android13/kernel-5.10/drivers/devfreq/rockchip_dmc.c

3544 lines
94 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Rockchip Generic dmc support.
*
* Copyright (c) 2021 Rockchip Electronics Co. Ltd.
* Author: Finley Xiao <finley.xiao@rock-chips.com>
*/
#include <dt-bindings/clock/rockchip-ddr.h>
#include <dt-bindings/soc/rockchip-system-status.h>
#include <drm/drm_modeset_lock.h>
#include <linux/arm-smccc.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/devfreq_cooling.h>
#include <linux/devfreq-event.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/rockchip/rockchip_sip.h>
#include <linux/rwsem.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/suspend.h>
#include <linux/thermal.h>
#include <soc/rockchip/pm_domains.h>
#include <soc/rockchip/rkfb_dmc.h>
#include <soc/rockchip/rockchip_dmc.h>
#include <soc/rockchip/rockchip_sip.h>
#include <soc/rockchip/rockchip_system_monitor.h>
#include <soc/rockchip/rockchip-system-status.h>
#include <soc/rockchip/rockchip_opp_select.h>
#include <uapi/drm/drm_mode.h>
#include "governor.h"
#include "rockchip_dmc_timing.h"
#include "../clk/rockchip/clk.h"
#include "../gpu/drm/rockchip/rockchip_drm_drv.h"
#include "../opp/opp.h"
#define system_status_to_dmcfreq(nb) container_of(nb, struct rockchip_dmcfreq, \
status_nb)
#define reboot_to_dmcfreq(nb) container_of(nb, struct rockchip_dmcfreq, \
reboot_nb)
#define boost_to_dmcfreq(work) container_of(work, struct rockchip_dmcfreq, \
boost_work)
#define input_hd_to_dmcfreq(hd) container_of(hd, struct rockchip_dmcfreq, \
input_handler)
#define VIDEO_1080P_SIZE (1920 * 1080)
#define DTS_PAR_OFFSET (4096)
#define FALLBACK_STATIC_TEMPERATURE 55000
struct dmc_freq_table {
unsigned long freq;
struct dev_pm_opp_supply supplies[2];
};
struct share_params {
u32 hz;
u32 lcdc_type;
u32 vop;
u32 vop_dclk_mode;
u32 sr_idle_en;
u32 addr_mcu_el3;
/*
* 1: need to wait flag1
* 0: never wait flag1
*/
u32 wait_flag1;
/*
* 1: need to wait flag1
* 0: never wait flag1
*/
u32 wait_flag0;
u32 complt_hwirq;
u32 update_drv_odt_cfg;
u32 update_deskew_cfg;
u32 freq_count;
u32 freq_info_mhz[6];
u32 wait_mode;
u32 vop_scan_line_time_ns;
/* if need, add parameter after */
};
static struct share_params *ddr_psci_param;
struct rockchip_dmcfreq_ondemand_data {
unsigned int upthreshold;
unsigned int downdifferential;
};
struct rockchip_dmcfreq {
struct device *dev;
struct dmcfreq_common_info info;
struct rockchip_dmcfreq_ondemand_data ondemand_data;
struct clk *dmc_clk;
struct devfreq_event_dev **edev;
struct mutex lock; /* serializes access to video_info_list */
struct dram_timing *timing;
struct regulator *vdd_center;
struct regulator *mem_reg;
struct notifier_block status_nb;
struct notifier_block panic_nb;
struct list_head video_info_list;
struct freq_map_table *cpu_bw_tbl;
struct work_struct boost_work;
struct input_handler input_handler;
struct monitor_dev_info *mdev_info;
struct share_params *set_rate_params;
unsigned long *nocp_bw;
unsigned long rate;
unsigned long volt, mem_volt;
unsigned long sleep_volt, sleep_mem_volt;
unsigned long auto_min_rate;
unsigned long status_rate;
unsigned long normal_rate;
unsigned long video_1080p_rate;
unsigned long video_4k_rate;
unsigned long video_4k_10b_rate;
unsigned long video_4k_60p_rate;
unsigned long video_svep_rate;
unsigned long performance_rate;
unsigned long hdmi_rate;
unsigned long hdmirx_rate;
unsigned long idle_rate;
unsigned long suspend_rate;
unsigned long reboot_rate;
unsigned long boost_rate;
unsigned long fixed_rate;
unsigned long low_power_rate;
unsigned long freq_count;
unsigned long freq_info_rate[6];
unsigned long rate_low;
unsigned long rate_mid_low;
unsigned long rate_mid_high;
unsigned long rate_high;
unsigned int min_cpu_freq;
unsigned int system_status_en;
unsigned int refresh;
int edev_count;
int dfi_id;
int nocp_cpu_id;
int regulator_count;
bool is_fixed;
bool is_set_rate_direct;
struct thermal_cooling_device *devfreq_cooling;
u32 static_coefficient;
s32 ts[4];
struct thermal_zone_device *ddr_tz;
unsigned int touchboostpulse_duration_val;
u64 touchboostpulse_endtime;
int (*set_auto_self_refresh)(u32 en);
};
static struct pm_qos_request pm_qos;
static int rockchip_dmcfreq_opp_helper(struct dev_pm_set_opp_data *data);
static struct monitor_dev_profile dmc_mdevp = {
.type = MONITOR_TYPE_DEV,
.low_temp_adjust = rockchip_monitor_dev_low_temp_adjust,
.high_temp_adjust = rockchip_monitor_dev_high_temp_adjust,
.update_volt = rockchip_monitor_check_rate_volt,
.set_opp = rockchip_dmcfreq_opp_helper,
};
static inline unsigned long is_dualview(unsigned long status)
{
return (status & SYS_STATUS_LCDC0) && (status & SYS_STATUS_LCDC1);
}
static inline unsigned long is_isp(unsigned long status)
{
return (status & SYS_STATUS_ISP) ||
(status & SYS_STATUS_CIF0) ||
(status & SYS_STATUS_CIF1);
}
/*
* function: packaging de-skew setting to px30_ddr_dts_config_timing,
* px30_ddr_dts_config_timing will pass to trust firmware, and
* used direct to set register.
* input: de_skew
* output: tim
*/
static void px30_de_skew_set_2_reg(struct rk3328_ddr_de_skew_setting *de_skew,
struct px30_ddr_dts_config_timing *tim)
{
u32 n;
u32 offset;
u32 shift;
memset_io(tim->ca_skew, 0, sizeof(tim->ca_skew));
memset_io(tim->cs0_skew, 0, sizeof(tim->cs0_skew));
memset_io(tim->cs1_skew, 0, sizeof(tim->cs1_skew));
/* CA de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->ca_de_skew); n++) {
offset = n / 2;
shift = n % 2;
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->ca_skew[offset] &= ~(0xf << shift);
tim->ca_skew[offset] |= (de_skew->ca_de_skew[n] << shift);
}
/* CS0 data de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->cs0_de_skew); n++) {
offset = ((n / 21) * 11) + ((n % 21) / 2);
shift = ((n % 21) % 2);
if ((n % 21) == 20)
shift = 0;
else
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->cs0_skew[offset] &= ~(0xf << shift);
tim->cs0_skew[offset] |= (de_skew->cs0_de_skew[n] << shift);
}
/* CS1 data de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->cs1_de_skew); n++) {
offset = ((n / 21) * 11) + ((n % 21) / 2);
shift = ((n % 21) % 2);
if ((n % 21) == 20)
shift = 0;
else
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->cs1_skew[offset] &= ~(0xf << shift);
tim->cs1_skew[offset] |= (de_skew->cs1_de_skew[n] << shift);
}
}
/*
* function: packaging de-skew setting to rk3328_ddr_dts_config_timing,
* rk3328_ddr_dts_config_timing will pass to trust firmware, and
* used direct to set register.
* input: de_skew
* output: tim
*/
static void
rk3328_de_skew_setting_2_register(struct rk3328_ddr_de_skew_setting *de_skew,
struct rk3328_ddr_dts_config_timing *tim)
{
u32 n;
u32 offset;
u32 shift;
memset_io(tim->ca_skew, 0, sizeof(tim->ca_skew));
memset_io(tim->cs0_skew, 0, sizeof(tim->cs0_skew));
memset_io(tim->cs1_skew, 0, sizeof(tim->cs1_skew));
/* CA de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->ca_de_skew); n++) {
offset = n / 2;
shift = n % 2;
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->ca_skew[offset] &= ~(0xf << shift);
tim->ca_skew[offset] |= (de_skew->ca_de_skew[n] << shift);
}
/* CS0 data de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->cs0_de_skew); n++) {
offset = ((n / 21) * 11) + ((n % 21) / 2);
shift = ((n % 21) % 2);
if ((n % 21) == 20)
shift = 0;
else
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->cs0_skew[offset] &= ~(0xf << shift);
tim->cs0_skew[offset] |= (de_skew->cs0_de_skew[n] << shift);
}
/* CS1 data de-skew */
for (n = 0; n < ARRAY_SIZE(de_skew->cs1_de_skew); n++) {
offset = ((n / 21) * 11) + ((n % 21) / 2);
shift = ((n % 21) % 2);
if ((n % 21) == 20)
shift = 0;
else
/* 0 => 4; 1 => 0 */
shift = (shift == 0) ? 4 : 0;
tim->cs1_skew[offset] &= ~(0xf << shift);
tim->cs1_skew[offset] |= (de_skew->cs1_de_skew[n] << shift);
}
}
static int rk_drm_get_lcdc_type(void)
{
u32 lcdc_type = rockchip_drm_get_sub_dev_type();
switch (lcdc_type) {
case DRM_MODE_CONNECTOR_DPI:
case DRM_MODE_CONNECTOR_LVDS:
lcdc_type = SCREEN_LVDS;
break;
case DRM_MODE_CONNECTOR_DisplayPort:
lcdc_type = SCREEN_DP;
break;
case DRM_MODE_CONNECTOR_HDMIA:
case DRM_MODE_CONNECTOR_HDMIB:
lcdc_type = SCREEN_HDMI;
break;
case DRM_MODE_CONNECTOR_TV:
lcdc_type = SCREEN_TVOUT;
break;
case DRM_MODE_CONNECTOR_eDP:
lcdc_type = SCREEN_EDP;
break;
case DRM_MODE_CONNECTOR_DSI:
lcdc_type = SCREEN_MIPI;
break;
default:
lcdc_type = SCREEN_NULL;
break;
}
return lcdc_type;
}
static int rockchip_ddr_set_rate(unsigned long target_rate)
{
struct arm_smccc_res res;
ddr_psci_param->hz = target_rate;
ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
ddr_psci_param->vop_scan_line_time_ns = rockchip_drm_get_scan_line_time_ns();
ddr_psci_param->wait_flag1 = 1;
ddr_psci_param->wait_flag0 = 1;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_SET_RATE);
if ((int)res.a1 == SIP_RET_SET_RATE_TIMEOUT)
rockchip_dmcfreq_wait_complete();
return res.a0;
}
static int rockchip_dmcfreq_set_volt(struct device *dev, struct regulator *reg,
struct dev_pm_opp_supply *supply,
char *reg_name)
{
int ret;
dev_dbg(dev, "%s: %s voltages (mV): %lu %lu %lu\n", __func__, reg_name,
supply->u_volt_min, supply->u_volt, supply->u_volt_max);
ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
supply->u_volt, INT_MAX);
if (ret)
dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
__func__, supply->u_volt_min, supply->u_volt,
supply->u_volt_max, ret);
return ret;
}
static int rockchip_dmcfreq_opp_helper(struct dev_pm_set_opp_data *data)
{
struct dev_pm_opp_supply *old_supply_vdd = &data->old_opp.supplies[0];
struct dev_pm_opp_supply *new_supply_vdd = &data->new_opp.supplies[0];
struct regulator *vdd_reg = data->regulators[0];
struct dev_pm_opp_supply *old_supply_mem;
struct dev_pm_opp_supply *new_supply_mem;
struct regulator *mem_reg;
struct device *dev = data->dev;
struct clk *clk = data->clk;
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
struct cpufreq_policy *policy;
unsigned long old_freq = data->old_opp.rate;
unsigned long freq = data->new_opp.rate;
unsigned int reg_count = data->regulator_count;
bool is_cpufreq_changed = false;
unsigned int cpu_cur, cpufreq_cur;
int ret = 0;
if (reg_count > 1) {
old_supply_mem = &data->old_opp.supplies[1];
new_supply_mem = &data->new_opp.supplies[1];
mem_reg = data->regulators[1];
}
/*
* We need to prevent cpu hotplug from happening while a dmc freq rate
* change is happening.
