uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
|
|
WifiStatus status = registerDebugRingBufferCallback();
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
return status;
|
|
}
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->startRingBufferLogging(
|
|
getFirstActiveWlanIfaceName(), ring_name,
|
|
static_cast<std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(verbose_level),
|
|
max_interval_in_sec, min_data_size_in_bytes);
|
|
ringbuffer_map_.insert(
|
|
std::pair<std::string, Ringbuffer>(ring_name, Ringbuffer(kMaxBufferSizeBytes)));
|
|
// if verbose logging enabled, turn up HAL daemon logging as well.
|
|
if (verbose_level < WifiDebugRingBufferVerboseLevel::VERBOSE) {
|
|
android::base::SetMinimumLogSeverity(android::base::DEBUG);
|
|
} else {
|
|
android::base::SetMinimumLogSeverity(android::base::VERBOSE);
|
|
}
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(const hidl_string& ring_name) {
|
|
WifiStatus status = registerDebugRingBufferCallback();
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
return status;
|
|
}
|
|
legacy_hal::wifi_error legacy_status =
|
|
legacy_hal_.lock()->getRingBufferData(getFirstActiveWlanIfaceName(), ring_name);
|
|
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::flushRingBufferToFileInternal() {
|
|
if (!writeRingbufferFilesInternal()) {
|
|
LOG(ERROR) << "Error writing files to flash";
|
|
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
|
|
}
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
|
|
legacy_hal::wifi_error legacy_status =
|
|
legacy_hal_.lock()->deregisterRingBufferCallbackHandler(getFirstActiveWlanIfaceName());
|
|
if (legacy_status == legacy_hal::WIFI_SUCCESS) {
|
|
debug_ring_buffer_cb_registered_ = false;
|
|
}
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
std::pair<WifiStatus, WifiDebugHostWakeReasonStats>
|
|
WifiChip::getDebugHostWakeReasonStatsInternal() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
legacy_hal::WakeReasonStats legacy_stats;
|
|
std::tie(legacy_status, legacy_stats) =
|
|
legacy_hal_.lock()->getWakeReasonStats(getFirstActiveWlanIfaceName());
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
WifiDebugHostWakeReasonStats hidl_stats;
|
|
if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats, &hidl_stats)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats};
|
|
}
|
|
|
|
WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
|
|
legacy_hal::wifi_error legacy_status;
|
|
if (enable) {
|
|
android::wp<WifiChip> weak_ptr_this(this);
|
|
const auto& on_alert_callback = [weak_ptr_this](int32_t error_code,
|
|
std::vector<uint8_t> debug_data) {
|
|
const auto shared_ptr_this = weak_ptr_this.promote();
|
|
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
|
|
LOG(ERROR) << "Callback invoked on an invalid object";
|
|
return;
|
|
}
|
|
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
|
|
if (!callback->onDebugErrorAlert(error_code, debug_data).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
|
|
}
|
|
}
|
|
};
|
|
legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
|
|
getFirstActiveWlanIfaceName(), on_alert_callback);
|
|
} else {
|
|
legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
|
|
getFirstActiveWlanIfaceName());
|
|
}
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::selectTxPowerScenarioInternal(V1_1::IWifiChip::TxPowerScenario scenario) {
|
|
auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
|
|
getFirstActiveWlanIfaceName(),
|
|
hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario));
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::resetTxPowerScenarioInternal() {
|
|
auto legacy_status = legacy_hal_.lock()->resetTxPowerScenario(getFirstActiveWlanIfaceName());
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::setLatencyModeInternal(LatencyMode mode) {
|
|
auto legacy_status = legacy_hal_.lock()->setLatencyMode(
|
|
getFirstActiveWlanIfaceName(), hidl_struct_util::convertHidlLatencyModeToLegacy(mode));
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::registerEventCallbackInternal_1_2(
|
|
const sp<V1_2::IWifiChipEventCallback>& /* event_callback */) {
|
|
// Deprecated support for this callback.
|
|
return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
|
|
}
|
|
|
|
WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario) {
|
|
auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
|
|
getFirstActiveWlanIfaceName(),
|
|
hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario));
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_3() {
|
|
// Deprecated support for this callback.
