android13/kernel-5.10/drivers/phy/rockchip/phy-rockchip-inno-hdmi-phy.c

1633 lines
44 KiB
C

/*
* Copyright (c) 2017 Rockchip Electronics Co. Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/rockchip/cpu.h>
#include <linux/slab.h>
#define INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT 1000
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/* REG: 0x00 */
#define PRE_PLL_REFCLK_SEL_MASK BIT(0)
#define PRE_PLL_REFCLK_SEL_PCLK BIT(0)
#define PRE_PLL_REFCLK_SEL_OSCCLK 0
/* REG: 0x01 */
#define BYPASS_RXSENSE_EN_MASK BIT(2)
#define BYPASS_RXSENSE_EN BIT(2)
#define BYPASS_PWRON_EN_MASK BIT(1)
#define BYPASS_PWRON_EN BIT(1)
#define BYPASS_PLLPD_EN_MASK BIT(0)
#define BYPASS_PLLPD_EN BIT(0)
/* REG: 0x02 */
#define BYPASS_PDATA_EN_MASK BIT(4)
#define BYPASS_PDATA_EN BIT(4)
#define PDATAEN_MASK BIT(0)
#define PDATAEN_DISABLE BIT(0)
#define PDATAEN_ENABLE 0
/* REG: 0x03 */
#define BYPASS_AUTO_TERM_RES_CAL BIT(7)
#define AUDO_TERM_RES_CAL_SPEED_14_8(x) UPDATE(x, 6, 0)
/* REG: 0x04 */
#define AUDO_TERM_RES_CAL_SPEED_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xaa */
#define POST_PLL_CTRL_MASK BIT(0)
#define POST_PLL_CTRL_MANUAL BIT(0)
/* REG: 0xe0 */
#define POST_PLL_POWER_MASK BIT(5)
#define POST_PLL_POWER_DOWN BIT(5)
#define POST_PLL_POWER_UP 0
#define PRE_PLL_POWER_MASK BIT(4)
#define PRE_PLL_POWER_DOWN BIT(4)
#define PRE_PLL_POWER_UP 0
#define RXSENSE_CLK_CH_MASK BIT(3)
#define RXSENSE_CLK_CH_ENABLE BIT(3)
#define RXSENSE_DATA_CH2_MASK BIT(2)
#define RXSENSE_DATA_CH2_ENABLE BIT(2)
#define RXSENSE_DATA_CH1_MASK BIT(1)
#define RXSENSE_DATA_CH1_ENABLE BIT(1)
#define RXSENSE_DATA_CH0_MASK BIT(0)
#define RXSENSE_DATA_CH0_ENABLE BIT(0)
/* REG: 0xe1 */
#define BANDGAP_MASK BIT(4)
#define BANDGAP_ENABLE BIT(4)
#define BANDGAP_DISABLE 0
#define TMDS_DRIVER_MASK GENMASK(3, 0)
#define TMDS_DRIVER_ENABLE UPDATE(0xf, 3, 0)
#define TMDS_DRIVER_DISABLE 0
/* REG: 0xe2 */
#define PRE_PLL_FB_DIV_8_MASK BIT(7)
#define PRE_PLL_FB_DIV_8_SHIFT 7
#define PRE_PLL_FB_DIV_8(x) UPDATE(x, 7, 7)
#define PCLK_VCO_DIV_5_MASK BIT(5)
#define PCLK_VCO_DIV_5_SHIFT 5
#define PCLK_VCO_DIV_5(x) UPDATE(x, 5, 5)
#define PRE_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define PRE_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xe3 */
#define PRE_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xe4 */
#define PRE_PLL_PCLK_DIV_B_MASK GENMASK(6, 5)
#define PRE_PLL_PCLK_DIV_B_SHIFT 5
#define PRE_PLL_PCLK_DIV_B(x) UPDATE(x, 6, 5)
#define PRE_PLL_PCLK_DIV_A_MASK GENMASK(4, 0)
#define PRE_PLL_PCLK_DIV_A_SHIFT 0
#define PRE_PLL_PCLK_DIV_A(x) UPDATE(x, 4, 0)
/* REG: 0xe5 */
#define PRE_PLL_PCLK_DIV_C_MASK GENMASK(6, 5)
#define PRE_PLL_PCLK_DIV_C_SHIFT 5
#define PRE_PLL_PCLK_DIV_C(x) UPDATE(x, 6, 5)
#define PRE_PLL_PCLK_DIV_D_MASK GENMASK(4, 0)
#define PRE_PLL_PCLK_DIV_D_SHIFT 0
#define PRE_PLL_PCLK_DIV_D(x) UPDATE(x, 4, 0)
/* REG: 0xe6 */
#define PRE_PLL_TMDSCLK_DIV_C_MASK GENMASK(5, 4)
#define PRE_PLL_TMDSCLK_DIV_C(x) UPDATE(x, 5, 4)
#define PRE_PLL_TMDSCLK_DIV_A_MASK GENMASK(3, 2)
#define PRE_PLL_TMDSCLK_DIV_A(x) UPDATE(x, 3, 2)
#define PRE_PLL_TMDSCLK_DIV_B_MASK GENMASK(1, 0)
#define PRE_PLL_TMDSCLK_DIV_B(x) UPDATE(x, 1, 0)
/* REG: 0xe8 */
#define PRE_PLL_LOCK_STATUS BIT(0)
/* REG: 0xe9 */
#define POST_PLL_POST_DIV_EN_MASK GENMASK(7, 6)
#define POST_PLL_POST_DIV_ENABLE UPDATE(3, 7, 6)
#define POST_PLL_POST_DIV_DISABLE 0
#define POST_PLL_PRE_DIV_MASK GENMASK(4, 0)
#define POST_PLL_PRE_DIV(x) UPDATE(x, 4, 0)
/* REG: 0xea */
#define POST_PLL_FB_DIV_7_0(x) UPDATE(x, 7, 0)
/* REG: 0xeb */
#define POST_PLL_FB_DIV_8_MASK BIT(7)
#define POST_PLL_FB_DIV_8(x) UPDATE(x, 7, 7)
#define POST_PLL_POST_DIV_MASK GENMASK(5, 4)
#define POST_PLL_POST_DIV(x) UPDATE(x, 5, 4)
#define POST_PLL_LOCK_STATUS BIT(0)
/* REG: 0xee */
#define TMDS_CH_TA_MASK GENMASK(7, 4)
#define TMDS_CH_TA_ENABLE UPDATE(0xf, 7, 4)
#define TMDS_CH_TA_DISABLE 0
/* REG: 0xef */
#define TMDS_CLK_CH_TA(x) UPDATE(x, 7, 6)
#define TMDS_DATA_CH2_TA(x) UPDATE(x, 5, 4)
#define TMDS_DATA_CH1_TA(x) UPDATE(x, 3, 2)
#define TMDS_DATA_CH0_TA(x) UPDATE(x, 1, 0)
/* REG: 0xf0 */
#define TMDS_DATA_CH2_PRE_EMPHASIS_MASK GENMASK(5, 4)
#define TMDS_DATA_CH2_PRE_EMPHASIS(x) UPDATE(x, 5, 4)
#define TMDS_DATA_CH1_PRE_EMPHASIS_MASK GENMASK(3, 2)
#define TMDS_DATA_CH1_PRE_EMPHASIS(x) UPDATE(x, 3, 2)
#define TMDS_DATA_CH0_PRE_EMPHASIS_MASK GENMASK(1, 0)
#define TMDS_DATA_CH0_PRE_EMPHASIS(x) UPDATE(x, 1, 0)
/* REG: 0xf1 */
#define TMDS_CLK_CH_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define TMDS_DATA_CH2_OUTPUT_SWING(x) UPDATE(x, 3, 0)
/* REG: 0xf2 */
#define TMDS_DATA_CH1_OUTPUT_SWING(x) UPDATE(x, 7, 4)
#define TMDS_DATA_CH0_OUTPUT_SWING(x) UPDATE(x, 3, 0)
enum inno_hdmi_phy_type {
INNO_HDMI_PHY_RK3228,
INNO_HDMI_PHY_RK3328,
INNO_HDMI_PHY_RK3528
};
struct phy_config {
unsigned long tmdsclock;
u8 regs[14];
};
struct inno_hdmi_phy_drv_data;
struct inno_hdmi_phy {
struct device *dev;
struct regmap *regmap;
int irq;
struct phy *phy;
struct clk *sysclk;
struct phy_config *phy_cfg;
/* platform data */
struct inno_hdmi_phy_drv_data *plat_data;
/* efuse flag */
bool efuse_flag;
/* clk provider */
struct clk_hw hw;
struct clk *pclk;
unsigned long pixclock;
unsigned long tmdsclock;