*
* Do this before taking the policy rwsem to avoid deadlocks between the
* mutex that is locked/unlocked in cpu_hotplug_disable/enable. And it
* can also avoid deadlocks between the mutex that is locked/unlocked
* in cpus_read_lock/unlock (such as store_scaling_max_freq()).
*/
cpus_read_lock();
if (dmcfreq->min_cpu_freq) {
/*
* Go to specified cpufreq and block other cpufreq changes since
* set_rate needs to complete during vblank.
*/
cpu_cur = raw_smp_processor_id();
policy = cpufreq_cpu_get(cpu_cur);
if (!policy) {
dev_err(dev, "cpu%d policy NULL\n", cpu_cur);
ret = -EINVAL;
goto cpufreq;
}
down_write(&policy->rwsem);
cpufreq_cur = cpufreq_quick_get(cpu_cur);
/* If we're thermally throttled; don't change; */
if (cpufreq_cur < dmcfreq->min_cpu_freq) {
if (policy->max >= dmcfreq->min_cpu_freq) {
__cpufreq_driver_target(policy,
dmcfreq->min_cpu_freq,
CPUFREQ_RELATION_L);
is_cpufreq_changed = true;
} else {
dev_dbg(dev,
"CPU may too slow for DMC (%d MHz)\n",
policy->max);
}
}
}
/* Scaling up? Scale voltage before frequency */
if (freq >= old_freq) {
if (reg_count > 1) {
ret = rockchip_dmcfreq_set_volt(dev, mem_reg,
new_supply_mem, "mem");
if (ret)
goto restore_voltage;
}
ret = rockchip_dmcfreq_set_volt(dev, vdd_reg, new_supply_vdd,
"vdd");
if (ret)
goto restore_voltage;
if (freq == old_freq)
goto out;
}
/*
* Writer in rwsem may block readers even during its waiting in queue,
* and this may lead to a deadlock when the code path takes read sem
* twice (e.g. one in vop_lock() and another in rockchip_pmu_lock()).
* As a (suboptimal) workaround, let writer to spin until it gets the
* lock.
*/
while (!rockchip_dmcfreq_write_trylock())
cond_resched();
dev_dbg(dev, "%lu Hz --> %lu Hz\n", old_freq, freq);
if (dmcfreq->set_rate_params) {
dmcfreq->set_rate_params->lcdc_type = rk_drm_get_lcdc_type();
dmcfreq->set_rate_params->wait_flag1 = 1;
dmcfreq->set_rate_params->wait_flag0 = 1;
}
if (dmcfreq->is_set_rate_direct)
ret = rockchip_ddr_set_rate(freq);
else
ret = clk_set_rate(clk, freq);
rockchip_dmcfreq_write_unlock();
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
goto restore_voltage;
}
/*
* Check the dpll rate,
* There only two result we will get,
* 1. Ddr frequency scaling fail, we still get the old rate.
* 2. Ddr frequency scaling successful, we get the rate we set.
*/
dmcfreq->rate = clk_get_rate(clk);
/* If get the incorrect rate, set voltage to old value. */
if (dmcfreq->rate != freq) {
dev_err(dev, "Get wrong frequency, Request %lu, Current %lu\n",
freq, dmcfreq->rate);
ret = -EINVAL;
goto restore_voltage;
}
/* Scaling down? Scale voltage after frequency */
if (freq < old_freq) {
ret = rockchip_dmcfreq_set_volt(dev, vdd_reg, new_supply_vdd,
"vdd");
if (ret)
goto restore_freq;
if (reg_count > 1) {
ret = rockchip_dmcfreq_set_volt(dev, mem_reg,
new_supply_mem, "mem");
if (ret)
goto restore_freq;
}
}
dmcfreq->volt = new_supply_vdd->u_volt;
if (reg_count > 1)
dmcfreq->mem_volt = new_supply_mem->u_volt;
goto out;
restore_freq:
if (dmcfreq->is_set_rate_direct)
ret = rockchip_ddr_set_rate(freq);
else
ret = clk_set_rate(clk, freq);
if (ret)
dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
__func__, old_freq);
restore_voltage:
if (reg_count > 1 && old_supply_mem->u_volt)
rockchip_dmcfreq_set_volt(dev, mem_reg, old_supply_mem, "mem");
if (old_supply_vdd->u_volt)
rockchip_dmcfreq_set_volt(dev, vdd_reg, old_supply_vdd, "vdd");
out:
if (dmcfreq->min_cpu_freq) {
if (is_cpufreq_changed)
__cpufreq_driver_target(policy, cpufreq_cur,
CPUFREQ_RELATION_L);
up_write(&policy->rwsem);
cpufreq_cpu_put(policy);
}
cpufreq:
cpus_read_unlock();
return ret;
}
static int rockchip_dmcfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
struct devfreq *devfreq;
struct dev_pm_opp *opp;
int ret = 0;
if (!dmc_mdevp.is_checked)
return -EINVAL;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp)) {
dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
return PTR_ERR(opp);
}
dev_pm_opp_put(opp);
rockchip_monitor_volt_adjust_lock(dmcfreq->mdev_info);
ret = dev_pm_opp_set_rate(dev, *freq);
if (!ret) {
if (dmcfreq->info.devfreq) {
devfreq = dmcfreq->info.devfreq;
devfreq->last_status.current_frequency = *freq;
}
}
rockchip_monitor_volt_adjust_unlock(dmcfreq->mdev_info);
return ret;
}
static int rockchip_dmcfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
struct devfreq_event_data edata;
int i, ret = 0;
if (!dmcfreq->info.auto_freq_en)
return -EINVAL;
/*
* RK3588 platform may crash if the CPU and MCU access the DFI/DMC
* registers at same time.
*/
rockchip_monitor_volt_adjust_lock(dmcfreq->mdev_info);
for (i = 0; i < dmcfreq->edev_count; i++) {
ret = devfreq_event_get_event(dmcfreq->edev[i], &edata);
if (ret < 0) {
dev_err(dev, "failed to get event %s\n",
dmcfreq->edev[i]->desc->name);
goto out;
}
if (i == dmcfreq->dfi_id) {
stat->busy_time = edata.load_count;
stat->total_time = edata.total_count;
} else {
dmcfreq->nocp_bw[i] = edata.load_count;
}
}
out:
rockchip_monitor_volt_adjust_unlock(dmcfreq->mdev_info);
return ret;
}
static int rockchip_dmcfreq_get_cur_freq(struct device *dev,
unsigned long *freq)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
*freq = dmcfreq->rate;
return 0;
}
static struct devfreq_dev_profile rockchip_devfreq_dmc_profile = {
.polling_ms = 50,
.target = rockchip_dmcfreq_target,
.get_dev_status = rockchip_dmcfreq_get_dev_status,
.get_cur_freq = rockchip_dmcfreq_get_cur_freq,
};
static inline void reset_last_status(struct devfreq *devfreq)
{
devfreq->last_status.total_time = 1;
devfreq->last_status.busy_time = 1;
}
static void of_get_px30_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct px30_ddr_dts_config_timing *dts_timing;
struct rk3328_ddr_de_skew_setting *de_skew;
int ret = 0;
u32 i;
dts_timing =
(struct px30_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
np_tim = of_parse_phandle(np, "ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
de_skew = kmalloc(sizeof(*de_skew), GFP_KERNEL);
if (!de_skew) {
ret = -ENOMEM;
goto end;
}
p = (u32 *)dts_timing;
for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
p + i);
}
p = (u32 *)de_skew->ca_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_ca_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_ca_timing[i],
p + i);
}
p = (u32 *)de_skew->cs0_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs0_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_cs0_timing[i],
p + i);
}
p = (u32 *)de_skew->cs1_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs1_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_cs1_timing[i],
p + i);
}
if (!ret)
px30_de_skew_set_2_reg(de_skew, dts_timing);
kfree(de_skew);
end:
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static void of_get_rk1808_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct rk1808_ddr_dts_config_timing *dts_timing;
int ret = 0;
u32 i;
dts_timing =
(struct rk1808_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
np_tim = of_parse_phandle(np, "ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
p = (u32 *)dts_timing;
for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
p + i);
}
p = (u32 *)dts_timing->ca_de_skew;
for (i = 0; i < ARRAY_SIZE(rk1808_dts_ca_timing); i++) {
ret |= of_property_read_u32(np_tim, rk1808_dts_ca_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs0_a_de_skew;
for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs0_a_timing); i++) {
ret |= of_property_read_u32(np_tim, rk1808_dts_cs0_a_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs0_b_de_skew;
for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs0_b_timing); i++) {
ret |= of_property_read_u32(np_tim, rk1808_dts_cs0_b_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs1_a_de_skew;
for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs1_a_timing); i++) {
ret |= of_property_read_u32(np_tim, rk1808_dts_cs1_a_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs1_b_de_skew;
for (i = 0; i < ARRAY_SIZE(rk1808_dts_cs1_b_timing); i++) {
ret |= of_property_read_u32(np_tim, rk1808_dts_cs1_b_timing[i],
p + i);
}
end:
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static void of_get_rk3128_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct rk3128_ddr_dts_config_timing *dts_timing;
struct share_params *init_timing;
int ret = 0;
u32 i;
init_timing = (struct share_params *)timing;
if (of_property_read_u32(np, "vop-dclk-mode",
&init_timing->vop_dclk_mode))
init_timing->vop_dclk_mode = 0;
p = timing + DTS_PAR_OFFSET / 4;
np_tim = of_parse_phandle(np, "rockchip,ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
for (i = 0; i < ARRAY_SIZE(rk3128_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3128_dts_timing[i],