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0};
|
|
}
|
|
|
|
std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_5() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
uint64_t legacy_feature_set;
|
|
uint32_t legacy_logger_feature_set;
|
|
const auto ifname = getFirstActiveWlanIfaceName();
|
|
std::tie(legacy_status, legacy_feature_set) =
|
|
legacy_hal_.lock()->getSupportedFeatureSet(ifname);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
return {createWifiStatusFromLegacyError(legacy_status), 0};
|
|
}
|
|
std::tie(legacy_status, legacy_logger_feature_set) =
|
|
legacy_hal_.lock()->getLoggerSupportedFeatureSet(ifname);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
// some devices don't support querying logger feature set
|
|
legacy_logger_feature_set = 0;
|
|
}
|
|
uint32_t hidl_caps;
|
|
if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities(
|
|
legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps};
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_4::IWifiRttController>> WifiChip::createRttControllerInternal_1_4(
|
|
const sp<IWifiIface>& /*bound_iface*/) {
|
|
LOG(ERROR) << "createRttController_1_4 is not supported on this HAL";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}};
|
|
}
|
|
|
|
WifiStatus WifiChip::registerEventCallbackInternal_1_4(
|
|
const sp<V1_4::IWifiChipEventCallback>& event_callback) {
|
|
if (!event_cb_handler_.addCallback(event_callback)) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
|
|
}
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
WifiStatus WifiChip::setMultiStaPrimaryConnectionInternal(const std::string& ifname) {
|
|
auto legacy_status = legacy_hal_.lock()->multiStaSetPrimaryConnection(ifname);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::setMultiStaUseCaseInternal(MultiStaUseCase use_case) {
|
|
auto legacy_status = legacy_hal_.lock()->multiStaSetUseCase(
|
|
hidl_struct_util::convertHidlMultiStaUseCaseToLegacy(use_case));
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::setCoexUnsafeChannelsInternal(std::vector<CoexUnsafeChannel> unsafe_channels,
|
|
uint32_t restrictions) {
|
|
std::vector<legacy_hal::wifi_coex_unsafe_channel> legacy_unsafe_channels;
|
|
if (!hidl_struct_util::convertHidlVectorOfCoexUnsafeChannelToLegacy(unsafe_channels,
|
|
&legacy_unsafe_channels)) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
|
|
}
|
|
uint32_t legacy_restrictions = 0;
|
|
if (restrictions & CoexRestriction::WIFI_DIRECT) {
|
|
legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_DIRECT;
|
|
}
|
|
if (restrictions & CoexRestriction::SOFTAP) {
|
|
legacy_restrictions |= legacy_hal::wifi_coex_restriction::SOFTAP;
|
|
}
|
|
if (restrictions & CoexRestriction::WIFI_AWARE) {
|
|
legacy_restrictions |= legacy_hal::wifi_coex_restriction::WIFI_AWARE;
|
|
}
|
|
auto legacy_status =
|
|
legacy_hal_.lock()->setCoexUnsafeChannels(legacy_unsafe_channels, legacy_restrictions);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::setCountryCodeInternal(const std::array<int8_t, 2>& code) {
|
|
auto legacy_status = legacy_hal_.lock()->setCountryCode(getFirstActiveWlanIfaceName(), code);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<V1_5::WifiUsableChannel>> WifiChip::getUsableChannelsInternal(
|
|
WifiBand /*band*/, uint32_t /*ifaceModeMask*/, uint32_t /*filterMask*/) {
|
|
LOG(ERROR) << "getUsableChannels is not supported on this HAL";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}};
|
|
}
|
|
|
|
WifiStatus WifiChip::triggerSubsystemRestartInternal() {
|
|
auto legacy_status = legacy_hal_.lock()->triggerSubsystemRestart();
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
std::pair<WifiStatus, sp<V1_6::IWifiRttController>> WifiChip::createRttControllerInternal_1_6(
|
|
const sp<IWifiIface>& bound_iface) {
|
|
if (sta_ifaces_.size() == 0 &&
|
|
!canCurrentModeSupportConcurrencyTypeWithCurrentTypes(IfaceConcurrencyType::STA)) {
|
|