};
struct pre_pll_config {
unsigned long pixclock;
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 tmds_div_a;
u8 tmds_div_b;
u8 tmds_div_c;
u8 pclk_div_a;
u8 pclk_div_b;
u8 pclk_div_c;
u8 pclk_div_d;
u8 vco_div_5_en;
u32 fracdiv;
};
struct post_pll_config {
unsigned long tmdsclock;
u8 prediv;
u16 fbdiv;
u8 postdiv;
u8 version;
};
struct inno_hdmi_phy_ops {
void (*init)(struct inno_hdmi_phy *inno);
int (*power_on)(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg);
void (*power_off)(struct inno_hdmi_phy *inno);
int (*pre_pll_update)(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg);
unsigned long (*recalc_rate)(struct inno_hdmi_phy *inno,
unsigned long parent_rate);
};
struct inno_hdmi_phy_drv_data {
enum inno_hdmi_phy_type dev_type;
const struct inno_hdmi_phy_ops *ops;
const struct phy_config *phy_cfg_table;
};
/*
* If only using integer freq div can't get frequency we want, frac
* freq div is needed. For example, pclk 88.75 Mhz and tmdsclk
* 110.9375 Mhz must use frac div 0xF00000. The actual frequency is different
* from the target frequency. Such as the tmds clock 110.9375 Mhz,
* the actual tmds clock we get is 110.93719 Mhz. It is important
* to note that RK322X platforms do not support frac div.
*/
static const struct pre_pll_config pre_pll_cfg_table[] = {
{ 27000000, 27000000, 1, 90, 3, 2, 2, 10, 3, 3, 4, 0, 0},
{ 27000000, 33750000, 1, 90, 1, 3, 3, 10, 3, 3, 4, 0, 0},
{ 40000000, 40000000, 1, 80, 2, 2, 2, 12, 2, 2, 2, 0, 0},
{ 40000000, 50000000, 1, 100, 2, 2, 2, 1, 0, 0, 15, 0, 0},
{ 59341000, 59341000, 1, 98, 3, 1, 2, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 59400000, 1, 99, 3, 1, 1, 1, 3, 3, 4, 0, 0},
{ 59341000, 74176250, 1, 98, 0, 3, 3, 1, 3, 3, 4, 0, 0xE6AE6B},
{ 59400000, 74250000, 1, 99, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{ 65000000, 65000000, 1, 130, 2, 2, 2, 1, 0, 0, 12, 0, 0},
{ 65000000, 81250000, 3, 325, 0, 3, 3, 1, 0, 0, 10, 0, 0},
{ 71000000, 71000000, 3, 284, 0, 3, 3, 1, 0, 0, 8, 0, 0},
{ 71000000, 88750000, 3, 355, 0, 3, 3, 1, 0, 0, 10, 0, 0},
{ 74176000, 74176000, 1, 98, 1, 2, 2, 1, 2, 3, 4, 0, 0xE6AE6B},
{ 74250000, 74250000, 1, 99, 1, 2, 2, 1, 2, 3, 4, 0, 0},
{ 74176000, 92720000, 4, 494, 1, 2, 2, 1, 3, 3, 4, 0, 0x816817},
{ 74250000, 92812500, 4, 495, 1, 2, 2, 1, 3, 3, 4, 0, 0},
{ 83500000, 83500000, 2, 167, 2, 1, 1, 1, 0, 0, 6, 0, 0},
{ 83500000, 104375000, 1, 104, 2, 1, 1, 1, 1, 0, 5, 0, 0x600000},
{ 85750000, 85750000, 3, 343, 0, 3, 3, 1, 0, 0, 8, 0, 0},
{ 88750000, 88750000, 3, 355, 0, 3, 3, 1, 0, 0, 8, 0, 0},
{ 88750000, 110937500, 1, 110, 2, 1, 1, 1, 1, 0, 5, 0, 0xF00000},
{108000000, 108000000, 1, 90, 3, 0, 0, 1, 0, 0, 5, 0, 0},
{108000000, 135000000, 1, 90, 0, 2, 2, 1, 0, 0, 5, 0, 0},
{119000000, 119000000, 1, 119, 2, 1, 1, 1, 0, 0, 6, 0, 0},
{119000000, 148750000, 1, 99, 0, 2, 2, 1, 0, 0, 5, 0, 0x2AAAAA},
{148352000, 148352000, 1, 98, 1, 1, 1, 1, 2, 2, 2, 0, 0xE6AE6B},
{148500000, 148500000, 1, 99, 1, 1, 1, 1, 2, 2, 2, 0, 0},
{148352000, 185440000, 4, 494, 0, 2, 2, 1, 3, 2, 2, 0, 0x816817},
{148500000, 185625000, 4, 495, 0, 2, 2, 1, 3, 2, 2, 0, 0},
{162000000, 162000000, 1, 108, 0, 2, 2, 1, 0, 0, 4, 0, 0},
{162000000, 202500000, 1, 135, 0, 2, 2, 1, 0, 0, 5, 0, 0},
{296703000, 296703000, 1, 98, 0, 1, 1, 1, 0, 2, 2, 0, 0xE6AE6B},
{297000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 2, 0, 0},
{296703000, 370878750, 4, 494, 1, 2, 0, 1, 3, 1, 1, 0, 0x816817},
{297000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 0, 0},
{593407000, 296703500, 1, 98, 0, 1, 1, 1, 0, 2, 1, 0, 0xE6AE6B},
{594000000, 297000000, 1, 99, 0, 1, 1, 1, 0, 2, 1, 0, 0},
{593407000, 370879375, 4, 494, 1, 2, 0, 1, 3, 1, 1, 1, 0x816817},
{594000000, 371250000, 4, 495, 1, 2, 0, 1, 3, 1, 1, 1, 0},
{593407000, 593407000, 1, 98, 0, 2, 0, 1, 0, 1, 1, 0, 0xE6AE6B},
{594000000, 594000000, 1, 99, 0, 2, 0, 1, 0, 1, 1, 0, 0},
{ ~0UL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static const struct post_pll_config post_pll_cfg_table[] = {
{33750000, 1, 40, 8, 1},
{33750000, 1, 80, 8, 2},
{33750000, 1, 10, 2, 4},
{74250000, 1, 40, 8, 1},
{74250000, 18, 80, 8, 2},
{74250000, 1, 20, 4, 8},
{148500000, 2, 40, 4, 3},
{148500000, 1, 10, 2, 8},
{297000000, 4, 40, 2, 3},
{297000000, 2, 20, 2, 8},
{594000000, 8, 40, 1, 3},
{594000000, 4, 20, 1, 8},
{ ~0UL, 0, 0, 0, 0}
};
static const struct phy_config rk3228_phy_cfg[] = {
{ 165000000, {
0xaa, 0x00, 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0xaa, 0x15, 0x6a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0xaa, 0x15, 0x7a, 0xaa, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static const struct phy_config rk3328_phy_cfg[] = {
{ 165000000, {
0x07, 0x0a, 0x0a, 0x0a, 0x00, 0x00, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
340000000, {
0x0b, 0x0d, 0x0d, 0x0d, 0x07, 0x15, 0x08, 0x08, 0x08,
0x3f, 0xac, 0xcc, 0xcd, 0xdd,
},
}, {
594000000, {
0x10, 0x1a, 0x1a, 0x1a, 0x07, 0x15, 0x08, 0x08, 0x08,
0x00, 0xac, 0xcc, 0xcc, 0xcc,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static const struct phy_config rk3528_phy_cfg[] = {
/* tmdsclk bias-clk bias-data voltage-clk voltage-data pre-emphasis-data */
{ 165000000, {
0x03, 0x04, 0x0c, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