p + i);
}
end:
dts_timing =
(struct rk3128_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static uint32_t of_get_rk3228_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
int ret = 0;
u32 i;
p = timing + DTS_PAR_OFFSET / 4;
np_tim = of_parse_phandle(np, "rockchip,dram_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
for (i = 0; i < ARRAY_SIZE(rk3228_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3228_dts_timing[i],
p + i);
}
end:
if (ret)
dev_err(dev, "of_get_ddr_timings: fail\n");
of_node_put(np_tim);
return ret;
}
static void of_get_rk3288_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct rk3288_ddr_dts_config_timing *dts_timing;
struct share_params *init_timing;
int ret = 0;
u32 i;
init_timing = (struct share_params *)timing;
if (of_property_read_u32(np, "vop-dclk-mode",
&init_timing->vop_dclk_mode))
init_timing->vop_dclk_mode = 0;
p = timing + DTS_PAR_OFFSET / 4;
np_tim = of_parse_phandle(np, "rockchip,ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
for (i = 0; i < ARRAY_SIZE(rk3288_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3288_dts_timing[i],
p + i);
}
end:
dts_timing =
(struct rk3288_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static void of_get_rk3328_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct rk3328_ddr_dts_config_timing *dts_timing;
struct rk3328_ddr_de_skew_setting *de_skew;
int ret = 0;
u32 i;
dts_timing =
(struct rk3328_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
np_tim = of_parse_phandle(np, "ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
de_skew = kmalloc(sizeof(*de_skew), GFP_KERNEL);
if (!de_skew) {
ret = -ENOMEM;
goto end;
}
p = (u32 *)dts_timing;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_timing[i],
p + i);
}
p = (u32 *)de_skew->ca_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_ca_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_ca_timing[i],
p + i);
}
p = (u32 *)de_skew->cs0_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs0_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_cs0_timing[i],
p + i);
}
p = (u32 *)de_skew->cs1_de_skew;
for (i = 0; i < ARRAY_SIZE(rk3328_dts_cs1_timing); i++) {
ret |= of_property_read_u32(np_tim, rk3328_dts_cs1_timing[i],
p + i);
}
if (!ret)
rk3328_de_skew_setting_2_register(de_skew, dts_timing);
kfree(de_skew);
end:
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static void of_get_rv1126_timings(struct device *dev,
struct device_node *np, uint32_t *timing)
{
struct device_node *np_tim;
u32 *p;
struct rk1808_ddr_dts_config_timing *dts_timing;
int ret = 0;
u32 i;
dts_timing =
(struct rk1808_ddr_dts_config_timing *)(timing +
DTS_PAR_OFFSET / 4);
np_tim = of_parse_phandle(np, "ddr_timing", 0);
if (!np_tim) {
ret = -EINVAL;
goto end;
}
p = (u32 *)dts_timing;
for (i = 0; i < ARRAY_SIZE(px30_dts_timing); i++) {
ret |= of_property_read_u32(np_tim, px30_dts_timing[i],
p + i);
}
p = (u32 *)dts_timing->ca_de_skew;
for (i = 0; i < ARRAY_SIZE(rv1126_dts_ca_timing); i++) {
ret |= of_property_read_u32(np_tim, rv1126_dts_ca_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs0_a_de_skew;
for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs0_a_timing); i++) {
ret |= of_property_read_u32(np_tim, rv1126_dts_cs0_a_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs0_b_de_skew;
for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs0_b_timing); i++) {
ret |= of_property_read_u32(np_tim, rv1126_dts_cs0_b_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs1_a_de_skew;
for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs1_a_timing); i++) {
ret |= of_property_read_u32(np_tim, rv1126_dts_cs1_a_timing[i],
p + i);
}
p = (u32 *)dts_timing->cs1_b_de_skew;
for (i = 0; i < ARRAY_SIZE(rv1126_dts_cs1_b_timing); i++) {
ret |= of_property_read_u32(np_tim, rv1126_dts_cs1_b_timing[i],
p + i);
}
end:
if (!ret) {
dts_timing->available = 1;
} else {
dts_timing->available = 0;
dev_err(dev, "of_get_ddr_timings: fail\n");
}
of_node_put(np_tim);
}
static struct rk3399_dram_timing *of_get_rk3399_timings(struct device *dev,
struct device_node *np)
{
struct rk3399_dram_timing *timing = NULL;
struct device_node *np_tim;
int ret;
np_tim = of_parse_phandle(np, "ddr_timing", 0);
if (np_tim) {
timing = devm_kzalloc(dev, sizeof(*timing), GFP_KERNEL);
if (!timing)
goto err;
ret = of_property_read_u32(np_tim, "ddr3_speed_bin",
&timing->ddr3_speed_bin);
ret |= of_property_read_u32(np_tim, "pd_idle",
&timing->pd_idle);
ret |= of_property_read_u32(np_tim, "sr_idle",
&timing->sr_idle);
ret |= of_property_read_u32(np_tim, "sr_mc_gate_idle",
&timing->sr_mc_gate_idle);
ret |= of_property_read_u32(np_tim, "srpd_lite_idle",
&timing->srpd_lite_idle);
ret |= of_property_read_u32(np_tim, "standby_idle",
&timing->standby_idle);
ret |= of_property_read_u32(np_tim, "auto_lp_dis_freq",
&timing->auto_lp_dis_freq);
ret |= of_property_read_u32(np_tim, "ddr3_dll_dis_freq",
&timing->ddr3_dll_dis_freq);
ret |= of_property_read_u32(np_tim, "phy_dll_dis_freq",
&timing->phy_dll_dis_freq);
ret |= of_property_read_u32(np_tim, "ddr3_odt_dis_freq",
&timing->ddr3_odt_dis_freq);
ret |= of_property_read_u32(np_tim, "ddr3_drv",
&timing->ddr3_drv);
ret |= of_property_read_u32(np_tim, "ddr3_odt",
&timing->ddr3_odt);
ret |= of_property_read_u32(np_tim, "phy_ddr3_ca_drv",
&timing->phy_ddr3_ca_drv);
ret |= of_property_read_u32(np_tim, "phy_ddr3_dq_drv",
&timing->phy_ddr3_dq_drv);
ret |= of_property_read_u32(np_tim, "phy_ddr3_odt",
&timing->phy_ddr3_odt);
ret |= of_property_read_u32(np_tim, "lpddr3_odt_dis_freq",
&timing->lpddr3_odt_dis_freq);
ret |= of_property_read_u32(np_tim, "lpddr3_drv",
&timing->lpddr3_drv);
ret |= of_property_read_u32(np_tim, "lpddr3_odt",
&timing->lpddr3_odt);
ret |= of_property_read_u32(np_tim, "phy_lpddr3_ca_drv",
&timing->phy_lpddr3_ca_drv);
ret |= of_property_read_u32(np_tim, "phy_lpddr3_dq_drv",
&timing->phy_lpddr3_dq_drv);
ret |= of_property_read_u32(np_tim, "phy_lpddr3_odt",
&timing->phy_lpddr3_odt);
ret |= of_property_read_u32(np_tim, "lpddr4_odt_dis_freq",
&timing->lpddr4_odt_dis_freq);
ret |= of_property_read_u32(np_tim, "lpddr4_drv",
&timing->lpddr4_drv);
ret |= of_property_read_u32(np_tim, "lpddr4_dq_odt",
&timing->lpddr4_dq_odt);
ret |= of_property_read_u32(np_tim, "lpddr4_ca_odt",
&timing->lpddr4_ca_odt);
ret |= of_property_read_u32(np_tim, "phy_lpddr4_ca_drv",
&timing->phy_lpddr4_ca_drv);
ret |= of_property_read_u32(np_tim, "phy_lpddr4_ck_cs_drv",
&timing->phy_lpddr4_ck_cs_drv);
ret |= of_property_read_u32(np_tim, "phy_lpddr4_dq_drv",
&timing->phy_lpddr4_dq_drv);
ret |= of_property_read_u32(np_tim, "phy_lpddr4_odt",
&timing->phy_lpddr4_odt);
if (ret) {
devm_kfree(dev, timing);
goto err;
}
of_node_put(np_tim);
return timing;
}
err:
if (timing) {
devm_kfree(dev, timing);
timing = NULL;
}
of_node_put(np_tim);
return timing;
}
static int rockchip_ddr_set_auto_self_refresh(uint32_t en)
{
struct arm_smccc_res res;
ddr_psci_param->sr_idle_en = en;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_SET_AT_SR);
return res.a0;
}
struct dmcfreq_wait_ctrl_t {
wait_queue_head_t wait_wq;
int complt_irq;
int wait_flag;
int wait_en;
int wait_time_out_ms;
int dcf_en;
struct regmap *regmap_dcf;
};
static struct dmcfreq_wait_ctrl_t wait_ctrl;
static irqreturn_t wait_complete_irq(int irqno, void *dev_id)
{
struct dmcfreq_wait_ctrl_t *ctrl = dev_id;
ctrl->wait_flag = 0;
wake_up(&ctrl->wait_wq);
return IRQ_HANDLED;
}
static irqreturn_t wait_dcf_complete_irq(int irqno, void *dev_id)
{
struct arm_smccc_res res;
struct dmcfreq_wait_ctrl_t *ctrl = dev_id;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_POST_SET_RATE);
if (res.a0)
pr_err("%s: dram post set rate error:%lx\n", __func__, res.a0);
ctrl->wait_flag = 0;
wake_up(&ctrl->wait_wq);
return IRQ_HANDLED;
}
int rockchip_dmcfreq_wait_complete(void)
{
struct arm_smccc_res res;
if (!wait_ctrl.wait_en) {
pr_err("%s: Do not support time out!\n", __func__);
return 0;
}
wait_ctrl.wait_flag = -1;
enable_irq(wait_ctrl.complt_irq);
/*
* CPUs only enter WFI when idle to make sure that
* FIQn can quick response.
*/
cpu_latency_qos_update_request(&pm_qos, 0);
if (wait_ctrl.dcf_en == 1) {
/* start dcf */
regmap_update_bits(wait_ctrl.regmap_dcf, 0x0, 0x1, 0x1);
} else if (wait_ctrl.dcf_en == 2) {
res = sip_smc_dram(0, 0, ROCKCHIP_SIP_CONFIG_MCU_START);
if (res.a0) {
pr_err("rockchip_sip_config_mcu_start error:%lx\n", res.a0);
return -ENOMEM;
}
}
wait_event_timeout(wait_ctrl.wait_wq, (wait_ctrl.wait_flag == 0),
msecs_to_jiffies(wait_ctrl.wait_time_out_ms));
/*
* If waiting for wait_ctrl.complt_irq times out, clear the IRQ and stop the MCU by
* sip_smc_dram(DRAM_POST_SET_RATE).