LOG(ERROR) << "createRttControllerInternal_1_6: Chip cannot support STAs "
|
|
"(and RTT by extension)";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
|
|
}
|
|
sp<WifiRttController> rtt =
|
|
new WifiRttController(getFirstActiveWlanIfaceName(), bound_iface, legacy_hal_);
|
|
rtt_controllers_.emplace_back(rtt);
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), rtt};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<V1_6::WifiUsableChannel>> WifiChip::getUsableChannelsInternal_1_6(
|
|
WifiBand band, uint32_t ifaceModeMask, uint32_t filterMask) {
|
|
legacy_hal::wifi_error legacy_status;
|
|
std::vector<legacy_hal::wifi_usable_channel> legacy_usable_channels;
|
|
std::tie(legacy_status, legacy_usable_channels) = legacy_hal_.lock()->getUsableChannels(
|
|
hidl_struct_util::convertHidlWifiBandToLegacyMacBand(band),
|
|
hidl_struct_util::convertHidlWifiIfaceModeToLegacy(ifaceModeMask),
|
|
hidl_struct_util::convertHidlUsableChannelFilterToLegacy(filterMask));
|
|
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
std::vector<V1_6::WifiUsableChannel> hidl_usable_channels;
|
|
if (!hidl_struct_util::convertLegacyWifiUsableChannelsToHidl(legacy_usable_channels,
|
|
&hidl_usable_channels)) {
|
|
return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_usable_channels};
|
|
}
|
|
|
|
std::pair<WifiStatus, V1_6::WifiRadioCombinationMatrix>
|
|
WifiChip::getSupportedRadioCombinationsMatrixInternal() {
|
|
legacy_hal::wifi_error legacy_status;
|
|
legacy_hal::wifi_radio_combination_matrix* legacy_matrix;
|
|
|
|
std::tie(legacy_status, legacy_matrix) =
|
|
legacy_hal_.lock()->getSupportedRadioCombinationsMatrix();
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to get SupportedRadioCombinations matrix from legacy HAL: "
|
|
<< legacyErrorToString(legacy_status);
|
|
return {createWifiStatusFromLegacyError(legacy_status), {}};
|
|
}
|
|
|
|
V1_6::WifiRadioCombinationMatrix hidl_matrix;
|
|
if (!hidl_struct_util::convertLegacyRadioCombinationsMatrixToHidl(legacy_matrix,
|
|
&hidl_matrix)) {
|
|
LOG(ERROR) << "Failed convertLegacyRadioCombinationsMatrixToHidl() ";
|
|
return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), {}};
|
|
}
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_matrix};
|
|
}
|
|
|
|
std::pair<WifiStatus, std::vector<V1_6::IWifiChip::ChipMode>>
|
|
WifiChip::getAvailableModesInternal_1_6() {
|
|
return {createWifiStatus(WifiStatusCode::SUCCESS), modes_};
|
|
}
|
|
|
|
WifiStatus WifiChip::handleChipConfiguration(
|
|
/* NONNULL */ std::unique_lock<std::recursive_mutex>* lock, ChipModeId mode_id) {
|
|
// If the chip is already configured in a different mode, stop
|
|
// the legacy HAL and then start it after firmware mode change.
|
|
if (isValidModeId(current_mode_id_)) {
|
|
LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_ << " to mode " << mode_id;
|
|
invalidateAndRemoveAllIfaces();
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->stop(lock, []() {});
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to stop legacy HAL: " << legacyErrorToString(legacy_status);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
}
|
|
// Firmware mode change not needed for V2 devices.
|
|
bool success = true;
|
|
if (mode_id == feature_flags::chip_mode_ids::kV1Sta) {
|
|
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
|
|
} else if (mode_id == feature_flags::chip_mode_ids::kV1Ap) {
|
|
success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
|
|
}
|
|
if (!success) {
|
|
return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
|
|
}
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to start legacy HAL: " << legacyErrorToString(legacy_status);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
// Every time the HAL is restarted, we need to register the
|
|
// radio mode change callback.
|
|
WifiStatus status = registerRadioModeChangeCallback();
|
|
if (status.code != WifiStatusCode::SUCCESS) {
|
|
// This probably is not a critical failure?