340000000, {
0x03, 0x04, 0x0c, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
594000000, {
0x02, 0x08, 0x0d, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}, {
~0UL, {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00,
},
}
};
static inline struct inno_hdmi_phy *to_inno_hdmi_phy(struct clk_hw *hw)
{
return container_of(hw, struct inno_hdmi_phy, hw);
}
static inline void inno_write(struct inno_hdmi_phy *inno, u32 reg, u8 val)
{
regmap_write(inno->regmap, reg * 4, val);
}
static inline u8 inno_read(struct inno_hdmi_phy *inno, u32 reg)
{
u32 val;
regmap_read(inno->regmap, reg * 4, &val);
return val;
}
static inline void inno_update_bits(struct inno_hdmi_phy *inno, u8 reg,
u8 mask, u8 val)
{
regmap_update_bits(inno->regmap, reg * 4, mask, val);
}
static u32 inno_hdmi_phy_get_tmdsclk(struct inno_hdmi_phy *inno, int rate)
{
int bus_width = phy_get_bus_width(inno->phy);
u32 tmdsclk;
switch (bus_width) {
case 4:
tmdsclk = (u32)rate / 2;
break;
case 5:
tmdsclk = (u32)rate * 5 / 8;
break;
case 6:
tmdsclk = (u32)rate * 3 / 4;
break;
case 10:
tmdsclk = (u32)rate * 5 / 4;
break;
case 12:
tmdsclk = (u32)rate * 3 / 2;
break;
case 16:
tmdsclk = (u32)rate * 2;
break;
default:
tmdsclk = rate;
}
return tmdsclk;
}
static irqreturn_t inno_hdmi_phy_hardirq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
int intr_stat1, intr_stat2, intr_stat3;
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
return IRQ_NONE;
intr_stat1 = inno_read(inno, 0x04);
intr_stat2 = inno_read(inno, 0x06);
intr_stat3 = inno_read(inno, 0x08);
if (intr_stat1)
inno_write(inno, 0x04, intr_stat1);
if (intr_stat2)
inno_write(inno, 0x06, intr_stat2);
if (intr_stat3)
inno_write(inno, 0x08, intr_stat3);
if (intr_stat1 || intr_stat2 || intr_stat3)
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
static irqreturn_t inno_hdmi_phy_irq(int irq, void *dev_id)
{
struct inno_hdmi_phy *inno = dev_id;
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
return IRQ_NONE;
/* set pdata_en to 0 */
inno_update_bits(inno, 0x02, 1, 0);
udelay(10);
/* set pdata_en to 1 */
inno_update_bits(inno, 0x02, 1, 1);
return IRQ_HANDLED;
}
static int inno_hdmi_phy_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate);
static int inno_hdmi_phy_power_on(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
const struct post_pll_config *cfg = post_pll_cfg_table;
const struct phy_config *phy_cfg = inno->plat_data->phy_cfg_table;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, inno->pixclock);
u32 chipversion = 1;
if (inno->phy_cfg)
phy_cfg = inno->phy_cfg;
if (!tmdsclock) {
dev_err(inno->dev, "TMDS clock is zero!\n");
return -EINVAL;
}
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3328 &&
rockchip_get_cpu_version())
chipversion = 2;
else if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228 &&
tmdsclock <= 33750000 && inno->efuse_flag)
chipversion = 4;
else if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3528)
chipversion = 8;
for (; cfg->tmdsclock != ~0UL; cfg++)
if (tmdsclock <= cfg->tmdsclock &&
cfg->version & chipversion)
break;
for (; phy_cfg->tmdsclock != ~0UL; phy_cfg++)
if (tmdsclock <= phy_cfg->tmdsclock)
break;
if (cfg->tmdsclock == ~0UL || phy_cfg->tmdsclock == ~0UL)
return -EINVAL;
dev_dbg(inno->dev, "Inno HDMI PHY Power On\n");
inno_hdmi_phy_clk_set_rate(&inno->hw, inno->pixclock, 0);
if (inno->plat_data->ops->power_on)
return inno->plat_data->ops->power_on(inno, cfg, phy_cfg);
else
return -EINVAL;
}
static int inno_hdmi_phy_power_off(struct phy *phy)
{
struct inno_hdmi_phy *inno = phy_get_drvdata(phy);
if (inno->plat_data->ops->power_off)
inno->plat_data->ops->power_off(inno);
inno->tmdsclock = 0;
dev_dbg(inno->dev, "Inno HDMI PHY Power Off\n");
return 0;
}
static const struct phy_ops inno_hdmi_phy_ops = {
.owner = THIS_MODULE,
.power_on = inno_hdmi_phy_power_on,
.power_off = inno_hdmi_phy_power_off,
};
static int inno_hdmi_phy_clk_is_prepared(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u8 status;
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
status = inno_read(inno, 0xe0) & PRE_PLL_POWER_MASK;
else
status = inno_read(inno, 0xa0) & 1;
return status ? 0 : 1;
}
static int inno_hdmi_phy_clk_prepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK,
PRE_PLL_POWER_UP);
else
inno_update_bits(inno, 0xa0, 1, 0);
return 0;
}
static void inno_hdmi_phy_clk_unprepare(struct clk_hw *hw)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3228)
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK,
PRE_PLL_POWER_DOWN);
else
inno_update_bits(inno, 0xa0, 1, 1);
}
static unsigned long inno_hdmi_phy_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
if (inno->plat_data->ops->recalc_rate)
return inno->plat_data->ops->recalc_rate(inno, parent_rate);
else
return inno->pixclock;
}
static long inno_hdmi_phy_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
int i;
const struct pre_pll_config *cfg = pre_pll_cfg_table;
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
for (; cfg->pixclock != ~0UL; cfg++)
if (cfg->pixclock == rate)
break;
/* XXX: Limit pixel clock under 600MHz */
if (cfg->pixclock > 600000000)
return -EINVAL;
/*
* If there is no dts phy cfg table, use default phy cfg table.
