android13/hardware/rockchip/librkcrypto/test/test_otp_key_crypto.c

478 lines
11 KiB
C

/*
* Copyright (c) 2022 Rockchip Electronics Co. Ltd.
*/
#include <stdlib.h>
#include "c_model.h"
#include "cmode_adapter.h"
#include "rkcrypto_core.h"
#include "rkcrypto_mem.h"
#include "rkcrypto_otp_key.h"
#include "test_otp_key_crypto.h"
#include "test_utils.h"
uint8_t otp_key0[32] = {
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
};
uint8_t otp_key1[32] = {
0xdf, 0x20, 0x5a, 0xb3, 0x88, 0x50, 0x9e, 0x4f,
0x01, 0x21, 0xe7, 0xc9, 0x24, 0x00, 0x1b, 0x84,
0x2a, 0xfb, 0x83, 0xac, 0xe4, 0x61, 0x4a, 0x94,
0x1f, 0xf4, 0x84, 0xc3, 0x1f, 0xe5, 0x52, 0xc7,
};
uint8_t otp_key2[32] = {
0xd5, 0x20, 0xaa, 0xb3, 0x88, 0x5f, 0x9e, 0x41,
0x05, 0x21, 0x07, 0xc9, 0x44, 0x00, 0x1b, 0x80,
0x23, 0xfb, 0x13, 0xac, 0xe4, 0x66, 0x4a, 0x93,
0x13, 0xf4, 0x04, 0xc3, 0x3f, 0xe7, 0x52, 0xc0,
};
uint8_t otp_key3[32] = {
0x10, 0x44, 0x80, 0xb3, 0x88, 0x5f, 0x02, 0x03,
0x05, 0x21, 0x07, 0xc9, 0x44, 0x00, 0x1b, 0x80,
0x5f, 0x9e, 0x41, 0xac, 0xe4, 0x64, 0x43, 0xa3,
0x13, 0x06, 0x07, 0x08, 0x3f, 0xe7, 0x05, 0x06,
};
#define DATA_BUTT 0xFFFFFFFF
#define TEST_DATA_MAX (500 * 1024)
static const uint32_t test_key_ids[] = {
RK_OEM_OTP_KEY0,
RK_OEM_OTP_KEY1,
RK_OEM_OTP_KEY2,
RK_OEM_OTP_KEY3,
};
struct test_otp_key_item {
uint32_t algo;
uint32_t modes[RK_CIPHER_MODE_MAX];
uint32_t key_lens[4];
uint32_t iv_len;
uint32_t data_len;
uint32_t operations[4];
};
static struct test_otp_key_item test_item_tbl[] = {
{
.algo = RK_ALGO_AES,
.modes = {
RK_CIPHER_MODE_ECB,
RK_CIPHER_MODE_CBC,
RK_CIPHER_MODE_CTS,
RK_CIPHER_MODE_CTR,
RK_CIPHER_MODE_CFB,
RK_CIPHER_MODE_OFB,
DATA_BUTT,
},
.key_lens = {16, 24, 32, DATA_BUTT},
.iv_len = AES_BLOCK_SIZE,
.data_len = TEST_DATA_MAX,
.operations = {
RK_OP_CIPHER_ENC,
RK_OP_CIPHER_DEC,
DATA_BUTT,
},
},
{
.algo = RK_ALGO_SM4,
.modes = {
RK_CIPHER_MODE_ECB,
RK_CIPHER_MODE_CBC,
RK_CIPHER_MODE_CTS,
RK_CIPHER_MODE_CTR,
RK_CIPHER_MODE_CFB,
RK_CIPHER_MODE_OFB,
DATA_BUTT,
},
.key_lens = {16, DATA_BUTT},
.iv_len = SM4_BLOCK_SIZE,
.data_len = TEST_DATA_MAX,
.operations = {
RK_OP_CIPHER_ENC,
RK_OP_CIPHER_DEC,
DATA_BUTT,
},
},
};
void test_set_otp_tag(void)
{
uint32_t res;
res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY0);
printf("trusty_set_oem_hr_otp_read_lock 0. res:%d\n", res);
res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY1);
printf("trusty_set_oem_hr_otp_read_lock 1. res:%d\n", res);
res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY2);
printf("trusty_set_oem_hr_otp_read_lock 2. res:%d\n", res);
res = rk_set_oem_hr_otp_read_lock(RK_OEM_OTP_KEY3);
printf("trusty_set_oem_hr_otp_read_lock 3. res:%d\n", res);
return;
}
void test_write_otp_key(void)
{
uint32_t res;
res = rk_write_oem_otp_key(RK_OEM_OTP_KEY0,
otp_key0, sizeof(otp_key0));
printf("write otp key 0. res:%d\n", res);
res = rk_write_oem_otp_key(RK_OEM_OTP_KEY1,
otp_key1, sizeof(otp_key1));
printf("write otp key 1. res:%d\n", res);
res = rk_write_oem_otp_key(RK_OEM_OTP_KEY2,
otp_key2, sizeof(otp_key2));
printf("write otp key 2. res:%d\n", res);
res = rk_write_oem_otp_key(RK_OEM_OTP_KEY3,
otp_key3, sizeof(otp_key3));
printf("write otp key 3. res:%d\n", res);
return;
}
static int test_otp_key_item_virt(uint32_t key_id, const struct test_otp_key_item *item)