*/
if (wait_ctrl.dcf_en == 2 && wait_ctrl.wait_flag != 0) {
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0, ROCKCHIP_SIP_CONFIG_DRAM_POST_SET_RATE);
if (res.a0)
pr_err("%s: dram post set rate error:%lx\n", __func__, res.a0);
}
cpu_latency_qos_update_request(&pm_qos, PM_QOS_DEFAULT_VALUE);
disable_irq(wait_ctrl.complt_irq);
return 0;
}
static __maybe_unused int rockchip_get_freq_info(struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
struct dev_pm_opp *opp;
struct dmc_freq_table *freq_table;
unsigned long rate;
int i, j, count, ret = 0;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_FREQ_INFO);
if (res.a0) {
dev_err(dmcfreq->dev, "rockchip_sip_config_dram_get_freq_info error:%lx\n",
res.a0);
return -ENOMEM;
}
if (ddr_psci_param->freq_count == 0 || ddr_psci_param->freq_count > 6) {
dev_err(dmcfreq->dev, "it is no available frequencies!\n");
return -EPERM;
}
for (i = 0; i < ddr_psci_param->freq_count; i++)
dmcfreq->freq_info_rate[i] = ddr_psci_param->freq_info_mhz[i] * 1000000;
dmcfreq->freq_count = ddr_psci_param->freq_count;
/* update dmc_opp_table */
count = dev_pm_opp_get_opp_count(dmcfreq->dev);
if (count <= 0) {
ret = count ? count : -ENODATA;
return ret;
}
freq_table = kzalloc(sizeof(*freq_table) * count, GFP_KERNEL);
for (i = 0, rate = 0; i < count; i++, rate++) {
/* find next rate */
opp = dev_pm_opp_find_freq_ceil(dmcfreq->dev, &rate);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
dev_err(dmcfreq->dev, "failed to find OPP for freq %lu.\n", rate);
goto out;
}
freq_table[i].freq = rate;
freq_table[i].supplies[0].u_volt = dev_pm_opp_get_voltage(opp);
dev_pm_opp_put(opp);
for (j = 0; j < dmcfreq->freq_count; j++) {
if (rate == dmcfreq->freq_info_rate[j])
break;
}
if (j == dmcfreq->freq_count)
dev_pm_opp_disable(dmcfreq->dev, rate);
}
for (i = 0; i < dmcfreq->freq_count; i++) {
for (j = 0; j < count; j++) {
if (dmcfreq->freq_info_rate[i] == freq_table[j].freq) {
break;
} else if (dmcfreq->freq_info_rate[i] < freq_table[j].freq) {
dev_pm_opp_add(dmcfreq->dev, dmcfreq->freq_info_rate[i],
freq_table[j].supplies[0].u_volt);
break;
}
}
if (j == count) {
dev_err(dmcfreq->dev, "failed to match dmc_opp_table for %ld\n",
dmcfreq->freq_info_rate[i]);
if (i == 0)
ret = -EPERM;
else
dmcfreq->freq_count = i;
goto out;
}
}
out:
kfree(freq_table);
return ret;
}
static __maybe_unused int
rockchip_dmcfreq_adjust_opp_table(struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = dmcfreq->dev;
struct arm_smccc_res res;
struct dev_pm_opp *opp;
struct opp_table *opp_table;
struct dmc_freq_table *freq_table;
int i, j, count = 0, ret = 0;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_FREQ_INFO);
if (res.a0) {
dev_err(dev, "rockchip_sip_config_dram_get_freq_info error:%lx\n",
res.a0);
return -ENOMEM;
}
if (ddr_psci_param->freq_count == 0 || ddr_psci_param->freq_count > 6) {
dev_err(dev, "there is no available frequencies!\n");
return -EPERM;
}
for (i = 0; i < ddr_psci_param->freq_count; i++)
dmcfreq->freq_info_rate[i] = ddr_psci_param->freq_info_mhz[i] * 1000000;
dmcfreq->freq_count = ddr_psci_param->freq_count;
count = dev_pm_opp_get_opp_count(dev);
if (count <= 0) {
dev_err(dev, "there is no available opp\n");
ret = count ? count : -ENODATA;
return ret;
}
freq_table = kzalloc(sizeof(*freq_table) * count, GFP_KERNEL);
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table) {
ret = -ENOMEM;
goto out;
}
mutex_lock(&opp_table->lock);
i = 0;
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
freq_table[i].freq = opp->rate;
freq_table[i].supplies[0] = opp->supplies[0];
if (dmcfreq->regulator_count > 1)
freq_table[i].supplies[1] = opp->supplies[1];
i++;
}
i = 0;
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
if (i >= dmcfreq->freq_count) {
opp->available = false;
continue;
}
for (j = 0; j < count; j++) {
if (dmcfreq->freq_info_rate[i] <= freq_table[j].freq) {
opp->rate = dmcfreq->freq_info_rate[i];
opp->supplies[0] = freq_table[j].supplies[0];
if (dmcfreq->regulator_count > 1)
opp->supplies[1] = freq_table[j].supplies[1];
break;
}
}
if (j == count) {
dev_err(dmcfreq->dev, "failed to match dmc_opp_table for %ld\n",
dmcfreq->freq_info_rate[i]);
if (i == 0) {
ret = -EPERM;
goto out;
} else {
opp->available = false;
dmcfreq->freq_count = i;
}
}
i++;
}
mutex_unlock(&opp_table->lock);
dev_pm_opp_put_opp_table(opp_table);
out:
kfree(freq_table);
return ret;
}
static __maybe_unused int px30_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
u32 size;
int ret;
int complt_irq;
u32 complt_hwirq;
struct irq_data *complt_irq_data;
res = sip_smc_dram(0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
if (res.a0 || res.a1 < 0x103) {
dev_err(&pdev->dev,
"trusted firmware need to update or is invalid!\n");
return -ENXIO;
}
dev_notice(&pdev->dev, "read tf version 0x%lx!\n", res.a1);
/*
* first 4KB is used for interface parameters
* after 4KB * N is dts parameters
*/
size = sizeof(struct px30_ddr_dts_config_timing);
res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_px30_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete_irq");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complete_irq: %d\n",
complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complete_irq\n");
return ret;
}
disable_irq(complt_irq);
complt_irq_data = irq_get_irq_data(complt_irq);
complt_hwirq = irqd_to_hwirq(complt_irq_data);
ddr_psci_param->complt_hwirq = complt_hwirq;
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk1808_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
u32 size;
int ret;
int complt_irq;
struct device_node *node;
res = sip_smc_dram(0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
if (res.a0 || res.a1 < 0x101) {
dev_err(&pdev->dev,
"trusted firmware need to update or is invalid!\n");
return -ENXIO;
}
/*
* first 4KB is used for interface parameters
* after 4KB * N is dts parameters
*/
size = sizeof(struct rk1808_ddr_dts_config_timing);
res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_rk1808_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
/* enable start dcf in kernel after dcf ready */
node = of_parse_phandle(pdev->dev.of_node, "dcf_reg", 0);
wait_ctrl.regmap_dcf = syscon_node_to_regmap(node);
if (IS_ERR(wait_ctrl.regmap_dcf))
return PTR_ERR(wait_ctrl.regmap_dcf);
wait_ctrl.dcf_en = 1;
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete_irq");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complete_irq: %d\n",
complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complete_irq\n");
return ret;
}
disable_irq(complt_irq);
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3128_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
struct rk3128_ddr_dts_config_timing),
4096) + 1, SHARE_PAGE_TYPE_DDR);
if (res.a0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_rk3128_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
ddr_psci_param->hz = 0;
ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3228_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
struct rk3228_ddr_dts_config_timing),
4096) + 1, SHARE_PAGE_TYPE_DDR);
if (res.a0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
if (of_get_rk3228_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param))
return -ENOMEM;
ddr_psci_param->hz = 0;
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3288_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = &pdev->dev;
struct clk *pclk_phy, *pclk_upctl, *dmc_clk;
struct arm_smccc_res res;
int ret;
dmc_clk = devm_clk_get(dev, "dmc_clk");
if (IS_ERR(dmc_clk)) {
dev_err(dev, "Cannot get the clk dmc_clk\n");
return PTR_ERR(dmc_clk);
}
ret = clk_prepare_enable(dmc_clk);
if (ret < 0) {
dev_err(dev, "failed to prepare/enable dmc_clk\n");
return ret;
}
pclk_phy = devm_clk_get(dev, "pclk_phy0");
if (IS_ERR(pclk_phy)) {
dev_err(dev, "Cannot get the clk pclk_phy0\n");
return PTR_ERR(pclk_phy);
}
ret = clk_prepare_enable(pclk_phy);
if (ret < 0) {
dev_err(dev, "failed to prepare/enable pclk_phy0\n");
return ret;
}
pclk_upctl = devm_clk_get(dev, "pclk_upctl0");
if (IS_ERR(pclk_upctl)) {
dev_err(dev, "Cannot get the clk pclk_upctl0\n");
return PTR_ERR(pclk_upctl);
}
ret = clk_prepare_enable(pclk_upctl);
if (ret < 0) {
dev_err(dev, "failed to prepare/enable pclk_upctl1\n");
return ret;
}
pclk_phy = devm_clk_get(dev, "pclk_phy1");
if (IS_ERR(pclk_phy)) {
dev_err(dev, "Cannot get the clk pclk_phy1\n");
return PTR_ERR(pclk_phy);
}
ret = clk_prepare_enable(pclk_phy);
if (ret < 0) {
dev_err(dev, "failed to prepare/enable pclk_phy1\n");
return ret;
}
pclk_upctl = devm_clk_get(dev, "pclk_upctl1");
if (IS_ERR(pclk_upctl)) {
dev_err(dev, "Cannot get the clk pclk_upctl1\n");
return PTR_ERR(pclk_upctl);
}
ret = clk_prepare_enable(pclk_upctl);
if (ret < 0) {
dev_err(dev, "failed to prepare/enable pclk_upctl1\n");
return ret;
}
res = sip_smc_request_share_mem(DIV_ROUND_UP(sizeof(
struct rk3288_ddr_dts_config_timing),
4096) + 1, SHARE_PAGE_TYPE_DDR);
if (res.a0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_rk3288_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
ddr_psci_param->hz = 0;
ddr_psci_param->lcdc_type = rk_drm_get_lcdc_type();
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3328_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
u32 size;
res = sip_smc_dram(0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx!\n", res.a1);
if (res.a0 || (res.a1 < 0x101)) {
dev_err(&pdev->dev,
"trusted firmware need to update or is invalid!\n");
return -ENXIO;
}
dev_notice(&pdev->dev, "read tf version 0x%lx!\n", res.a1);
/*
* first 4KB is used for interface parameters
* after 4KB * N is dts parameters
*/
size = sizeof(struct rk3328_ddr_dts_config_timing);
res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_rk3328_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static int rk3399_set_msch_readlatency(unsigned int readlatency)
{
struct arm_smccc_res res;
arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, readlatency, 0,
ROCKCHIP_SIP_CONFIG_DRAM_SET_MSCH_RL,
0, 0, 0, 0, &res);
return res.a0;
}
static __maybe_unused int rk3399_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = &pdev->dev;
struct device_node *np = pdev->dev.of_node;
struct arm_smccc_res res;
struct rk3399_dram_timing *dram_timing;
int index, size;
u32 *timing;
/*
* Get dram timing and pass it to arm trust firmware,
* the dram drvier in arm trust firmware will get these
* timing and to do dram initial.
*/
dram_timing = of_get_rk3399_timings(dev, np);
if (dram_timing) {
timing = (u32 *)dram_timing;
size = sizeof(struct rk3399_dram_timing) / 4;
for (index = 0; index < size; index++) {
arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, *timing++, index,
ROCKCHIP_SIP_CONFIG_DRAM_SET_PARAM,
0, 0, 0, 0, &res);
if (res.a0) {
dev_err(dev, "Failed to set dram param: %ld\n",
res.a0);
return -EINVAL;
}
}
}
dmcfreq->set_rate_params =
devm_kzalloc(dev, sizeof(struct share_params), GFP_KERNEL);
if (!dmcfreq->set_rate_params)
return -ENOMEM;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
arm_smccc_smc(ROCKCHIP_SIP_DRAM_FREQ, 0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT,
0, 0, 0, 0, &res);
dmcfreq->info.set_msch_readlatency = rk3399_set_msch_readlatency;
return 0;
}
static __maybe_unused int rk3528_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
int ret;
int complt_irq;
u32 complt_hwirq;
struct irq_data *complt_irq_data;
res = sip_smc_dram(0, 0, ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
if (res.a0 || res.a1 < 0x100) {
dev_err(&pdev->dev, "trusted firmware need update to V1.00 and above.\n");
return -ENXIO;
}
/*
* first 4KB is used for interface parameters
* after 4KB is dts parameters
* request share memory size 4KB * 2
*/
res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
/* Clear ddr_psci_param, size is 4KB * 2 */
memset_io(ddr_psci_param, 0x0, 4096 * 2);
wait_ctrl.dcf_en = 0;
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n", complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complt_irq\n");
return ret;
}
disable_irq(complt_irq);
complt_irq_data = irq_get_irq_data(complt_irq);
complt_hwirq = irqd_to_hwirq(complt_irq_data);
ddr_psci_param->complt_hwirq = complt_hwirq;
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0, ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n", res.a0);
return -ENOMEM;
}
ret = rockchip_get_freq_info(dmcfreq);
if (ret < 0) {
dev_err(&pdev->dev, "cannot get frequency info\n");
return ret;
}
dmcfreq->is_set_rate_direct = true;
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3568_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
int ret;
int complt_irq;
res = sip_smc_dram(0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
if (res.a0 || res.a1 < 0x101) {
dev_err(&pdev->dev, "trusted firmware need update to V1.01 and above.\n");
return -ENXIO;
}
/*
* first 4KB is used for interface parameters
* after 4KB is dts parameters
* request share memory size 4KB * 2
*/
res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
/* Clear ddr_psci_param, size is 4KB * 2 */
memset_io(ddr_psci_param, 0x0, 4096 * 2);
/* start mcu with sip_smc_dram */
wait_ctrl.dcf_en = 2;
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n",
complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complt_irq\n");
return ret;
}
disable_irq(complt_irq);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
ret = rockchip_get_freq_info(dmcfreq);
if (ret < 0) {
dev_err(&pdev->dev, "cannot get frequency info\n");
return ret;
}
dmcfreq->is_set_rate_direct = true;
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rk3588_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
struct dev_pm_opp *opp;
unsigned long opp_rate;
int ret;
int complt_irq;
res = sip_smc_dram(0, 0, ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
if (res.a0) {
dev_err(&pdev->dev, "trusted firmware unsupported, please update.\n");
return -ENXIO;
}
/*
* first 4KB is used for interface parameters
* after 4KB is dts parameters
* request share memory size 4KB * 2
*/
res = sip_smc_request_share_mem(2, SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
/* Clear ddr_psci_param, size is 4KB * 2 */
memset_io(ddr_psci_param, 0x0, 4096 * 2);
/* start mcu with sip_smc_dram */
wait_ctrl.dcf_en = 2;
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n", complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complt_irq\n");
return ret;
}
disable_irq(complt_irq);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0, ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n", res.a0);
return -ENOMEM;
}
ret = rockchip_dmcfreq_adjust_opp_table(dmcfreq);
if (ret < 0) {
dev_err(&pdev->dev, "cannot get frequency info\n");
return ret;
}
dmcfreq->is_set_rate_direct = true;
/* Config the dmcfreq->sleep_volt for deepsleep */
opp_rate = dmcfreq->freq_info_rate[dmcfreq->freq_count - 1];
opp = devfreq_recommended_opp(&pdev->dev, &opp_rate, 0);
if (IS_ERR(opp)) {
dev_err(&pdev->dev, "Failed to find opp for %lu Hz\n", opp_rate);
return PTR_ERR(opp);
}
dmcfreq->sleep_volt = opp->supplies[0].u_volt;
if (dmcfreq->regulator_count > 1)
dmcfreq->sleep_mem_volt = opp->supplies[1].u_volt;
dev_pm_opp_put(opp);
if (of_property_read_u32(pdev->dev.of_node, "wait-mode", &ddr_psci_param->wait_mode))
ddr_psci_param->wait_mode = 0;
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static __maybe_unused int rv1126_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
struct arm_smccc_res res;
u32 size;
int ret;
int complt_irq;
struct device_node *node;
res = sip_smc_dram(0, 0,
ROCKCHIP_SIP_CONFIG_DRAM_GET_VERSION);
dev_notice(&pdev->dev, "current ATF version 0x%lx\n", res.a1);
if (res.a0 || res.a1 < 0x100) {
dev_err(&pdev->dev,
"trusted firmware need to update or is invalid!\n");
return -ENXIO;
}
/*
* first 4KB is used for interface parameters
* after 4KB * N is dts parameters
*/
size = sizeof(struct rk1808_ddr_dts_config_timing);
res = sip_smc_request_share_mem(DIV_ROUND_UP(size, 4096) + 1,
SHARE_PAGE_TYPE_DDR);
if (res.a0 != 0) {
dev_err(&pdev->dev, "no ATF memory for init\n");
return -ENOMEM;
}
ddr_psci_param = (struct share_params *)res.a1;
of_get_rv1126_timings(&pdev->dev, pdev->dev.of_node,
(uint32_t *)ddr_psci_param);
/* enable start dcf in kernel after dcf ready */
node = of_parse_phandle(pdev->dev.of_node, "dcf", 0);
wait_ctrl.regmap_dcf = syscon_node_to_regmap(node);
if (IS_ERR(wait_ctrl.regmap_dcf))
return PTR_ERR(wait_ctrl.regmap_dcf);
wait_ctrl.dcf_en = 1;
init_waitqueue_head(&wait_ctrl.wait_wq);
wait_ctrl.wait_en = 1;
wait_ctrl.wait_time_out_ms = 17 * 5;
complt_irq = platform_get_irq_byname(pdev, "complete");
if (complt_irq < 0) {
dev_err(&pdev->dev, "no IRQ for complt_irq: %d\n",
complt_irq);
return complt_irq;
}
wait_ctrl.complt_irq = complt_irq;
ret = devm_request_irq(&pdev->dev, complt_irq, wait_dcf_complete_irq,
0, dev_name(&pdev->dev), &wait_ctrl);
if (ret < 0) {
dev_err(&pdev->dev, "cannot request complt_irq\n");
return ret;
}
disable_irq(complt_irq);
if (of_property_read_u32(pdev->dev.of_node, "update_drv_odt_cfg",
&ddr_psci_param->update_drv_odt_cfg))
ddr_psci_param->update_drv_odt_cfg = 0;
if (of_property_read_u32(pdev->dev.of_node, "update_deskew_cfg",
&ddr_psci_param->update_deskew_cfg))
ddr_psci_param->update_deskew_cfg = 0;
dmcfreq->set_rate_params = ddr_psci_param;
rockchip_set_ddrclk_params(dmcfreq->set_rate_params);
rockchip_set_ddrclk_dmcfreq_wait_complete(rockchip_dmcfreq_wait_complete);
res = sip_smc_dram(SHARE_PAGE_TYPE_DDR, 0,
ROCKCHIP_SIP_CONFIG_DRAM_INIT);
if (res.a0) {
dev_err(&pdev->dev, "rockchip_sip_config_dram_init error:%lx\n",
res.a0);
return -ENOMEM;
}
dmcfreq->set_auto_self_refresh = rockchip_ddr_set_auto_self_refresh;
return 0;
}
static const struct of_device_id rockchip_dmcfreq_of_match[] = {
#if IS_ENABLED(CONFIG_CPU_PX30)
{ .compatible = "rockchip,px30-dmc", .data = px30_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK1808)
{ .compatible = "rockchip,rk1808-dmc", .data = rk1808_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK312X)
{ .compatible = "rockchip,rk3128-dmc", .data = rk3128_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK322X)
{ .compatible = "rockchip,rk3228-dmc", .data = rk3228_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3288)
{ .compatible = "rockchip,rk3288-dmc", .data = rk3288_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3308)
{ .compatible = "rockchip,rk3308-dmc", .data = NULL },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3328)
{ .compatible = "rockchip,rk3328-dmc", .data = rk3328_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3399)
{ .compatible = "rockchip,rk3399-dmc", .data = rk3399_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3528)
{ .compatible = "rockchip,rk3528-dmc", .data = rk3528_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3562)
{ .compatible = "rockchip,rk3562-dmc", .data = rk3568_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3568)
{ .compatible = "rockchip,rk3568-dmc", .data = rk3568_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RK3588)
{ .compatible = "rockchip,rk3588-dmc", .data = rk3588_dmc_init },
#endif
#if IS_ENABLED(CONFIG_CPU_RV1126)
{ .compatible = "rockchip,rv1126-dmc", .data = rv1126_dmc_init },
#endif
{ },
};
MODULE_DEVICE_TABLE(of, rockchip_dmcfreq_of_match);
static int rockchip_get_freq_map_talbe(struct device_node *np, char *porp_name,
struct freq_map_table **table)
{
struct freq_map_table *tbl;
const struct property *prop;
unsigned int temp_freq = 0;
int count, i;
prop = of_find_property(np, porp_name, NULL);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
count = of_property_count_u32_elems(np, porp_name);
if (count < 0)
return -EINVAL;
if (count % 3)
return -EINVAL;
tbl = kzalloc(sizeof(*tbl) * (count / 3 + 1), GFP_KERNEL);
if (!tbl)
return -ENOMEM;
for (i = 0; i < count / 3; i++) {
of_property_read_u32_index(np, porp_name, 3 * i, &tbl[i].min);
of_property_read_u32_index(np, porp_name, 3 * i + 1,
&tbl[i].max);
of_property_read_u32_index(np, porp_name, 3 * i + 2,
&temp_freq);
tbl[i].freq = temp_freq * 1000;
}
tbl[i].min = 0;
tbl[i].max = 0;
tbl[i].freq = DMCFREQ_TABLE_END;
*table = tbl;
return 0;
}
static int rockchip_get_rl_map_talbe(struct device_node *np, char *porp_name,
struct rl_map_table **table)
{
struct rl_map_table *tbl;
const struct property *prop;
int count, i;
prop = of_find_property(np, porp_name, NULL);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
count = of_property_count_u32_elems(np, porp_name);
if (count < 0)
return -EINVAL;
if (count % 2)
return -EINVAL;
tbl = kzalloc(sizeof(*tbl) * (count / 2 + 1), GFP_KERNEL);
if (!tbl)
return -ENOMEM;
for (i = 0; i < count / 2; i++) {
of_property_read_u32_index(np, porp_name, 2 * i, &tbl[i].pn);
of_property_read_u32_index(np, porp_name, 2 * i + 1,
&tbl[i].rl);
}
tbl[i].pn = 0;
tbl[i].rl = DMCFREQ_TABLE_END;
*table = tbl;
return 0;
}
static int rockchip_get_system_status_rate(struct device_node *np,
char *porp_name,
struct rockchip_dmcfreq *dmcfreq)
{
const struct property *prop;
unsigned int status = 0, freq = 0;
unsigned long temp_rate = 0;
int count, i;
prop = of_find_property(np, porp_name, NULL);
if (!prop)
return -ENODEV;
if (!prop->value)
return -ENODATA;
count = of_property_count_u32_elems(np, porp_name);