* The tmds clock maximum is 594MHz. So there is no need to check
* whether tmds clock is out of range.
*/
if (!inno->phy_cfg)
return cfg->pixclock;
/* Check if tmds clock is out of dts phy config's range. */
for (i = 0; inno->phy_cfg[i].tmdsclock != ~0UL; i++) {
if (inno->phy_cfg[i].tmdsclock >= tmdsclock)
break;
}
if (inno->phy_cfg[i].tmdsclock == ~0UL)
return -EINVAL;
return cfg->pixclock;
}
static int inno_hdmi_phy_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct inno_hdmi_phy *inno = to_inno_hdmi_phy(hw);
const struct pre_pll_config *cfg = pre_pll_cfg_table;
u32 tmdsclock = inno_hdmi_phy_get_tmdsclk(inno, rate);
dev_dbg(inno->dev, "%s rate %lu tmdsclk %u\n",
__func__, rate, tmdsclock);
if (inno->tmdsclock == tmdsclock)
return 0;
for (; cfg->pixclock != ~0UL; cfg++)
if (cfg->pixclock == rate && cfg->tmdsclock == tmdsclock)
break;
if (cfg->pixclock == ~0UL) {
dev_err(inno->dev, "unsupported rate %lu\n", rate);
return -EINVAL;
}
if (inno->plat_data->ops->pre_pll_update)
inno->plat_data->ops->pre_pll_update(inno, cfg);
inno->pixclock = rate;
inno->tmdsclock = tmdsclock;
return 0;
}
static const struct clk_ops inno_hdmi_phy_clk_ops = {
.prepare = inno_hdmi_phy_clk_prepare,
.unprepare = inno_hdmi_phy_clk_unprepare,
.is_prepared = inno_hdmi_phy_clk_is_prepared,
.recalc_rate = inno_hdmi_phy_clk_recalc_rate,
.round_rate = inno_hdmi_phy_clk_round_rate,
.set_rate = inno_hdmi_phy_clk_set_rate,
};
static int inno_hdmi_phy_clk_register(struct inno_hdmi_phy *inno)
{
struct device *dev = inno->dev;
struct device_node *np = dev->of_node;
struct device_node *clk_np = NULL;
struct clk_init_data init = {};
struct clk *refclk;
const char *parent_name;
int ret;
if (inno->plat_data->dev_type == INNO_HDMI_PHY_RK3528)
clk_np = of_get_child_by_name(np, "clk-port");
if (!clk_np)
clk_np = np;
refclk = devm_clk_get(dev, "refclk");
if (IS_ERR(refclk)) {
dev_err(dev, "failed to get ref clock\n");
return PTR_ERR(refclk);
}
parent_name = __clk_get_name(refclk);
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
init.name = "pin_hd20_pclk";
init.ops = &inno_hdmi_phy_clk_ops;
/* optional override of the clock name */
of_property_read_string(clk_np, "clock-output-names", &init.name);
inno->hw.init = &init;
inno->pclk = devm_clk_register(dev, &inno->hw);
if (IS_ERR(inno->pclk)) {
ret = PTR_ERR(inno->pclk);
dev_err(dev, "failed to register clock: %d\n", ret);
return ret;
}
ret = of_clk_add_provider(clk_np, of_clk_src_simple_get, inno->pclk);
if (ret) {
dev_err(dev, "failed to register OF clock provider: %d\n", ret);
return ret;
}
return 0;
}
static int
inno_hdmi_phy_rk3228_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
int pll_tries;
u32 m, v;
/* pdata_en disable */
inno_update_bits(inno, 0x02, PDATAEN_MASK, PDATAEN_DISABLE);
/* Power down Post-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_DOWN);
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_DOWN);
/* Post-PLL update */
m = POST_PLL_PRE_DIV_MASK;
v = POST_PLL_PRE_DIV(cfg->prediv);
inno_update_bits(inno, 0xe9, m, v);
m = POST_PLL_FB_DIV_8_MASK;
v = POST_PLL_FB_DIV_8(cfg->fbdiv >> 8);
inno_update_bits(inno, 0xeb, m, v);
inno_write(inno, 0xea, POST_PLL_FB_DIV_7_0(cfg->fbdiv));
if (cfg->postdiv == 1) {
/* Disable Post-PLL post divider */
m = POST_PLL_POST_DIV_EN_MASK;
v = POST_PLL_POST_DIV_DISABLE;
inno_update_bits(inno, 0xe9, m, v);
} else {
/* Enable Post-PLL post divider */
m = POST_PLL_POST_DIV_EN_MASK;
v = POST_PLL_POST_DIV_ENABLE;
inno_update_bits(inno, 0xe9, m, v);
m = POST_PLL_POST_DIV_MASK;
v = POST_PLL_POST_DIV(cfg->postdiv / 2 - 1);
inno_update_bits(inno, 0xeb, m, v);
}
for (v = 0; v < 4; v++)
inno_write(inno, 0xef + v, phy_cfg->regs[v]);
/* Power up Post-PLL */
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_UP);
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_UP);
/* BandGap enable */
inno_update_bits(inno, 0xe1, BANDGAP_MASK, BANDGAP_ENABLE);
/* TMDS driver enable */
inno_update_bits(inno, 0xe1, TMDS_DRIVER_MASK, TMDS_DRIVER_ENABLE);
/* Wait for post PLL lock */
pll_tries = 0;
while (!(inno_read(inno, 0xeb) & POST_PLL_LOCK_STATUS)) {
if (pll_tries == INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT) {
dev_err(inno->dev, "Post-PLL unlock\n");
return -ETIMEDOUT;
}
pll_tries++;
usleep_range(100, 110);
}
if (cfg->tmdsclock > 340000000)
msleep(100);
/* pdata_en enable */
inno_update_bits(inno, 0x02, PDATAEN_MASK, PDATAEN_ENABLE);
return 0;
}
static void inno_hdmi_phy_rk3228_power_off(struct inno_hdmi_phy *inno)
{
/* TMDS driver Disable */
inno_update_bits(inno, 0xe1, TMDS_DRIVER_MASK, TMDS_DRIVER_DISABLE);
/* BandGap Disable */
inno_update_bits(inno, 0xe1, BANDGAP_MASK, BANDGAP_DISABLE);
/* Post-PLL power down */
inno_update_bits(inno, 0xe0, POST_PLL_POWER_MASK, POST_PLL_POWER_DOWN);
}
static void inno_hdmi_phy_rk3228_init(struct inno_hdmi_phy *inno)
{
u32 m, v;
struct nvmem_cell *cell;
unsigned char *efuse_buf;
size_t len;
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
m = BYPASS_RXSENSE_EN_MASK | BYPASS_PWRON_EN_MASK |
BYPASS_PLLPD_EN_MASK;
v = BYPASS_RXSENSE_EN | BYPASS_PWRON_EN | BYPASS_PLLPD_EN;
inno_update_bits(inno, 0x01, m, v);
inno_update_bits(inno, 0x02, BYPASS_PDATA_EN_MASK, BYPASS_PDATA_EN);
/*
* reg0xe9 default value is 0xe4, reg0xea is 0x50.