{
int res = 0;
RK_RES rk_res;
uint32_t i, j, k;
uint8_t *key = NULL;
rk_cipher_config cipher_cfg;
uint8_t *plain = NULL, *cipher_soft = NULL, *cipher_hard = NULL;
uint32_t algo = 0, mode = 0, key_len, data_len, operation;
plain = malloc(item->data_len);
if (!plain) {
printf("plain malloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
cipher_soft = malloc(item->data_len);
if (!cipher_soft) {
printf("cipher_soft malloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
cipher_hard = malloc(item->data_len);
if (!cipher_hard) {
printf("cipher_hard malloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
switch (key_id) {
case RK_OEM_OTP_KEY0:
key = otp_key0;
break;
case RK_OEM_OTP_KEY1:
key = otp_key1;
break;
case RK_OEM_OTP_KEY2:
key = otp_key2;
break;
case RK_OEM_OTP_KEY3:
key = otp_key3;
break;
default:
return -1;
}
memset(&cipher_cfg, 0x00, sizeof(cipher_cfg));
test_get_rng(cipher_cfg.iv, item->iv_len);
test_get_rng(plain, item->data_len);
memset(cipher_soft, 0x00, item->data_len);
memset(cipher_hard, 0x00, item->data_len);
for (i = 0; i < ARRAY_SIZE(item->modes); i++) {
if (item->modes[i] == DATA_BUTT)
break;
algo = item->algo;
mode = item->modes[i];
for (j = 0; j < ARRAY_SIZE(item->key_lens); j++) {
if (item->key_lens[j] == DATA_BUTT)
break;
key_len = item->key_lens[j];
data_len = item->data_len;
if (is_no_multi_blocksize(mode))
data_len -= 3;
for (k = 0; k < ARRAY_SIZE(item->operations); k++) {
if (item->operations[k] == DATA_BUTT)
break;
operation = item->operations[k];
cipher_cfg.algo = algo;
cipher_cfg.mode = mode;
cipher_cfg.operation = operation;
cipher_cfg.key_len = key_len;
cipher_cfg.reserved = NULL;
rk_res = rk_oem_otp_key_cipher_virt(key_id, &cipher_cfg,
plain, cipher_hard, data_len);
if (rk_res == RK_CRYPTO_ERR_NOT_SUPPORTED) {
printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tN/A\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
res = 0;
continue;
} else if (res) {
printf("rk_oem_otp_key_cipher_virt fail! 0x%08x\n", res);
goto exit;
}
rk_res = soft_cipher(algo, mode, operation, key, key_len,
cipher_cfg.iv, plain, data_len, cipher_soft);
if (res) {
printf("soft_cipher fail! 0x%08x\n", res);
res = -1;
goto exit;
}
if (memcmp(cipher_soft, cipher_hard, data_len)) {
printf("rk_oem_otp_key_cipher_virt compare failed.\n");
res = -1;
goto exit;
}
printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tPASS\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
}
}
}
exit:
if (plain)
free(plain);
if (cipher_soft)
free(cipher_soft);
if (cipher_hard)
free(cipher_hard);
if (res)
printf("virt:\totpkey%d\t[%s-%u]\t%s\t%s\tFAIL\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
return res;
}
static int test_otp_key_item_fd(uint32_t key_id, const struct test_otp_key_item *item)
{
int res = 0;
RK_RES rk_res;
uint32_t i, j, k;
uint8_t *key = NULL;
rk_cipher_config cipher_cfg;
uint8_t *cipher_soft = NULL;
rk_crypto_mem *plain = NULL;
rk_crypto_mem *cipher_hard = NULL;
uint32_t algo = 0, mode = 0, key_len, data_len, operation;
cipher_soft = malloc(item->data_len);
if (!cipher_soft) {
printf("cipher_soft malloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
plain = rk_crypto_mem_alloc(item->data_len);
if (!plain) {