|
|
LOG(ERROR) << "Failed to register radio mode change callback";
|
|
}
|
|
// Extract and save the version information into property.
|
|
std::pair<WifiStatus, V1_4::IWifiChip::ChipDebugInfo> version_info;
|
|
version_info = WifiChip::requestChipDebugInfoInternal();
|
|
if (WifiStatusCode::SUCCESS == version_info.first.code) {
|
|
property_set("vendor.wlan.firmware.version",
|
|
version_info.second.firmwareDescription.c_str());
|
|
property_set("vendor.wlan.driver.version", version_info.second.driverDescription.c_str());
|
|
}
|
|
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
WifiStatus WifiChip::registerDebugRingBufferCallback() {
|
|
if (debug_ring_buffer_cb_registered_) {
|
|
return createWifiStatus(WifiStatusCode::SUCCESS);
|
|
}
|
|
|
|
android::wp<WifiChip> weak_ptr_this(this);
|
|
const auto& on_ring_buffer_data_callback =
|
|
[weak_ptr_this](const std::string& name, const std::vector<uint8_t>& data,
|
|
const legacy_hal::wifi_ring_buffer_status& status) {
|
|
const auto shared_ptr_this = weak_ptr_this.promote();
|
|
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
|
|
LOG(ERROR) << "Callback invoked on an invalid object";
|
|
return;
|
|
}
|
|
WifiDebugRingBufferStatus hidl_status;
|
|
Ringbuffer::AppendStatus appendstatus;
|
|
if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(status,
|
|
&hidl_status)) {
|
|
LOG(ERROR) << "Error converting ring buffer status";
|
|
return;
|
|
}
|
|
{
|
|
std::unique_lock<std::mutex> lk(shared_ptr_this->lock_t);
|
|
const auto& target = shared_ptr_this->ringbuffer_map_.find(name);
|
|
if (target != shared_ptr_this->ringbuffer_map_.end()) {
|
|
Ringbuffer& cur_buffer = target->second;
|
|
appendstatus = cur_buffer.append(data);
|
|
} else {
|
|
LOG(ERROR) << "Ringname " << name << " not found";
|
|
return;
|
|
}
|
|
// unique_lock unlocked here
|
|
}
|
|
if (appendstatus == Ringbuffer::AppendStatus::FAIL_RING_BUFFER_CORRUPTED) {
|
|
LOG(ERROR) << "Ringname " << name << " is corrupted. Clear the ring buffer";
|
|
shared_ptr_this->writeRingbufferFilesInternal();
|
|
return;
|
|
}
|
|
|
|
};
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->registerRingBufferCallbackHandler(
|
|
getFirstActiveWlanIfaceName(), on_ring_buffer_data_callback);
|
|
|
|
if (legacy_status == legacy_hal::WIFI_SUCCESS) {
|
|
debug_ring_buffer_cb_registered_ = true;
|
|
}
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
WifiStatus WifiChip::registerRadioModeChangeCallback() {
|
|
android::wp<WifiChip> weak_ptr_this(this);
|
|
const auto& on_radio_mode_change_callback =
|
|
[weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
|
|
const auto shared_ptr_this = weak_ptr_this.promote();
|
|
if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
|
|
LOG(ERROR) << "Callback invoked on an invalid object";
|
|
return;
|
|
}
|
|
std::vector<V1_4::IWifiChipEventCallback::RadioModeInfo> hidl_radio_mode_infos;
|
|
if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(mac_infos,
|
|
&hidl_radio_mode_infos)) {
|
|
LOG(ERROR) << "Error converting wifi mac info";
|
|
return;
|
|
}
|
|
for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
|
|
if (!callback->onRadioModeChange_1_4(hidl_radio_mode_infos).isOk()) {
|
|
LOG(ERROR) << "Failed to invoke onRadioModeChange_1_4"
|
|
<< " callback on: " << toString(callback);
|
|
}
|
|
}
|
|
};
|
|
legacy_hal::wifi_error legacy_status =
|
|
legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
|
|
getFirstActiveWlanIfaceName(), on_radio_mode_change_callback);
|
|
return createWifiStatusFromLegacyError(legacy_status);
|
|
}
|
|
|
|
std::vector<V1_6::IWifiChip::ChipConcurrencyCombination>
|
|
WifiChip::getCurrentModeConcurrencyCombinations() {
|
|
if (!isValidModeId(current_mode_id_)) {
|
|
LOG(ERROR) << "Chip not configured in a mode yet";
|
|
return {};
|
|
}
|
|
for (const auto& mode : modes_) {
|
|
if (mode.id == current_mode_id_) {
|
|
return mode.availableCombinations;
|
|
}
|
|
}
|
|
CHECK(0) << "Expected to find concurrency combinations for current mode!";
|
|
return {};
|
|
}
|
|
|
|
// Returns a map indexed by IfaceConcurrencyType with the number of ifaces currently
|
|
// created of the corresponding concurrency type.