* if phy had been set in uboot, one of them will be different.
*/
if ((inno_read(inno, 0xe9) != 0xe4 || inno_read(inno, 0xea) != 0x50)) {
dev_info(inno->dev, "phy had been powered up\n");
inno->phy->power_count = 1;
} else {
inno_hdmi_phy_rk3228_power_off(inno);
/* manual power down post-PLL */
inno_update_bits(inno, 0xaa,
POST_PLL_CTRL_MASK, POST_PLL_CTRL_MANUAL);
}
cell = nvmem_cell_get(inno->dev, "hdmi_phy_flag");
if (IS_ERR(cell)) {
dev_err(inno->dev,
"failed to get id cell: %ld\n", PTR_ERR(cell));
return;
}
efuse_buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (len == 1)
inno->efuse_flag = efuse_buf[0] ? true : false;
kfree(efuse_buf);
}
static int
inno_hdmi_phy_rk3228_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
int pll_tries;
u32 m, v;
/* Power down PRE-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_DOWN);
m = PRE_PLL_FB_DIV_8_MASK | PCLK_VCO_DIV_5_MASK | PRE_PLL_PRE_DIV_MASK;
v = PRE_PLL_FB_DIV_8(cfg->fbdiv >> 8) |
PCLK_VCO_DIV_5(cfg->vco_div_5_en) | PRE_PLL_PRE_DIV(cfg->prediv);
inno_update_bits(inno, 0xe2, m, v);
inno_write(inno, 0xe3, PRE_PLL_FB_DIV_7_0(cfg->fbdiv));
m = PRE_PLL_PCLK_DIV_B_MASK | PRE_PLL_PCLK_DIV_A_MASK;
v = PRE_PLL_PCLK_DIV_B(cfg->pclk_div_b) |
PRE_PLL_PCLK_DIV_A(cfg->pclk_div_a);
inno_update_bits(inno, 0xe4, m, v);
m = PRE_PLL_PCLK_DIV_C_MASK | PRE_PLL_PCLK_DIV_D_MASK;
v = PRE_PLL_PCLK_DIV_C(cfg->pclk_div_c) |
PRE_PLL_PCLK_DIV_D(cfg->pclk_div_d);
inno_update_bits(inno, 0xe5, m, v);
m = PRE_PLL_TMDSCLK_DIV_C_MASK | PRE_PLL_TMDSCLK_DIV_A_MASK |
PRE_PLL_TMDSCLK_DIV_B_MASK;
v = PRE_PLL_TMDSCLK_DIV_C(cfg->tmds_div_c) |
PRE_PLL_TMDSCLK_DIV_A(cfg->tmds_div_a) |
PRE_PLL_TMDSCLK_DIV_B(cfg->tmds_div_b);
inno_update_bits(inno, 0xe6, m, v);
/* Power up PRE-PLL */
inno_update_bits(inno, 0xe0, PRE_PLL_POWER_MASK, PRE_PLL_POWER_UP);
/* Wait for Pre-PLL lock */
pll_tries = 0;
while (!(inno_read(inno, 0xe8) & PRE_PLL_LOCK_STATUS)) {
if (pll_tries == INNO_HDMI_PHY_TIMEOUT_LOOP_COUNT) {
dev_err(inno->dev, "Pre-PLL unlock\n");
return -ETIMEDOUT;
}
pll_tries++;
usleep_range(100, 110);
}
return 0;
}
static int
inno_hdmi_phy_rk3328_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
u32 val;
u64 temp;
/* set pdata_en to 0 */
inno_update_bits(inno, 0x02, 1, 0);
/* Power off post PLL */
inno_update_bits(inno, 0xaa, 1, 1);
val = cfg->fbdiv & 0xff;
inno_write(inno, 0xac, val);
if (cfg->postdiv == 1) {
inno_write(inno, 0xaa, 2);
val = (cfg->fbdiv >> 8) | cfg->prediv;
inno_write(inno, 0xab, val);
} else {
val = (cfg->postdiv / 2) - 1;
inno_write(inno, 0xad, val);
val = (cfg->fbdiv >> 8) | cfg->prediv;
inno_write(inno, 0xab, val);
inno_write(inno, 0xaa, 0x0e);
}
for (val = 0; val < 14; val++)
inno_write(inno, 0xb5 + val, phy_cfg->regs[val]);
/* bit[7:6] of reg c8/c9/ca/c8 is ESD detect threshold:
* 00 - 340mV
* 01 - 280mV
* 10 - 260mV
* 11 - 240mV
* default is 240mV, now we set it to 340mV
*/
inno_write(inno, 0xc8, 0);
inno_write(inno, 0xc9, 0);
inno_write(inno, 0xca, 0);
inno_write(inno, 0xcb, 0);
if (phy_cfg->tmdsclock > 340000000) {
/* Set termination resistor to 100ohm */
val = clk_get_rate(inno->sysclk) / 100000;
inno_write(inno, 0xc5, ((val >> 8) & 0xff) | 0x80);
inno_write(inno, 0xc6, val & 0xff);
inno_write(inno, 0xc7, 3 << 1);
inno_write(inno, 0xc5, ((val >> 8) & 0xff));
} else {
inno_write(inno, 0xc5, 0x81);
/* clk termination resistor is 50ohm */
if (phy_cfg->tmdsclock > 165000000)
inno_write(inno, 0xc8, 0x30);
/* data termination resistor is 150ohm */
inno_write(inno, 0xc9, 0x10);
inno_write(inno, 0xca, 0x10);
inno_write(inno, 0xcb, 0x10);
}
/* set TMDS sync detection counter length */
temp = 47520000000;
do_div(temp, inno->tmdsclock);
inno_write(inno, 0xd8, (temp >> 8) & 0xff);
inno_write(inno, 0xd9, temp & 0xff);
/* Power up post PLL */
inno_update_bits(inno, 0xaa, 1, 0);
/* Power up tmds driver */
inno_update_bits(inno, 0xb0, 4, 4);
inno_write(inno, 0xb2, 0x0f);
/* Wait for post PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xaf) & 1)
break;
usleep_range(1000, 2000);
}
if (!(inno_read(inno, 0xaf) & 1)) {
dev_err(inno->dev, "HDMI PHY Post PLL unlock\n");
return -ETIMEDOUT;
}
if (phy_cfg->tmdsclock > 340000000)
msleep(100);
/* set pdata_en to 1 */
inno_update_bits(inno, 0x02, 1, 1);
/* Enable PHY IRQ */
inno_write(inno, 0x05, 0x22);
inno_write(inno, 0x07, 0x22);
return 0;
}
static void inno_hdmi_phy_rk3328_power_off(struct inno_hdmi_phy *inno)
{
/* Power off driver */
inno_write(inno, 0xb2, 0);
/* Power off band gap */
inno_update_bits(inno, 0xb0, 4, 0);
/* Power off post pll */
inno_update_bits(inno, 0xaa, 1, 1);
/* Disable PHY IRQ */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
}
static void inno_hdmi_phy_rk3328_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x01, 0x07);
inno_write(inno, 0x02, 0x91);
/*
* reg0xc8 default value is 0xc0, if phy had been set in uboot,
* the value of bit[7:6] will be zero.