if (count < 0)
return -EINVAL;
if (count % 2)
return -EINVAL;
for (i = 0; i < count / 2; i++) {
of_property_read_u32_index(np, porp_name, 2 * i,
&status);
of_property_read_u32_index(np, porp_name, 2 * i + 1,
&freq);
switch (status) {
case SYS_STATUS_NORMAL:
dmcfreq->normal_rate = freq * 1000;
break;
case SYS_STATUS_SUSPEND:
dmcfreq->suspend_rate = freq * 1000;
break;
case SYS_STATUS_VIDEO_1080P:
dmcfreq->video_1080p_rate = freq * 1000;
break;
case SYS_STATUS_VIDEO_4K:
dmcfreq->video_4k_rate = freq * 1000;
break;
case SYS_STATUS_VIDEO_4K_10B:
dmcfreq->video_4k_10b_rate = freq * 1000;
break;
case SYS_STATUS_VIDEO_SVEP:
dmcfreq->video_svep_rate = freq * 1000;
break;
case SYS_STATUS_PERFORMANCE:
dmcfreq->performance_rate = freq * 1000;
break;
case SYS_STATUS_HDMI:
dmcfreq->hdmi_rate = freq * 1000;
break;
case SYS_STATUS_HDMIRX:
dmcfreq->hdmirx_rate = freq * 1000;
break;
case SYS_STATUS_IDLE:
dmcfreq->idle_rate = freq * 1000;
break;
case SYS_STATUS_REBOOT:
dmcfreq->reboot_rate = freq * 1000;
break;
case SYS_STATUS_BOOST:
dmcfreq->boost_rate = freq * 1000;
break;
case SYS_STATUS_ISP:
case SYS_STATUS_CIF0:
case SYS_STATUS_CIF1:
case SYS_STATUS_DUALVIEW:
temp_rate = freq * 1000;
if (dmcfreq->fixed_rate < temp_rate)
dmcfreq->fixed_rate = temp_rate;
break;
case SYS_STATUS_LOW_POWER:
dmcfreq->low_power_rate = freq * 1000;
break;
default:
break;
}
}
return 0;
}
static unsigned long rockchip_freq_level_2_rate(struct rockchip_dmcfreq *dmcfreq,
unsigned int level)
{
unsigned long rate = 0;
switch (level) {
case DMC_FREQ_LEVEL_LOW:
rate = dmcfreq->rate_low;
break;
case DMC_FREQ_LEVEL_MID_LOW:
rate = dmcfreq->rate_mid_low;
break;
case DMC_FREQ_LEVEL_MID_HIGH:
rate = dmcfreq->rate_mid_high;
break;
case DMC_FREQ_LEVEL_HIGH:
rate = dmcfreq->rate_high;
break;
default:
break;
}
return rate;
}
static int rockchip_get_system_status_level(struct device_node *np,
char *porp_name,
struct rockchip_dmcfreq *dmcfreq)
{
const struct property *prop;
unsigned int status = 0, level = 0;
unsigned long temp_rate = 0;
int count, i;
prop = of_find_property(np, porp_name, NULL);
if (!prop)
return -ENODEV;
if (!prop->value)
return -ENODATA;
count = of_property_count_u32_elems(np, porp_name);
if (count < 0)
return -EINVAL;
if (count % 2)
return -EINVAL;
if (dmcfreq->freq_count == 1) {
dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[0];
dmcfreq->rate_high = dmcfreq->freq_info_rate[0];
} else if (dmcfreq->freq_count == 2) {
dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[1];
dmcfreq->rate_high = dmcfreq->freq_info_rate[1];
} else if (dmcfreq->freq_count == 3) {
dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[1];
dmcfreq->rate_high = dmcfreq->freq_info_rate[2];
} else if (dmcfreq->freq_count == 4) {
dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[2];
dmcfreq->rate_high = dmcfreq->freq_info_rate[3];
} else if (dmcfreq->freq_count == 5 || dmcfreq->freq_count == 6) {
dmcfreq->rate_low = dmcfreq->freq_info_rate[0];
dmcfreq->rate_mid_low = dmcfreq->freq_info_rate[1];
dmcfreq->rate_mid_high = dmcfreq->freq_info_rate[dmcfreq->freq_count - 2];
dmcfreq->rate_high = dmcfreq->freq_info_rate[dmcfreq->freq_count - 1];
} else {
return -EINVAL;
}
dmcfreq->auto_min_rate = dmcfreq->rate_low;
for (i = 0; i < count / 2; i++) {
of_property_read_u32_index(np, porp_name, 2 * i,
&status);
of_property_read_u32_index(np, porp_name, 2 * i + 1,
&level);
switch (status) {
case SYS_STATUS_NORMAL:
dmcfreq->normal_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "normal_rate = %ld\n", dmcfreq->normal_rate);
break;
case SYS_STATUS_SUSPEND:
dmcfreq->suspend_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "suspend_rate = %ld\n", dmcfreq->suspend_rate);
break;
case SYS_STATUS_VIDEO_1080P:
dmcfreq->video_1080p_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "video_1080p_rate = %ld\n",
dmcfreq->video_1080p_rate);
break;
case SYS_STATUS_VIDEO_4K:
dmcfreq->video_4k_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "video_4k_rate = %ld\n", dmcfreq->video_4k_rate);
break;
case SYS_STATUS_VIDEO_4K_10B:
dmcfreq->video_4k_10b_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "video_4k_10b_rate = %ld\n",
dmcfreq->video_4k_10b_rate);
break;
case SYS_STATUS_VIDEO_4K_60P:
dmcfreq->video_4k_60p_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "video_4k_60p_rate = %ld\n",
dmcfreq->video_4k_60p_rate);
break;
case SYS_STATUS_VIDEO_SVEP:
dmcfreq->video_svep_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "video_svep_rate = %ld\n",
dmcfreq->video_svep_rate);
break;
case SYS_STATUS_PERFORMANCE:
dmcfreq->performance_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "performance_rate = %ld\n",
dmcfreq->performance_rate);
break;
case SYS_STATUS_HDMI:
dmcfreq->hdmi_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "hdmi_rate = %ld\n", dmcfreq->hdmi_rate);
break;
case SYS_STATUS_HDMIRX:
dmcfreq->hdmirx_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "hdmirx_rate = %ld\n", dmcfreq->hdmirx_rate);
break;
case SYS_STATUS_IDLE:
dmcfreq->idle_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "idle_rate = %ld\n", dmcfreq->idle_rate);
break;
case SYS_STATUS_REBOOT:
dmcfreq->reboot_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "reboot_rate = %ld\n", dmcfreq->reboot_rate);
break;
case SYS_STATUS_BOOST:
dmcfreq->boost_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "boost_rate = %ld\n", dmcfreq->boost_rate);
break;
case SYS_STATUS_ISP:
case SYS_STATUS_CIF0:
case SYS_STATUS_CIF1:
case SYS_STATUS_DUALVIEW:
temp_rate = rockchip_freq_level_2_rate(dmcfreq, level);
if (dmcfreq->fixed_rate < temp_rate) {
dmcfreq->fixed_rate = temp_rate;
dev_info(dmcfreq->dev,
"fixed_rate(isp|cif0|cif1|dualview) = %ld\n",
dmcfreq->fixed_rate);
}
break;
case SYS_STATUS_LOW_POWER:
dmcfreq->low_power_rate = rockchip_freq_level_2_rate(dmcfreq, level);
dev_info(dmcfreq->dev, "low_power_rate = %ld\n", dmcfreq->low_power_rate);
break;
default:
break;
}
}
return 0;
}
static void rockchip_dmcfreq_update_target(struct rockchip_dmcfreq *dmcfreq)
{
struct devfreq *devfreq = dmcfreq->info.devfreq;
mutex_lock(&devfreq->lock);
update_devfreq(devfreq);
mutex_unlock(&devfreq->lock);
}
static int rockchip_dmcfreq_system_status_notifier(struct notifier_block *nb,
unsigned long status,
void *ptr)
{
struct rockchip_dmcfreq *dmcfreq = system_status_to_dmcfreq(nb);
unsigned long target_rate = 0;
unsigned int refresh = false;
bool is_fixed = false;
if (dmcfreq->fixed_rate && (is_dualview(status) || is_isp(status))) {
if (dmcfreq->is_fixed)
return NOTIFY_OK;
is_fixed = true;
target_rate = dmcfreq->fixed_rate;
goto next;
}
if (dmcfreq->reboot_rate && (status & SYS_STATUS_REBOOT)) {
if (dmcfreq->info.auto_freq_en)
devfreq_monitor_stop(dmcfreq->info.devfreq);
target_rate = dmcfreq->reboot_rate;
goto next;
}
if (dmcfreq->suspend_rate && (status & SYS_STATUS_SUSPEND)) {
target_rate = dmcfreq->suspend_rate;
refresh = true;
goto next;
}
if (dmcfreq->low_power_rate && (status & SYS_STATUS_LOW_POWER)) {
target_rate = dmcfreq->low_power_rate;
goto next;
}
if (dmcfreq->performance_rate && (status & SYS_STATUS_PERFORMANCE)) {
if (dmcfreq->performance_rate > target_rate)
target_rate = dmcfreq->performance_rate;
}
if (dmcfreq->hdmi_rate && (status & SYS_STATUS_HDMI)) {
if (dmcfreq->hdmi_rate > target_rate)
target_rate = dmcfreq->hdmi_rate;
}
if (dmcfreq->hdmirx_rate && (status & SYS_STATUS_HDMIRX)) {
if (dmcfreq->hdmirx_rate > target_rate)
target_rate = dmcfreq->hdmirx_rate;
}
if (dmcfreq->video_4k_rate && (status & SYS_STATUS_VIDEO_4K)) {
if (dmcfreq->video_4k_rate > target_rate)
target_rate = dmcfreq->video_4k_rate;
}
if (dmcfreq->video_4k_10b_rate && (status & SYS_STATUS_VIDEO_4K_10B)) {
if (dmcfreq->video_4k_10b_rate > target_rate)
target_rate = dmcfreq->video_4k_10b_rate;
}
if (dmcfreq->video_4k_60p_rate && (status & SYS_STATUS_VIDEO_4K_60P)) {
if (dmcfreq->video_4k_60p_rate > target_rate)
target_rate = dmcfreq->video_4k_60p_rate;
}
if (dmcfreq->video_1080p_rate && (status & SYS_STATUS_VIDEO_1080P)) {
if (dmcfreq->video_1080p_rate > target_rate)
target_rate = dmcfreq->video_1080p_rate;
}
if (dmcfreq->video_svep_rate && (status & SYS_STATUS_VIDEO_SVEP)) {
if (dmcfreq->video_svep_rate > target_rate)
target_rate = dmcfreq->video_svep_rate;
}
next:
dev_dbg(dmcfreq->dev, "status=0x%x\n", (unsigned int)status);
dmcfreq->is_fixed = is_fixed;
dmcfreq->status_rate = target_rate;
if (dmcfreq->refresh != refresh) {
if (dmcfreq->set_auto_self_refresh)
dmcfreq->set_auto_self_refresh(refresh);
dmcfreq->refresh = refresh;
}
rockchip_dmcfreq_update_target(dmcfreq);
return NOTIFY_OK;
}
static int rockchip_dmcfreq_panic_notifier(struct notifier_block *nb,
unsigned long v, void *p)
{
struct rockchip_dmcfreq *dmcfreq =
container_of(nb, struct rockchip_dmcfreq, panic_nb);
struct device *dev = dmcfreq->dev;
if (dmcfreq->regulator_count == 1)
dev_info(dev, "cur_freq: %lu Hz, volt: %lu uV\n",
dmcfreq->rate, dmcfreq->volt);
else
dev_info(dev, "cur_freq: %lu Hz, volt_vdd: %lu uV, volt_mem: %lu uV\n",
dmcfreq->rate, dmcfreq->volt, dmcfreq->mem_volt);
return 0;
}
static ssize_t rockchip_dmcfreq_status_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned int status = rockchip_get_system_status();
return sprintf(buf, "0x%x\n", status);
}
static ssize_t rockchip_dmcfreq_status_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
if (!count)
return -EINVAL;
rockchip_update_system_status(buf);
return count;
}
static DEVICE_ATTR(system_status, 0644, rockchip_dmcfreq_status_show,
rockchip_dmcfreq_status_store);
static ssize_t upthreshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
return sprintf(buf, "%d\n", data->upthreshold);
}
static ssize_t upthreshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
unsigned int value;
if (kstrtouint(buf, 10, &value))
return -EINVAL;
data->upthreshold = value;
return count;
}
static DEVICE_ATTR_RW(upthreshold);
static ssize_t downdifferential_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
return sprintf(buf, "%d\n", data->downdifferential);
}
static ssize_t downdifferential_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev->parent);
struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
unsigned int value;
if (kstrtouint(buf, 10, &value))
return -EINVAL;
data->downdifferential = value;
return count;
}
static DEVICE_ATTR_RW(downdifferential);
static unsigned long get_nocp_req_rate(struct rockchip_dmcfreq *dmcfreq)
{
unsigned long target = 0, cpu_bw = 0;
int i;
if (!dmcfreq->cpu_bw_tbl || dmcfreq->nocp_cpu_id < 0)
goto out;
cpu_bw = dmcfreq->nocp_bw[dmcfreq->nocp_cpu_id];