|
|
std::map<IfaceConcurrencyType, size_t> WifiChip::getCurrentConcurrencyCombination() {
|
|
std::map<IfaceConcurrencyType, size_t> iface_counts;
|
|
uint32_t num_ap = 0;
|
|
uint32_t num_ap_bridged = 0;
|
|
for (const auto& ap_iface : ap_ifaces_) {
|
|
std::string ap_iface_name = ap_iface->getName();
|
|
if (br_ifaces_ap_instances_.count(ap_iface_name) > 0 &&
|
|
br_ifaces_ap_instances_[ap_iface_name].size() > 1) {
|
|
num_ap_bridged++;
|
|
} else {
|
|
num_ap++;
|
|
}
|
|
}
|
|
iface_counts[IfaceConcurrencyType::AP] = num_ap;
|
|
iface_counts[IfaceConcurrencyType::AP_BRIDGED] = num_ap_bridged;
|
|
iface_counts[IfaceConcurrencyType::NAN] = nan_ifaces_.size();
|
|
iface_counts[IfaceConcurrencyType::P2P] = p2p_ifaces_.size();
|
|
iface_counts[IfaceConcurrencyType::STA] = sta_ifaces_.size();
|
|
return iface_counts;
|
|
}
|
|
|
|
// This expands the provided concurrency combinations to a more parseable
|
|
// form. Returns a vector of available combinations possible with the number
|
|
// of each concurrency type in the combination.
|
|
// This method is a port of HalDeviceManager.expandConcurrencyCombos() from framework.
|
|
std::vector<std::map<IfaceConcurrencyType, size_t>> WifiChip::expandConcurrencyCombinations(
|
|
const V1_6::IWifiChip::ChipConcurrencyCombination& combination) {
|
|
uint32_t num_expanded_combos = 1;
|
|
for (const auto& limit : combination.limits) {
|
|
for (uint32_t i = 0; i < limit.maxIfaces; i++) {
|
|
num_expanded_combos *= limit.types.size();
|
|
}
|
|
}
|
|
|
|
// Allocate the vector of expanded combos and reset all concurrency type counts to 0
|
|
// in each combo.
|
|
std::vector<std::map<IfaceConcurrencyType, size_t>> expanded_combos;
|
|
expanded_combos.resize(num_expanded_combos);
|
|
for (auto& expanded_combo : expanded_combos) {
|
|
for (const auto type :
|
|
{IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN,
|
|
IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) {
|
|
expanded_combo[type] = 0;
|
|
}
|
|
}
|
|
uint32_t span = num_expanded_combos;
|
|
for (const auto& limit : combination.limits) {
|
|
for (uint32_t i = 0; i < limit.maxIfaces; i++) {
|
|
span /= limit.types.size();
|
|
for (uint32_t k = 0; k < num_expanded_combos; ++k) {
|
|
const auto iface_type = limit.types[(k / span) % limit.types.size()];
|
|
expanded_combos[k][iface_type]++;
|
|
}
|
|
}
|
|
}
|
|
return expanded_combos;
|
|
}
|
|
|
|
bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes(
|
|
const std::map<IfaceConcurrencyType, size_t>& expanded_combo,
|
|
IfaceConcurrencyType requested_type) {
|
|
const auto current_combo = getCurrentConcurrencyCombination();
|
|
|
|
// Check if we have space for 1 more iface of |type| in this combo
|
|
for (const auto type :
|
|
{IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN,
|
|
IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) {
|
|
size_t num_ifaces_needed = current_combo.at(type);
|
|
if (type == requested_type) {
|
|
num_ifaces_needed++;
|
|
}
|
|
size_t num_ifaces_allowed = expanded_combo.at(type);
|
|
if (num_ifaces_needed > num_ifaces_allowed) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This method does the following:
|
|
// a) Enumerate all possible concurrency combos by expanding the current
|
|
// ChipConcurrencyCombination.