*/
if ((inno_read(inno, 0xc8) & 0xc0) == 0) {
dev_info(inno->dev, "phy had been powered up\n");
inno->phy->power_count = 1;
} else {
/* manual power down post-PLL */
inno_hdmi_phy_rk3328_power_off(inno);
}
}
static int
inno_hdmi_phy_rk3328_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
u32 val;
/* Power off PLL */
inno_update_bits(inno, 0xa0, 1, 1);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, 2, (cfg->vco_div_5_en & 1) << 1);
inno_write(inno, 0xa1, cfg->prediv);
if (cfg->fracdiv)
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xc0;
else
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xf0;
inno_write(inno, 0xa2, val);
inno_write(inno, 0xa3, cfg->fbdiv & 0xff);
val = (cfg->pclk_div_a & 0x1f) |
((cfg->pclk_div_b & 3) << 5);
inno_write(inno, 0xa5, val);
val = (cfg->pclk_div_d & 0x1f) |
((cfg->pclk_div_c & 3) << 5);
inno_write(inno, 0xa6, val);
val = ((cfg->tmds_div_a & 3) << 4) |
((cfg->tmds_div_b & 3) << 2) |
(cfg->tmds_div_c & 3);
inno_write(inno, 0xa4, val);
if (cfg->fracdiv) {
val = cfg->fracdiv & 0xff;
inno_write(inno, 0xd3, val);
val = (cfg->fracdiv >> 8) & 0xff;
inno_write(inno, 0xd2, val);
val = (cfg->fracdiv >> 16) & 0xff;
inno_write(inno, 0xd1, val);
} else {
inno_write(inno, 0xd3, 0);
inno_write(inno, 0xd2, 0);
inno_write(inno, 0xd1, 0);
}
/* Power up PLL */
inno_update_bits(inno, 0xa0, 1, 0);
/* Wait for PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xa9) & 1)
break;
usleep_range(1000, 2000);
}
if (val == 5) {
dev_err(inno->dev, "Pre-PLL unlock\n");
return -ETIMEDOUT;
}
return 0;
}
static unsigned long
inno_hdmi_rk3328_phy_pll_recalc_rate(struct inno_hdmi_phy *inno,
unsigned long parent_rate)
{
unsigned long frac;
u8 nd, no_a, no_b, no_d;
u16 nf;
u64 vco = parent_rate;
nd = inno_read(inno, 0xa1) & 0x3f;
nf = ((inno_read(inno, 0xa2) & 0x0f) << 8) | inno_read(inno, 0xa3);
vco *= nf;
if ((inno_read(inno, 0xa2) & 0x30) == 0) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & 2) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & 0x1f;
no_b = ((inno_read(inno, 0xa5) >> 5) & 7) + 2;
no_d = inno_read(inno, 0xa6) & 0x1f;
if (no_a == 1)
do_div(vco, nd * no_b * no_d * 2);
else
do_div(vco, nd * no_a * no_d * 2);
}
frac = vco;
inno->pixclock = DIV_ROUND_CLOSEST(frac, 1000) * 1000;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return frac;
}
static int
inno_hdmi_phy_rk3528_power_on(struct inno_hdmi_phy *inno,
const struct post_pll_config *cfg,
const struct phy_config *phy_cfg)
{
u32 val;
u64 temp;
/* Power off post PLL */
inno_update_bits(inno, 0xaa, 1, 0);
val = cfg->prediv;
inno_write(inno, 0xab, val);
if (cfg->postdiv == 1) {
inno_write(inno, 0xad, 0x8);
inno_write(inno, 0xaa, 2);
} else {
val = (cfg->postdiv / 2) - 1;
inno_write(inno, 0xad, val);
inno_write(inno, 0xaa, 0x0e);
}
val = cfg->fbdiv & 0xff;
inno_write(inno, 0xac, val);
val = (cfg->fbdiv >> 8) & BIT(0);
inno_update_bits(inno, 0xad, BIT(4), val);
/* current bias clk/data 2 */
val = phy_cfg->regs[0] << 4 | phy_cfg->regs[1];
inno_write(inno, 0xbf, val);
/* current bias data 1/0 */
val = phy_cfg->regs[1] << 4 | phy_cfg->regs[1];
inno_write(inno, 0xc0, val);
/* output voltage */
inno_write(inno, 0xb5, phy_cfg->regs[2]);
inno_write(inno, 0xb6, phy_cfg->regs[3]);
inno_write(inno, 0xb7, phy_cfg->regs[3]);
inno_write(inno, 0xb8, phy_cfg->regs[3]);
/* pre-emphasis */
inno_write(inno, 0xbb, phy_cfg->regs[4]);
inno_write(inno, 0xbc, phy_cfg->regs[4]);
inno_write(inno, 0xbd, phy_cfg->regs[4]);
/* enable LDO */
inno_write(inno, 0xb4, 0x7);
/* enable serializer */
inno_write(inno, 0xbe, 0x70);
inno_write(inno, 0xb2, 0x0f);
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xaf) & 1)
break;
udelay(1000);
}
if (!(inno_read(inno, 0xaf) & 1)) {
dev_err(inno->dev, "HDMI PHY Post PLL unlock\n");
return -ETIMEDOUT;
}
/* set termination resistance */
if (phy_cfg->tmdsclock > 340000000) {
inno_write(inno, 0xc7, 0x76);
inno_write(inno, 0xc5, 0x83);
inno_write(inno, 0xc8, 0x00);
inno_write(inno, 0xc9, 0x2f);
inno_write(inno, 0xca, 0x2f);
inno_write(inno, 0xcb, 0x2f);
} else {
inno_write(inno, 0xc7, 0x76);
inno_write(inno, 0xc5, 0x83);
inno_write(inno, 0xc8, 0x00);
inno_write(inno, 0xc9, 0x0f);
inno_write(inno, 0xca, 0x0f);
inno_write(inno, 0xcb, 0x0f);
}
/* set TMDS sync detection counter length */
temp = 47520000000;
do_div(temp, inno->tmdsclock);
inno_write(inno, 0xd8, (temp >> 8) & 0xff);
inno_write(inno, 0xd9, temp & 0xff);
/* Power up post PLL */
inno_update_bits(inno, 0xaa, 1, 0);
/* Power up tmds driver */
inno_update_bits(inno, 0xb0, 4, 4);
inno_write(inno, 0xb2, 0x0f);
if (phy_cfg->tmdsclock > 340000000)
msleep(100);
/* set pdata_en to 0/1 */
inno_update_bits(inno, 0x02, 1, 0);
inno_update_bits(inno, 0x02, 1, 1);
/* Enable PHY IRQ */
inno_write(inno, 0x05, 0x22);
inno_write(inno, 0x07, 0x22);
inno_write(inno, 0xcc, 0x0f);
return 0;
}
static void inno_hdmi_phy_rk3528_power_off(struct inno_hdmi_phy *inno)
{
/* Power off driver */
inno_write(inno, 0xb2, 0);
/* Power off serializer */
inno_write(inno, 0xbe, 0);
/* Power off post pll */
inno_update_bits(inno, 0xaa, 1, 1);
/* Power off rxsense detection circuit */
inno_write(inno, 0xcc, 0);
/* Power off band gap */
inno_update_bits(inno, 0xb0, 4, 0);
/* Disable PHY IRQ */
inno_write(inno, 0x05, 0);
inno_write(inno, 0x07, 0);
}
static void inno_hdmi_phy_rk3528_init(struct inno_hdmi_phy *inno)
{
/*
* Use phy internal register control
* rxsense/poweron/pllpd/pdataen signal.