for (i = 0; dmcfreq->cpu_bw_tbl[i].freq != CPUFREQ_TABLE_END; i++) {
if (cpu_bw >= dmcfreq->cpu_bw_tbl[i].min)
target = dmcfreq->cpu_bw_tbl[i].freq;
}
out:
return target;
}
static int devfreq_dmc_ondemand_func(struct devfreq *df,
unsigned long *freq)
{
int err;
struct devfreq_dev_status *stat;
unsigned long long a, b;
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(df->dev.parent);
struct rockchip_dmcfreq_ondemand_data *data = &dmcfreq->ondemand_data;
unsigned int upthreshold = data->upthreshold;
unsigned int downdifferential = data->downdifferential;
unsigned long target_freq = 0, nocp_req_rate = 0;
u64 now;
if (dmcfreq->info.auto_freq_en && !dmcfreq->is_fixed) {
if (dmcfreq->status_rate)
target_freq = dmcfreq->status_rate;
else if (dmcfreq->auto_min_rate)
target_freq = dmcfreq->auto_min_rate;
nocp_req_rate = get_nocp_req_rate(dmcfreq);
target_freq = max3(target_freq, nocp_req_rate,
dmcfreq->info.vop_req_rate);
now = ktime_to_us(ktime_get());
if (now < dmcfreq->touchboostpulse_endtime)
target_freq = max(target_freq, dmcfreq->boost_rate);
} else {
if (dmcfreq->status_rate)
target_freq = dmcfreq->status_rate;
else if (dmcfreq->normal_rate)
target_freq = dmcfreq->normal_rate;
if (target_freq)
*freq = target_freq;
if (dmcfreq->info.auto_freq_en && !devfreq_update_stats(df))
return 0;
goto reset_last_status;
}
if (!upthreshold || !downdifferential)
goto reset_last_status;
if (upthreshold > 100 ||
upthreshold < downdifferential)
goto reset_last_status;
err = devfreq_update_stats(df);
if (err)
goto reset_last_status;
stat = &df->last_status;
/* Assume MAX if it is going to be divided by zero */
if (stat->total_time == 0) {
*freq = DEVFREQ_MAX_FREQ;
return 0;
}
/* Prevent overflow */
if (stat->busy_time >= (1 << 24) || stat->total_time >= (1 << 24)) {
stat->busy_time >>= 7;
stat->total_time >>= 7;
}
/* Set MAX if it's busy enough */
if (stat->busy_time * 100 >
stat->total_time * upthreshold) {
*freq = DEVFREQ_MAX_FREQ;
return 0;
}
/* Set MAX if we do not know the initial frequency */
if (stat->current_frequency == 0) {
*freq = DEVFREQ_MAX_FREQ;
return 0;
}
/* Keep the current frequency */
if (stat->busy_time * 100 >
stat->total_time * (upthreshold - downdifferential)) {
*freq = max(target_freq, stat->current_frequency);
return 0;
}
/* Set the desired frequency based on the load */
a = stat->busy_time;
a *= stat->current_frequency;
b = div_u64(a, stat->total_time);
b *= 100;
b = div_u64(b, (upthreshold - downdifferential / 2));
*freq = max_t(unsigned long, target_freq, b);
return 0;
reset_last_status:
reset_last_status(df);
return 0;
}
static int devfreq_dmc_ondemand_handler(struct devfreq *devfreq,
unsigned int event, void *data)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(devfreq->dev.parent);
if (!dmcfreq->info.auto_freq_en)
return 0;
switch (event) {
case DEVFREQ_GOV_START:
devfreq_monitor_start(devfreq);
break;
case DEVFREQ_GOV_STOP:
devfreq_monitor_stop(devfreq);
break;
case DEVFREQ_GOV_UPDATE_INTERVAL:
devfreq_update_interval(devfreq, (unsigned int *)data);
break;
case DEVFREQ_GOV_SUSPEND:
devfreq_monitor_suspend(devfreq);
break;
case DEVFREQ_GOV_RESUME:
devfreq_monitor_resume(devfreq);
break;
default:
break;
}
return 0;
}
static struct devfreq_governor devfreq_dmc_ondemand = {
.name = "dmc_ondemand",
.get_target_freq = devfreq_dmc_ondemand_func,
.event_handler = devfreq_dmc_ondemand_handler,
};
static int rockchip_dmcfreq_enable_event(struct rockchip_dmcfreq *dmcfreq)
{
int i, ret;
if (!dmcfreq->info.auto_freq_en)
return 0;
for (i = 0; i < dmcfreq->edev_count; i++) {
ret = devfreq_event_enable_edev(dmcfreq->edev[i]);
if (ret < 0) {
dev_err(dmcfreq->dev,
"failed to enable devfreq-event\n");
return ret;
}
}
return 0;
}
static int rockchip_dmcfreq_disable_event(struct rockchip_dmcfreq *dmcfreq)
{
int i, ret;
if (!dmcfreq->info.auto_freq_en)
return 0;
for (i = 0; i < dmcfreq->edev_count; i++) {
ret = devfreq_event_disable_edev(dmcfreq->edev[i]);
if (ret < 0) {
dev_err(dmcfreq->dev,
"failed to disable devfreq-event\n");
return ret;
}
}
return 0;
}
static int rockchip_get_edev_id(struct rockchip_dmcfreq *dmcfreq,
const char *name)
{
struct devfreq_event_dev *edev;
int i;
for (i = 0; i < dmcfreq->edev_count; i++) {
edev = dmcfreq->edev[i];
if (!strcmp(edev->desc->name, name))
return i;
}
return -EINVAL;
}
static int rockchip_dmcfreq_get_event(struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = dmcfreq->dev;
struct device_node *events_np, *np = dev->of_node;
int i, j, count, available_count = 0;
count = devfreq_event_get_edev_count(dev, "devfreq-events");
if (count < 0) {
dev_dbg(dev, "failed to get count of devfreq-event dev\n");
return 0;
}
for (i = 0; i < count; i++) {
events_np = of_parse_phandle(np, "devfreq-events", i);
if (!events_np)
continue;
if (of_device_is_available(events_np))
available_count++;
of_node_put(events_np);
}
if (!available_count) {
dev_dbg(dev, "failed to get available devfreq-event\n");
return 0;
}
dmcfreq->edev_count = available_count;
dmcfreq->edev = devm_kzalloc(dev,
sizeof(*dmcfreq->edev) * available_count,
GFP_KERNEL);
if (!dmcfreq->edev)
return -ENOMEM;
for (i = 0, j = 0; i < count; i++) {
events_np = of_parse_phandle(np, "devfreq-events", i);
if (!events_np)
continue;
if (of_device_is_available(events_np)) {
of_node_put(events_np);
if (j >= available_count) {
dev_err(dev, "invalid event conut\n");
return -EINVAL;
}
dmcfreq->edev[j] =
devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
if (IS_ERR(dmcfreq->edev[j]))
return -EPROBE_DEFER;
j++;
} else {
of_node_put(events_np);
}
}
dmcfreq->info.auto_freq_en = true;
dmcfreq->dfi_id = rockchip_get_edev_id(dmcfreq, "dfi");
dmcfreq->nocp_cpu_id = rockchip_get_edev_id(dmcfreq, "nocp-cpu");
dmcfreq->nocp_bw =
devm_kzalloc(dev, sizeof(*dmcfreq->nocp_bw) * available_count,
GFP_KERNEL);
if (!dmcfreq->nocp_bw)
return -ENOMEM;
return 0;
}
static int rockchip_dmcfreq_power_control(struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = dmcfreq->dev;
struct device_node *np = dev->of_node;
struct opp_table *opp_table = NULL, *reg_opp_table = NULL;
const char * const reg_names[] = {"center", "mem"};
int ret = 0;
if (of_find_property(np, "mem-supply", NULL))
dmcfreq->regulator_count = 2;
else
dmcfreq->regulator_count = 1;
reg_opp_table = dev_pm_opp_set_regulators(dev, reg_names,
dmcfreq->regulator_count);
if (IS_ERR(reg_opp_table)) {
dev_err(dev, "failed to set regulators\n");
return PTR_ERR(reg_opp_table);
}
opp_table = dev_pm_opp_register_set_opp_helper(dev, rockchip_dmcfreq_opp_helper);
if (IS_ERR(opp_table)) {
dev_err(dev, "failed to set opp helper\n");
ret = PTR_ERR(opp_table);
goto reg_opp_table;
}
dmcfreq->vdd_center = devm_regulator_get_optional(dev, "center");
if (IS_ERR(dmcfreq->vdd_center)) {
dev_err(dev, "Cannot get the regulator \"center\"\n");
ret = PTR_ERR(dmcfreq->vdd_center);
goto opp_table;
}
if (dmcfreq->regulator_count > 1) {
dmcfreq->mem_reg = devm_regulator_get_optional(dev, "mem");
if (IS_ERR(dmcfreq->mem_reg)) {
dev_err(dev, "Cannot get the regulator \"mem\"\n");
ret = PTR_ERR(dmcfreq->mem_reg);
goto opp_table;
}
}
dmcfreq->dmc_clk = devm_clk_get(dev, "dmc_clk");
if (IS_ERR(dmcfreq->dmc_clk)) {
dev_err(dev, "Cannot get the clk dmc_clk. If using SCMI, trusted firmware need update to V1.01 and above.\n");
ret = PTR_ERR(dmcfreq->dmc_clk);
goto opp_table;
}
dmcfreq->rate = clk_get_rate(dmcfreq->dmc_clk);
return 0;
opp_table:
if (opp_table)
dev_pm_opp_unregister_set_opp_helper(opp_table);
reg_opp_table:
if (reg_opp_table)
dev_pm_opp_put_regulators(reg_opp_table);
return ret;
}
static int rockchip_dmcfreq_dmc_init(struct platform_device *pdev,
struct rockchip_dmcfreq *dmcfreq)
{
const struct of_device_id *match;
int (*init)(struct platform_device *pdev,
struct rockchip_dmcfreq *data);
int ret;
match = of_match_node(rockchip_dmcfreq_of_match, pdev->dev.of_node);
if (match) {
init = match->data;
if (init) {
ret = init(pdev, dmcfreq);
if (ret)
return ret;
}
}
return 0;
}
static void rockchip_dmcfreq_parse_dt(struct rockchip_dmcfreq *dmcfreq)
{
struct device *dev = dmcfreq->dev;
struct device_node *np = dev->of_node;
if (!rockchip_get_system_status_rate(np, "system-status-freq", dmcfreq))
dmcfreq->system_status_en = true;
else if (!rockchip_get_system_status_level(np, "system-status-level", dmcfreq))
dmcfreq->system_status_en = true;
of_property_read_u32(np, "min-cpu-freq", &dmcfreq->min_cpu_freq);
of_property_read_u32(np, "upthreshold",
&dmcfreq->ondemand_data.upthreshold);
of_property_read_u32(np, "downdifferential",
&dmcfreq->ondemand_data.downdifferential);
if (dmcfreq->info.auto_freq_en)
of_property_read_u32(np, "auto-freq-en",
&dmcfreq->info.auto_freq_en);
if (!dmcfreq->auto_min_rate) {
of_property_read_u32(np, "auto-min-freq",
(u32 *)&dmcfreq->auto_min_rate);
dmcfreq->auto_min_rate *= 1000;
}
if (rockchip_get_freq_map_talbe(np, "cpu-bw-dmc-freq",
&dmcfreq->cpu_bw_tbl))
dev_dbg(dev, "failed to get cpu bandwidth to dmc rate\n");
if (rockchip_get_freq_map_talbe(np, "vop-frame-bw-dmc-freq",
&dmcfreq->info.vop_frame_bw_tbl))
dev_dbg(dev, "failed to get vop frame bandwidth to dmc rate\n");
if (rockchip_get_freq_map_talbe(np, "vop-bw-dmc-freq",
&dmcfreq->info.vop_bw_tbl))
dev_err(dev, "failed to get vop bandwidth to dmc rate\n");
if (rockchip_get_rl_map_talbe(np, "vop-pn-msch-readlatency",
&dmcfreq->info.vop_pn_rl_tbl))
dev_err(dev, "failed to get vop pn to msch rl\n");
if (dmcfreq->video_4k_rate)
dmcfreq->info.vop_4k_rate = dmcfreq->video_4k_rate;
else if (dmcfreq->video_4k_10b_rate)
dmcfreq->info.vop_4k_rate = dmcfreq->video_4k_10b_rate;
of_property_read_u32(np, "touchboost_duration",
(u32 *)&dmcfreq->touchboostpulse_duration_val);
if (dmcfreq->touchboostpulse_duration_val)
dmcfreq->touchboostpulse_duration_val *= USEC_PER_MSEC;
else
dmcfreq->touchboostpulse_duration_val = 500 * USEC_PER_MSEC;
}
static int rockchip_dmcfreq_add_devfreq(struct rockchip_dmcfreq *dmcfreq)
{
struct devfreq_dev_profile *devp = &rockchip_devfreq_dmc_profile;
struct device *dev = dmcfreq->dev;
struct dev_pm_opp *opp;
struct devfreq *devfreq;
unsigned long opp_rate = dmcfreq->rate;
opp = devfreq_recommended_opp(dev, &opp_rate, 0);
if (IS_ERR(opp)) {
dev_err(dev, "Failed to find opp for %lu Hz\n", opp_rate);
return PTR_ERR(opp);
}
dev_pm_opp_put(opp);
devp->initial_freq = dmcfreq->rate;
devfreq = devm_devfreq_add_device(dev, devp, "dmc_ondemand",
&dmcfreq->ondemand_data);
if (IS_ERR(devfreq)) {
dev_err(dev, "failed to add devfreq\n");
return PTR_ERR(devfreq);
}
devm_devfreq_register_opp_notifier(dev, devfreq);
devfreq->last_status.current_frequency = opp_rate;
reset_last_status(devfreq);