|
|
// b) Check if the requested concurrency type can be added to the current mode
|
|
// with the concurrency combination that is already active.
|
|
bool WifiChip::canCurrentModeSupportConcurrencyTypeWithCurrentTypes(
|
|
IfaceConcurrencyType requested_type) {
|
|
if (!isValidModeId(current_mode_id_)) {
|
|
LOG(ERROR) << "Chip not configured in a mode yet";
|
|
return false;
|
|
}
|
|
const auto combinations = getCurrentModeConcurrencyCombinations();
|
|
for (const auto& combination : combinations) {
|
|
const auto expanded_combos = expandConcurrencyCombinations(combination);
|
|
for (const auto& expanded_combo : expanded_combos) {
|
|
if (canExpandedConcurrencyComboSupportConcurrencyTypeWithCurrentTypes(expanded_combo,
|
|
requested_type)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Note: This does not consider concurrency types already active. It only checks if the
|
|
// provided expanded concurrency combination can support the requested combo.
|
|
bool WifiChip::canExpandedConcurrencyComboSupportConcurrencyCombo(
|
|
const std::map<IfaceConcurrencyType, size_t>& expanded_combo,
|
|
const std::map<IfaceConcurrencyType, size_t>& req_combo) {
|
|
// Check if we have space for 1 more |type| in this combo
|
|
for (const auto type :
|
|
{IfaceConcurrencyType::AP, IfaceConcurrencyType::AP_BRIDGED, IfaceConcurrencyType::NAN,
|
|
IfaceConcurrencyType::P2P, IfaceConcurrencyType::STA}) {
|
|
if (req_combo.count(type) == 0) {
|
|
// Concurrency type not in the req_combo.
|
|
continue;
|
|
}
|
|
size_t num_ifaces_needed = req_combo.at(type);
|
|
size_t num_ifaces_allowed = expanded_combo.at(type);
|
|
if (num_ifaces_needed > num_ifaces_allowed) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
// This method does the following:
|
|
// a) Enumerate all possible concurrency combos by expanding the current
|
|
// ChipConcurrencyCombination.
|
|
// b) Check if the requested concurrency combo can be added to the current mode.
|
|
// Note: This does not consider concurrency types already active. It only checks if the
|
|
// current mode can support the requested combo.
|
|
bool WifiChip::canCurrentModeSupportConcurrencyCombo(
|
|
const std::map<IfaceConcurrencyType, size_t>& req_combo) {
|
|
if (!isValidModeId(current_mode_id_)) {
|
|
LOG(ERROR) << "Chip not configured in a mode yet";
|
|
return false;
|
|
}
|
|
const auto combinations = getCurrentModeConcurrencyCombinations();
|
|
for (const auto& combination : combinations) {
|
|
const auto expanded_combos = expandConcurrencyCombinations(combination);
|
|
for (const auto& expanded_combo : expanded_combos) {
|
|
if (canExpandedConcurrencyComboSupportConcurrencyCombo(expanded_combo, req_combo)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This method does the following:
|
|
// a) Enumerate all possible concurrency combos by expanding the current
|
|
// ChipConcurrencyCombination.
|
|
// b) Check if the requested concurrency type can be added to the current mode.
|
|
bool WifiChip::canCurrentModeSupportConcurrencyType(IfaceConcurrencyType requested_type) {
|
|
// Check if we can support at least 1 of the requested concurrency type.
|
|
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
|
|
req_iface_combo[requested_type] = 1;
|
|
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
|
|
}
|
|
|
|
bool WifiChip::isValidModeId(ChipModeId mode_id) {
|
|
for (const auto& mode : modes_) {
|
|
if (mode.id == mode_id) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool WifiChip::isStaApConcurrencyAllowedInCurrentMode() {
|
|
// Check if we can support at least 1 STA & 1 AP concurrently.