*/
inno_write(inno, 0x02, 0x81);
/* if phy had been set in uboot, pll is locked */
if (inno_read(inno, 0xa9) & BIT(0)) {
dev_info(inno->dev, "phy had been powered up\n");
inno->phy->power_count = 1;
} else {
/* manual power down post-PLL */
inno_hdmi_phy_rk3528_power_off(inno);
}
}
static int
inno_hdmi_phy_rk3528_pre_pll_update(struct inno_hdmi_phy *inno,
const struct pre_pll_config *cfg)
{
u32 val;
inno_update_bits(inno, 0xb0, 4, 4);
inno_write(inno, 0xcc, 0x0f);
/* Power on PLL */
inno_update_bits(inno, 0xa0, 1, 0);
/* Configure pre-pll */
inno_update_bits(inno, 0xa0, 2, (cfg->vco_div_5_en & 1) << 1);
inno_write(inno, 0xa1, cfg->prediv);
if (cfg->fracdiv)
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xc0;
else
val = ((cfg->fbdiv >> 8) & 0x0f) | 0xf0;
inno_write(inno, 0xa2, val);
inno_write(inno, 0xa3, cfg->fbdiv & 0xff);
val = (cfg->pclk_div_a & 0x1f) |
((cfg->pclk_div_b & 3) << 5);
inno_write(inno, 0xa5, val);
val = (cfg->pclk_div_d & 0x1f) |
((cfg->pclk_div_c & 3) << 5);
inno_write(inno, 0xa6, val);
val = ((cfg->tmds_div_a & 3) << 4) |
((cfg->tmds_div_b & 3) << 2) |
(cfg->tmds_div_c & 3);
inno_write(inno, 0xa4, val);
if (cfg->fracdiv) {
val = cfg->fracdiv & 0xff;
inno_write(inno, 0xd3, val);
val = (cfg->fracdiv >> 8) & 0xff;
inno_write(inno, 0xd2, val);
val = (cfg->fracdiv >> 16) & 0xff;
inno_write(inno, 0xd1, val);
} else {
inno_write(inno, 0xd3, 0);
inno_write(inno, 0xd2, 0);
inno_write(inno, 0xd1, 0);
}
/* Wait for PLL lock */
for (val = 0; val < 5; val++) {
if (inno_read(inno, 0xa9) & 1)
break;
usleep_range(1000, 2000);
}
if (val == 5) {
dev_err(inno->dev, "Pre-PLL unlock\n");
return -ETIMEDOUT;
}
return 0;
}
static unsigned long
inno_hdmi_rk3528_phy_pll_recalc_rate(struct inno_hdmi_phy *inno,
unsigned long parent_rate)
{
unsigned long frac;
u8 nd, no_a, no_b, no_d;
u16 nf;
u64 vco = parent_rate;
nd = inno_read(inno, 0xa1) & 0x3f;
nf = ((inno_read(inno, 0xa2) & 0x0f) << 8) | inno_read(inno, 0xa3);
vco *= nf;
if ((inno_read(inno, 0xa2) & 0x30) == 0) {
frac = inno_read(inno, 0xd3) |
(inno_read(inno, 0xd2) << 8) |
(inno_read(inno, 0xd1) << 16);
vco += DIV_ROUND_CLOSEST(parent_rate * frac, (1 << 24));
}
if (inno_read(inno, 0xa0) & 2) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xa5) & 0x1f;
no_b = ((inno_read(inno, 0xa5) >> 5) & 7) + 2;
no_d = inno_read(inno, 0xa6) & 0x1f;
if (no_a == 1)
do_div(vco, nd * no_b * no_d * 2);
else
do_div(vco, nd * no_a * no_d * 2);
}
frac = vco;
inno->pixclock = DIV_ROUND_CLOSEST(frac, 1000) * 1000;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return frac;
}
static unsigned long
inno_hdmi_rk3228_phy_pll_recalc_rate(struct inno_hdmi_phy *inno,
unsigned long parent_rate)
{
u8 nd, no_a, no_b, no_d;
u16 nf;
u64 vco = parent_rate;
nd = inno_read(inno, 0xe2) & 0x1f;
nf = ((inno_read(inno, 0xe2) & 0x80) << 1) | inno_read(inno, 0xe3);
vco *= nf;
if ((inno_read(inno, 0xe2) >> 5) & 0x1) {
do_div(vco, nd * 5);
} else {
no_a = inno_read(inno, 0xe4) & 0x1f;
if (!no_a)
no_a = 1;
no_b = ((inno_read(inno, 0xe4) >> 5) & 0x3) + 2;
no_d = inno_read(inno, 0xe5) & 0x1f;
if (no_a == 1)
do_div(vco, nd * no_b * no_d * 2);
else
do_div(vco, nd * no_a * no_d * 2);
}
inno->pixclock = vco;
dev_dbg(inno->dev, "%s rate %lu\n", __func__, inno->pixclock);
return inno->pixclock;
}
static const struct inno_hdmi_phy_ops rk3228_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3228_init,
.power_on = inno_hdmi_phy_rk3228_power_on,
.power_off = inno_hdmi_phy_rk3228_power_off,
.pre_pll_update = inno_hdmi_phy_rk3228_pre_pll_update,
.recalc_rate = inno_hdmi_rk3228_phy_pll_recalc_rate,
};
static const struct inno_hdmi_phy_ops rk3328_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3328_init,
.power_on = inno_hdmi_phy_rk3328_power_on,
.power_off = inno_hdmi_phy_rk3328_power_off,
.pre_pll_update = inno_hdmi_phy_rk3328_pre_pll_update,
.recalc_rate = inno_hdmi_rk3328_phy_pll_recalc_rate,
};
static const struct inno_hdmi_phy_ops rk3528_hdmi_phy_ops = {
.init = inno_hdmi_phy_rk3528_init,
.power_on = inno_hdmi_phy_rk3528_power_on,
.power_off = inno_hdmi_phy_rk3528_power_off,
.pre_pll_update = inno_hdmi_phy_rk3528_pre_pll_update,
.recalc_rate = inno_hdmi_rk3528_phy_pll_recalc_rate,
};
static const struct inno_hdmi_phy_drv_data rk3228_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3228,
.ops = &rk3228_hdmi_phy_ops,
.phy_cfg_table = rk3228_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3328_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3328,
.ops = &rk3328_hdmi_phy_ops,
.phy_cfg_table = rk3328_phy_cfg,
};