printf("rk_crypto_mem_alloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
cipher_hard = rk_crypto_mem_alloc(item->data_len);
if (!cipher_hard) {
printf("rk_crypto_mem_alloc %uByte error!\n", item->data_len);
res = -1;
goto exit;
}
switch (key_id) {
case RK_OEM_OTP_KEY0:
key = otp_key0;
break;
case RK_OEM_OTP_KEY1:
key = otp_key1;
break;
case RK_OEM_OTP_KEY2:
key = otp_key2;
break;
case RK_OEM_OTP_KEY3:
key = otp_key3;
break;
default:
return -1;
}
memset(&cipher_cfg, 0x00, sizeof(cipher_cfg));
test_get_rng(cipher_cfg.iv, item->iv_len);
test_get_rng(plain->vaddr, item->data_len);
memset(cipher_soft, 0x00, item->data_len);
memset(cipher_hard->vaddr, 0x00, item->data_len);
for (i = 0; i < ARRAY_SIZE(item->modes); i++) {
if (item->modes[i] == DATA_BUTT)
break;
algo = item->algo;
mode = item->modes[i];
for (j = 0; j < ARRAY_SIZE(item->key_lens); j++) {
if (item->key_lens[j] == DATA_BUTT)
break;
key_len = item->key_lens[j];
data_len = item->data_len;
if (is_no_multi_blocksize(mode))
data_len -= 3;
for (k = 0; k < ARRAY_SIZE(item->operations); k++) {
if (item->operations[k] == DATA_BUTT)
break;
operation = item->operations[k];
cipher_cfg.algo = algo;
cipher_cfg.mode = mode;
cipher_cfg.operation = operation;
cipher_cfg.key_len = key_len;
cipher_cfg.reserved = NULL;
rk_res = rk_oem_otp_key_cipher(key_id, &cipher_cfg, plain->dma_fd,
cipher_hard->dma_fd, data_len);
if (rk_res == RK_CRYPTO_ERR_NOT_SUPPORTED) {
printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tN/A\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
res = 0;
continue;
} else if (res) {
printf("rk_oem_otp_key_cipher fail! 0x%08x\n", res);
goto exit;
}
rk_res = soft_cipher(algo, mode, operation, key, key_len,
cipher_cfg.iv, plain->vaddr, data_len,
cipher_soft);
if (res) {
printf("soft_cipher fail! 0x%08x\n", res);
res = -1;
goto exit;
}
if (memcmp(cipher_soft, cipher_hard->vaddr, data_len)) {
printf("rk_oem_otp_key_cipher compare failed.\n");
res = -1;
goto exit;
}
printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tPASS\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
}
}
}
exit:
if (cipher_soft)
free(cipher_soft);
if (plain)
rk_crypto_mem_free(plain);
if (cipher_hard)
rk_crypto_mem_free(cipher_hard);
if (res)
printf("dma_fd:\totpkey%d\t[%s-%u]\t%s\t%s\tFAIL\n",
key_id, test_algo_name(algo), key_len * 8,
test_mode_name(mode), test_op_name(operation));
return res;
}
static int test_otp_key_fd(void)
{
int res;
uint32_t i, j;
uint32_t key_id;
res = rk_crypto_init();
if (res) {
printf("rk_crypto_init error!\n");
return res;
}
for (i = 0; i < ARRAY_SIZE(test_key_ids); i++) {
key_id = test_key_ids[i];
for (j = 0; j < ARRAY_SIZE(test_item_tbl); j++) {
res = test_otp_key_item_fd(key_id, &test_item_tbl[j]);
if (res)
goto exit;
}
}
exit:
rk_crypto_deinit();
return res;
}
static int test_otp_key_virt(void)
{
int res;
uint32_t i, j;
uint32_t key_id;
for (i = 0; i < ARRAY_SIZE(test_key_ids); i++) {
key_id = test_key_ids[i];
for (j = 0; j < ARRAY_SIZE(test_item_tbl); j++) {
res = test_otp_key_item_virt(key_id, &test_item_tbl[j]);
if (res)
goto exit;
}
}
exit:
return res;
}
RK_RES test_otp_key(void)
{
if (test_otp_key_virt())
return RK_CRYPTO_ERR_GENERIC;
if (test_otp_key_fd())
return RK_CRYPTO_ERR_GENERIC;
return RK_CRYPTO_SUCCESS;
}