|
|
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
|
|
req_iface_combo[IfaceConcurrencyType::STA] = 1;
|
|
req_iface_combo[IfaceConcurrencyType::AP] = 1;
|
|
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
|
|
}
|
|
|
|
bool WifiChip::isDualStaConcurrencyAllowedInCurrentMode() {
|
|
// Check if we can support at least 2 STA concurrently.
|
|
std::map<IfaceConcurrencyType, size_t> req_iface_combo;
|
|
req_iface_combo[IfaceConcurrencyType::STA] = 2;
|
|
return canCurrentModeSupportConcurrencyCombo(req_iface_combo);
|
|
}
|
|
|
|
std::string WifiChip::getFirstActiveWlanIfaceName() {
|
|
if (sta_ifaces_.size() > 0) return sta_ifaces_[0]->getName();
|
|
if (ap_ifaces_.size() > 0) {
|
|
// If the first active wlan iface is bridged iface.
|
|
// Return first instance name.
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
if (it.first == ap_ifaces_[0]->getName()) {
|
|
return it.second[0];
|
|
}
|
|
}
|
|
return ap_ifaces_[0]->getName();
|
|
}
|
|
// This could happen if the chip call is made before any STA/AP
|
|
// iface is created. Default to wlan0 for such cases.
|
|
LOG(WARNING) << "No active wlan interfaces in use! Using default";
|
|
return getWlanIfaceNameWithType(IfaceType::STA, 0);
|
|
}
|
|
|
|
// Return the first wlan (wlan0, wlan1 etc.) starting from |start_idx|
|
|
// not already in use.
|
|
// Note: This doesn't check the actual presence of these interfaces.
|
|
std::string WifiChip::allocateApOrStaIfaceName(IfaceType type, uint32_t start_idx) {
|
|
for (unsigned idx = start_idx; idx < kMaxWlanIfaces; idx++) {
|
|
const auto ifname = getWlanIfaceNameWithType(type, idx);
|
|
if (findUsingNameFromBridgedApInstances(ifname)) continue;
|
|
if (findUsingName(ap_ifaces_, ifname)) continue;
|
|
if (findUsingName(sta_ifaces_, ifname)) continue;
|
|
return ifname;
|
|
}
|
|
// This should never happen. We screwed up somewhere if it did.
|
|
CHECK(false) << "All wlan interfaces in use already!";
|
|
return {};
|
|
}
|
|
|
|
uint32_t WifiChip::startIdxOfApIface() {
|
|
if (isDualStaConcurrencyAllowedInCurrentMode()) {
|
|
// When the HAL support dual STAs, AP should start with idx 2.
|
|
return 2;
|
|
} else if (isStaApConcurrencyAllowedInCurrentMode()) {
|
|
// When the HAL support STA + AP but it doesn't support dual STAs.
|
|
// AP should start with idx 1.
|
|
return 1;
|
|
}
|
|
// No concurrency support.
|
|
return 0;
|
|
}
|
|
|
|
// AP iface names start with idx 1 for modes supporting
|
|
// concurrent STA and not dual AP, else start with idx 0.
|
|
std::string WifiChip::allocateApIfaceName() {
|
|
// Check if we have a dedicated iface for AP.
|
|
std::vector<std::string> ifnames = getPredefinedApIfaceNames(false);
|
|
if (!ifnames.empty()) {
|
|
return ifnames[0];
|
|
}
|
|
return allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface());
|
|
}
|
|
|
|
std::vector<std::string> WifiChip::allocateBridgedApInstanceNames() {
|
|
// Check if we have a dedicated iface for AP.
|
|
std::vector<std::string> instances = getPredefinedApIfaceNames(true);
|
|
if (instances.size() == 2) {
|
|
return instances;
|
|
} else {
|
|
int num_ifaces_need_to_allocate = 2 - instances.size();
|
|
for (int i = 0; i < num_ifaces_need_to_allocate; i++) {
|
|
std::string instance_name =
|
|
allocateApOrStaIfaceName(IfaceType::AP, startIdxOfApIface() + i);
|
|
if (!instance_name.empty()) {
|
|
instances.push_back(instance_name);
|
|
}
|
|
}
|
|
}
|
|
return instances;
|
|
}
|
|
|
|
// STA iface names start with idx 0.