static const struct inno_hdmi_phy_drv_data rk3528_hdmi_phy_drv_data = {
.dev_type = INNO_HDMI_PHY_RK3528,
.ops = &rk3528_hdmi_phy_ops,
.phy_cfg_table = rk3528_phy_cfg,
};
static const struct of_device_id inno_hdmi_phy_of_match[] = {
{ .compatible = "rockchip,rk3228-hdmi-phy",
.data = &rk3228_hdmi_phy_drv_data
},
{ .compatible = "rockchip,rk3328-hdmi-phy",
.data = &rk3328_hdmi_phy_drv_data
},
{ .compatible = "rockchip,rk3528-hdmi-phy",
.data = &rk3528_hdmi_phy_drv_data
},
{}
};
MODULE_DEVICE_TABLE(of, inno_hdmi_phy_of_match);
static const struct regmap_config inno_hdmi_phy_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x400,
};
static
int inno_hdmi_update_phy_table(struct inno_hdmi_phy *inno, u32 *config,
struct phy_config *phy_cfg,
int phy_table_size)
{
int i, j;
for (i = 0; i < phy_table_size; i++) {
phy_cfg[i].tmdsclock =
(unsigned long)config[i * 15];
for (j = 0; j < 14; j++)
phy_cfg[i].regs[j] = (u8)config[i * 15 + 1 + j];
}
/*
* The last set of phy cfg is used to indicate whether
* there is no more phy cfg data.
*/
phy_cfg[i].tmdsclock = ~0UL;
for (j = 0; j < 14; j++)
phy_cfg[i].regs[j] = 0;
return 0;
}
#define PHY_TAB_LEN 60
static int inno_hdmi_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct inno_hdmi_phy *inno;
const struct of_device_id *match;
struct phy_provider *phy_provider;
struct resource *res;
void __iomem *regs;
u32 *phy_config;
int ret, val, phy_table_size;
inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = dev;
match = of_match_node(inno_hdmi_phy_of_match, pdev->dev.of_node);
inno->plat_data = (struct inno_hdmi_phy_drv_data *)match->data;
if (!inno->plat_data || !inno->plat_data->ops)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
inno->sysclk = devm_clk_get(inno->dev, "sysclk");
if (IS_ERR(inno->sysclk)) {
ret = PTR_ERR(inno->sysclk);
dev_err(inno->dev, "Unable to get inno phy sysclk: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(inno->sysclk);
if (ret) {
dev_err(inno->dev, "Cannot enable inno phy sysclk: %d\n", ret);
return ret;
}
inno->regmap = devm_regmap_init_mmio(dev, regs,
&inno_hdmi_phy_regmap_config);
if (IS_ERR(inno->regmap)) {
ret = PTR_ERR(inno->regmap);
dev_err(dev, "failed to init regmap: %d\n", ret);
goto err_regsmap;
}
inno->phy = devm_phy_create(dev, NULL, &inno_hdmi_phy_ops);
if (IS_ERR(inno->phy)) {
dev_err(dev, "failed to create HDMI PHY\n");
ret = PTR_ERR(inno->phy);
goto err_regsmap;
}
if (of_get_property(np, "rockchip,phy-table", &val)) {
if (val % PHY_TAB_LEN || !val) {
dev_err(dev, "Invalid phy cfg table format!\n");
ret = -EINVAL;
goto err_regsmap;
}
phy_config = kmalloc(val, GFP_KERNEL);
if (!phy_config) {
dev_err(dev, "kmalloc phy table failed\n");
ret = -ENOMEM;
goto err_regsmap;
}
phy_table_size = val / PHY_TAB_LEN;
/* Effective phy cfg data and the end of phy cfg table */
inno->phy_cfg = devm_kzalloc(dev, val + PHY_TAB_LEN,
GFP_KERNEL);
if (!inno->phy_cfg) {
kfree(phy_config);
ret = -ENOMEM;
goto err_regsmap;
}
of_property_read_u32_array(np, "rockchip,phy-table",
phy_config, val / sizeof(u32));
ret = inno_hdmi_update_phy_table(inno, phy_config,
inno->phy_cfg,
phy_table_size);
if (ret) {
kfree(phy_config);
goto err_regsmap;
}
kfree(phy_config);
} else {
dev_dbg(dev, "use default hdmi phy table\n");
}
phy_set_drvdata(inno->phy, inno);
phy_set_bus_width(inno->phy, 8);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "failed to register PHY provider\n");
ret = PTR_ERR(phy_provider);
goto err_regsmap;
}
if (inno->plat_data->ops->init)
inno->plat_data->ops->init(inno);
ret = inno_hdmi_phy_clk_register(inno);
if (ret)
goto err_regsmap;
inno->irq = platform_get_irq(pdev, 0);
if (inno->irq > 0) {
ret = devm_request_threaded_irq(inno->dev, inno->irq,
inno_hdmi_phy_hardirq,
inno_hdmi_phy_irq, IRQF_SHARED,
dev_name(inno->dev), inno);
if (ret)
goto err_irq;
}
platform_set_drvdata(pdev, inno);
return 0;
err_irq:
of_clk_del_provider(pdev->dev.of_node);
err_regsmap:
clk_disable_unprepare(inno->sysclk);
return ret;
}
static int inno_hdmi_phy_remove(struct platform_device *pdev)
{
struct inno_hdmi_phy *inno = platform_get_drvdata(pdev);
of_clk_del_provider(pdev->dev.of_node);
clk_disable_unprepare(inno->sysclk);
return 0;
}
static struct platform_driver inno_hdmi_phy_driver = {
.probe = inno_hdmi_phy_probe,
.remove = inno_hdmi_phy_remove,
.driver = {
.name = "inno-hdmi-phy",
.of_match_table = of_match_ptr(inno_hdmi_phy_of_match),
},
};
module_platform_driver(inno_hdmi_phy_driver);
MODULE_DESCRIPTION("Innosilion HDMI 2.0 Transmitter PHY Driver");
MODULE_LICENSE("GPL v2");