dmcfreq->info.devfreq = devfreq;
return 0;
}
static void rockchip_dmcfreq_register_notifier(struct rockchip_dmcfreq *dmcfreq)
{
int ret;
if (dmcfreq->system_status_en || dmcfreq->info.auto_freq_en) {
if (vop_register_dmc())
dev_err(dmcfreq->dev, "fail to register notify to vop.\n");
dmcfreq->status_nb.notifier_call =
rockchip_dmcfreq_system_status_notifier;
ret = rockchip_register_system_status_notifier(&dmcfreq->status_nb);
if (ret)
dev_err(dmcfreq->dev, "failed to register system_status nb\n");
}
dmcfreq->panic_nb.notifier_call = rockchip_dmcfreq_panic_notifier;
ret = atomic_notifier_chain_register(&panic_notifier_list,
&dmcfreq->panic_nb);
if (ret)
dev_err(dmcfreq->dev, "failed to register panic nb\n");
dmc_mdevp.data = dmcfreq->info.devfreq;
dmcfreq->mdev_info = rockchip_system_monitor_register(dmcfreq->dev,
&dmc_mdevp);
if (IS_ERR(dmcfreq->mdev_info)) {
dev_dbg(dmcfreq->dev, "without without system monitor\n");
dmcfreq->mdev_info = NULL;
}
}
static void rockchip_dmcfreq_add_interface(struct rockchip_dmcfreq *dmcfreq)
{
struct devfreq *devfreq = dmcfreq->info.devfreq;
if (sysfs_create_file(&devfreq->dev.kobj, &dev_attr_upthreshold.attr))
dev_err(dmcfreq->dev,
"failed to register upthreshold sysfs file\n");
if (sysfs_create_file(&devfreq->dev.kobj,
&dev_attr_downdifferential.attr))
dev_err(dmcfreq->dev,
"failed to register downdifferential sysfs file\n");
if (!rockchip_add_system_status_interface(&devfreq->dev))
return;
if (sysfs_create_file(&devfreq->dev.kobj,
&dev_attr_system_status.attr))
dev_err(dmcfreq->dev,
"failed to register system_status sysfs file\n");
}
static void rockchip_dmcfreq_boost_work(struct work_struct *work)
{
struct rockchip_dmcfreq *dmcfreq = boost_to_dmcfreq(work);
rockchip_dmcfreq_update_target(dmcfreq);
}
static void rockchip_dmcfreq_input_event(struct input_handle *handle,
unsigned int type,
unsigned int code,
int value)
{
struct rockchip_dmcfreq *dmcfreq = handle->private;
u64 now, endtime;
if (type != EV_ABS && type != EV_KEY)
return;
now = ktime_to_us(ktime_get());
endtime = now + dmcfreq->touchboostpulse_duration_val;
if (endtime < (dmcfreq->touchboostpulse_endtime + 10 * USEC_PER_MSEC))
return;
dmcfreq->touchboostpulse_endtime = endtime;
queue_work(system_freezable_wq, &dmcfreq->boost_work);
}
static int rockchip_dmcfreq_input_connect(struct input_handler *handler,
struct input_dev *dev,
const struct input_device_id *id)
{
int error;
struct input_handle *handle;
struct rockchip_dmcfreq *dmcfreq = input_hd_to_dmcfreq(handler);
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "dmcfreq";
handle->private = dmcfreq;
error = input_register_handle(handle);
if (error)
goto err2;
error = input_open_device(handle);
if (error)
goto err1;
return 0;
err1:
input_unregister_handle(handle);
err2:
kfree(handle);
return error;
}
static void rockchip_dmcfreq_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id rockchip_dmcfreq_input_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
.absbit = { [BIT_WORD(ABS_X)] =
BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
},
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_KEY) },
},
{ },
};
static void rockchip_dmcfreq_boost_init(struct rockchip_dmcfreq *dmcfreq)
{
if (!dmcfreq->boost_rate)
return;
INIT_WORK(&dmcfreq->boost_work, rockchip_dmcfreq_boost_work);
dmcfreq->input_handler.event = rockchip_dmcfreq_input_event;
dmcfreq->input_handler.connect = rockchip_dmcfreq_input_connect;
dmcfreq->input_handler.disconnect = rockchip_dmcfreq_input_disconnect;
dmcfreq->input_handler.name = "dmcfreq";
dmcfreq->input_handler.id_table = rockchip_dmcfreq_input_ids;
if (input_register_handler(&dmcfreq->input_handler))
dev_err(dmcfreq->dev, "failed to register input handler\n");
}
static unsigned long model_static_power(struct devfreq *devfreq,
unsigned long voltage)
{
struct device *dev = devfreq->dev.parent;
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
int temperature;
unsigned long temp;
unsigned long temp_squared, temp_cubed, temp_scaling_factor;
const unsigned long voltage_cubed = (voltage * voltage * voltage) >> 10;
if (!IS_ERR_OR_NULL(dmcfreq->ddr_tz) && dmcfreq->ddr_tz->ops->get_temp) {
int ret;
ret =
dmcfreq->ddr_tz->ops->get_temp(dmcfreq->ddr_tz,
&temperature);
if (ret) {
dev_warn_ratelimited(dev,
"failed to read temp for ddr thermal zone: %d\n",
ret);
temperature = FALLBACK_STATIC_TEMPERATURE;
}
} else {
temperature = FALLBACK_STATIC_TEMPERATURE;
}
/*
* Calculate the temperature scaling factor. To be applied to the
* voltage scaled power.
*/
temp = temperature / 1000;
temp_squared = temp * temp;
temp_cubed = temp_squared * temp;
temp_scaling_factor = (dmcfreq->ts[3] * temp_cubed)
+ (dmcfreq->ts[2] * temp_squared)
+ (dmcfreq->ts[1] * temp)
+ dmcfreq->ts[0];
return (((dmcfreq->static_coefficient * voltage_cubed) >> 20)
* temp_scaling_factor) / 1000000;
}
static struct devfreq_cooling_power ddr_cooling_power_data = {
.get_static_power = model_static_power,
.dyn_power_coeff = 120,
};
static int ddr_power_model_simple_init(struct rockchip_dmcfreq *dmcfreq)
{
struct device_node *power_model_node;
const char *tz_name;
u32 temp;
power_model_node = of_get_child_by_name(dmcfreq->dev->of_node,
"ddr_power_model");
if (!power_model_node) {
dev_err(dmcfreq->dev, "could not find power_model node\n");
return -ENODEV;
}
if (of_property_read_string(power_model_node, "thermal-zone", &tz_name)) {
dev_err(dmcfreq->dev, "ts in power_model not available\n");
return -EINVAL;
}
dmcfreq->ddr_tz = thermal_zone_get_zone_by_name(tz_name);
if (IS_ERR(dmcfreq->ddr_tz)) {
pr_warn_ratelimited
("Error getting ddr thermal zone (%ld), not yet ready?\n",
PTR_ERR(dmcfreq->ddr_tz));
dmcfreq->ddr_tz = NULL;
return -EPROBE_DEFER;
}
if (of_property_read_u32(power_model_node, "static-power-coefficient",
&dmcfreq->static_coefficient)) {
dev_err(dmcfreq->dev,
"static-power-coefficient not available\n");
return -EINVAL;
}
if (of_property_read_u32(power_model_node, "dynamic-power-coefficient",
&temp)) {
dev_err(dmcfreq->dev,
"dynamic-power-coefficient not available\n");
return -EINVAL;
}
ddr_cooling_power_data.dyn_power_coeff = (unsigned long)temp;
if (of_property_read_u32_array
(power_model_node, "ts", (u32 *)dmcfreq->ts, 4)) {
dev_err(dmcfreq->dev, "ts in power_model not available\n");
return -EINVAL;
}
return 0;
}
static void
rockchip_dmcfreq_register_cooling_device(struct rockchip_dmcfreq *dmcfreq)
{
int ret;
ret = ddr_power_model_simple_init(dmcfreq);
if (ret)
return;
dmcfreq->devfreq_cooling =
of_devfreq_cooling_register_power(dmcfreq->dev->of_node,
dmcfreq->info.devfreq,
&ddr_cooling_power_data);
if (IS_ERR(dmcfreq->devfreq_cooling)) {
ret = PTR_ERR(dmcfreq->devfreq_cooling);
dev_err(dmcfreq->dev,
"Failed to register cooling device (%d)\n",
ret);
}
}
static int rockchip_dmcfreq_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rockchip_dmcfreq *data;
int ret;
data = devm_kzalloc(dev, sizeof(struct rockchip_dmcfreq), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->dev = dev;
data->info.dev = dev;
mutex_init(&data->lock);
INIT_LIST_HEAD(&data->video_info_list);
ret = rockchip_dmcfreq_get_event(data);
if (ret)
return ret;
ret = rockchip_dmcfreq_power_control(data);
if (ret)
return ret;
ret = rockchip_init_opp_table(dev, NULL, "ddr_leakage", "center");
if (ret)
return ret;
ret = rockchip_dmcfreq_dmc_init(pdev, data);
if (ret)
return ret;
rockchip_dmcfreq_parse_dt(data);
platform_set_drvdata(pdev, data);
if (!data->system_status_en && !data->info.auto_freq_en) {
dev_info(dev, "don't add devfreq feature\n");
rockchip_dmcfreq_register_notifier(data);
return 0;
}
cpu_latency_qos_add_request(&pm_qos, PM_QOS_DEFAULT_VALUE);
ret = devfreq_add_governor(&devfreq_dmc_ondemand);
if (ret)
return ret;
ret = rockchip_dmcfreq_enable_event(data);
if (ret)
return ret;
ret = rockchip_dmcfreq_add_devfreq(data);
if (ret) {
rockchip_dmcfreq_disable_event(data);
return ret;
}
rockchip_dmcfreq_register_notifier(data);
rockchip_dmcfreq_add_interface(data);
rockchip_dmcfreq_boost_init(data);
rockchip_dmcfreq_vop_bandwidth_init(&data->info);
rockchip_dmcfreq_register_cooling_device(data);
rockchip_set_system_status(SYS_STATUS_NORMAL);
return 0;
}
static __maybe_unused int rockchip_dmcfreq_suspend(struct device *dev)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
int ret = 0;
if (!dmcfreq)
return 0;
ret = rockchip_dmcfreq_disable_event(dmcfreq);
if (ret)
return ret;
if (dmcfreq->info.devfreq) {
ret = devfreq_suspend_device(dmcfreq->info.devfreq);
if (ret < 0) {
dev_err(dev, "failed to suspend the devfreq devices\n");
return ret;
}
}
/* set voltage to sleep_volt if need */
if (dmcfreq->sleep_volt && dmcfreq->sleep_volt != dmcfreq->volt) {
ret = regulator_set_voltage(dmcfreq->vdd_center,
dmcfreq->sleep_volt, INT_MAX);
if (ret) {
dev_err(dev, "Cannot set vdd voltage %lu uV\n",
dmcfreq->sleep_volt);
return ret;
}
}
if (dmcfreq->sleep_mem_volt &&
dmcfreq->sleep_mem_volt != dmcfreq->mem_volt) {
ret = regulator_set_voltage(dmcfreq->mem_reg,
dmcfreq->sleep_mem_volt, INT_MAX);
if (ret) {
dev_err(dev, "Cannot set mem voltage %lu uV\n",
dmcfreq->sleep_mem_volt);
return ret;
}
}
return 0;
}
static __maybe_unused int rockchip_dmcfreq_resume(struct device *dev)
{
struct rockchip_dmcfreq *dmcfreq = dev_get_drvdata(dev);
int ret = 0;
if (!dmcfreq)
return 0;
/* restore voltage if it is sleep_volt */
if (dmcfreq->sleep_volt && dmcfreq->sleep_volt != dmcfreq->volt) {
ret = regulator_set_voltage(dmcfreq->vdd_center, dmcfreq->volt,
INT_MAX);
if (ret) {
dev_err(dev, "Cannot set vdd voltage %lu uV\n",
dmcfreq->volt);
return ret;
}
}
if (dmcfreq->sleep_mem_volt &&
dmcfreq->sleep_mem_volt != dmcfreq->mem_volt) {
ret = regulator_set_voltage(dmcfreq->mem_reg, dmcfreq->mem_volt,
INT_MAX);
if (ret) {
dev_err(dev, "Cannot set mem voltage %lu uV\n",
dmcfreq->mem_volt);
return ret;
}
}
ret = rockchip_dmcfreq_enable_event(dmcfreq);
if (ret)
return ret;
if (dmcfreq->info.devfreq) {
ret = devfreq_resume_device(dmcfreq->info.devfreq);
if (ret < 0) {
dev_err(dev, "failed to resume the devfreq devices\n");
return ret;
}
}
return ret;
}
static SIMPLE_DEV_PM_OPS(rockchip_dmcfreq_pm, rockchip_dmcfreq_suspend,
rockchip_dmcfreq_resume);
static struct platform_driver rockchip_dmcfreq_driver = {
.probe = rockchip_dmcfreq_probe,
.driver = {
.name = "rockchip-dmc",
.pm = &rockchip_dmcfreq_pm,
.of_match_table = rockchip_dmcfreq_of_match,
},
};
module_platform_driver(rockchip_dmcfreq_driver);
MODULE_AUTHOR("Finley Xiao <finley.xiao@rock-chips.com>");
MODULE_DESCRIPTION("rockchip dmcfreq driver with devfreq framework");
MODULE_LICENSE("GPL v2");