|
|
// Primary STA iface will always be 0.
|
|
std::string WifiChip::allocateStaIfaceName() {
|
|
return allocateApOrStaIfaceName(IfaceType::STA, 0);
|
|
}
|
|
|
|
bool WifiChip::writeRingbufferFilesInternal() {
|
|
if (!removeOldFilesInternal()) {
|
|
LOG(ERROR) << "Error occurred while deleting old tombstone files";
|
|
return false;
|
|
}
|
|
// write ringbuffers to file
|
|
{
|
|
std::unique_lock<std::mutex> lk(lock_t);
|
|
for (auto& item : ringbuffer_map_) {
|
|
Ringbuffer& cur_buffer = item.second;
|
|
if (cur_buffer.getData().empty()) {
|
|
continue;
|
|
}
|
|
const std::string file_path_raw = kTombstoneFolderPath + item.first + "XXXXXXXXXX";
|
|
const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
|
|
if (dump_fd == -1) {
|
|
PLOG(ERROR) << "create file failed";
|
|
return false;
|
|
}
|
|
unique_fd file_auto_closer(dump_fd);
|
|
for (const auto& cur_block : cur_buffer.getData()) {
|
|
if (cur_block.size() <= 0 || cur_block.size() > kMaxBufferSizeBytes) {
|
|
PLOG(ERROR) << "Ring buffer: " << item.first
|
|
<< " is corrupted. Invalid block size: " << cur_block.size();
|
|
break;
|
|
}
|
|
if (write(dump_fd, cur_block.data(), sizeof(cur_block[0]) * cur_block.size()) ==
|
|
-1) {
|
|
PLOG(ERROR) << "Error writing to file";
|
|
}
|
|
}
|
|
cur_buffer.clear();
|
|
}
|
|
// unique_lock unlocked here
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::string WifiChip::getWlanIfaceNameWithType(IfaceType type, unsigned idx) {
|
|
std::string ifname;
|
|
|
|
// let the legacy hal override the interface name
|
|
legacy_hal::wifi_error err = legacy_hal_.lock()->getSupportedIfaceName((uint32_t)type, ifname);
|
|
if (err == legacy_hal::WIFI_SUCCESS) return ifname;
|
|
|
|
return getWlanIfaceName(idx);
|
|
}
|
|
|
|
void WifiChip::invalidateAndClearBridgedApAll() {
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
for (auto const& iface : it.second) {
|
|
iface_util_->removeIfaceFromBridge(it.first, iface);
|
|
legacy_hal_.lock()->deleteVirtualInterface(iface);
|
|
}
|
|
iface_util_->deleteBridge(it.first);
|
|
}
|
|
br_ifaces_ap_instances_.clear();
|
|
}
|
|
|
|
void WifiChip::deleteApIface(const std::string& if_name) {
|
|
if (if_name.empty()) return;
|
|
// delete bridged interfaces if have
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
if (it.first == if_name) {
|
|
for (auto const& iface : it.second) {
|
|
iface_util_->removeIfaceFromBridge(if_name, iface);
|
|
legacy_hal_.lock()->deleteVirtualInterface(iface);
|
|
}
|
|
iface_util_->deleteBridge(if_name);
|
|
br_ifaces_ap_instances_.erase(if_name);
|
|
// ifname is bridged AP, return here.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// No bridged AP case, delete AP iface
|
|
legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->deleteVirtualInterface(if_name);
|
|
if (legacy_status != legacy_hal::WIFI_SUCCESS) {
|
|
LOG(ERROR) << "Failed to remove interface: " << if_name << " "
|
|
<< legacyErrorToString(legacy_status);
|
|
}
|
|
}
|
|
|
|
bool WifiChip::findUsingNameFromBridgedApInstances(const std::string& name) {
|
|
for (auto const& it : br_ifaces_ap_instances_) {
|
|
if (it.first == name) {
|
|
return true;
|
|
}
|
|
for (auto const& iface : it.second) {
|
|
if (iface == name) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace implementation
|
|
} // namespace V1_6
|
|
} // namespace wifi
|
|
} // namespace hardware
|
|
} // namespace android
|