android13/kernel-5.10/drivers/phy/rockchip/phy-rockchip-inno-mipi-dphy.c

854 lines
25 KiB
C

/*
* Copyright (c) 2017 Rockchip Electronics Co. Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/pm_runtime.h>
#include <linux/mfd/syscon.h>
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/*
* The offset address[7:0] is distributed two parts, one from the bit7 to bit5
* is the first address, the other from the bit4 to bit0 is the second address.
* when you configure the registers, you must set both of them. The Clock Lane
* and Data Lane use the same registers with the same second address, but the
* first address is different.
*/
#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
#define INNO_PHY_REG(first, second) (FIRST_ADDRESS(first) | \
SECOND_ADDRESS(second))
/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK BIT(7)
#define BANDGAP_POWER_DOWN BIT(7)
#define BANDGAP_POWER_ON 0
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define LANE_EN_3 BIT(5)
#define LANE_EN_2 BIT(4)
#define LANE_EN_1 BIT(3)
#define LANE_EN_0 BIT(2)
#define POWER_WORK_MASK GENMASK(1, 0)
#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK BIT(2)
#define REG_SYNCRST_RESET BIT(2)
#define REG_SYNCRST_NORMAL 0
#define REG_LDOPD_MASK BIT(1)
#define REG_LDOPD_POWER_DOWN BIT(1)
#define REG_LDOPD_POWER_ON 0
#define REG_PLLPD_MASK BIT(0)
#define REG_PLLPD_POWER_DOWN BIT(0)
#define REG_PLLPD_POWER_ON 0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK BIT(5)
#define REG_FBDIV_HI(x) UPDATE(x, 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define CLK_LANE_SKEW_PHASE_SET_MASK GENMASK(2, 0)
#define CLK_LANE_SKEW_PHASE_SET(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define LDO_OUTPUT_SET_HI_MASK BIT(7)
#define LDO_OUTPUT_SET_HI(x) UPDATE(x, 7, 7)
#define LANE_3_SKEW_PHASE_SET_MASK GENMASK(6, 4)
#define LANE_3_SKEW_PHASE_SET(x) UPDATE(x, 6, 4)
#define LDO_OUTPUT_SET_LO_MASK BIT(3)
#define LDO_OUTPUT_SET_LO(x) UPDATE(x, 3, 3)
#define LANE_2_SKEW_PHASE_SET_MASK GENMASK(2, 0)
#define LANE_2_SKEW_PHASE_SET(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define PRE_EMPHASIS_RANGE_SET_HI_MASK BIT(7)
#define PRE_EMPHASIS_RANGE_SET_HI(x) UPDATE(x, 7, 7)
#define LANE_1_SKEW_PHASE_SET_MASK GENMASK(6, 4)
#define LANE_1_SKEW_PHASE_SET(x) UPDATE(x, 6, 4)
#define PRE_EMPHASIS_RANGE_SET_LO_MASK BIT(3)
#define PRE_EMPHASIS_RANGE_SET_LO(x) UPDATE(x, 3, 3)
#define LANE_0_SKEW_PHASE_SET_MASK GENMASK(2, 0)
#define LANE_0_SKEW_PHASE_SET(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define PRE_EMPHASIS_ENABLE_MASK BIT(7)
#define PRE_EMPHASIS_ENABLE BIT(7)
#define PRE_EMPHASIS_DISABLE 0
#define PLL_POST_DIV_ENABLE_MASK BIT(5)
#define PLL_POST_DIV_ENABLE BIT(5)
#define PLL_POST_DIV_DISABLE 0
#define DATA_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define DATA_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
/* Analog Register Part: reg0b */
#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
#define VOD_MIN_RANGE 0x1
#define VOD_MID_RANGE 0x3
#define VOD_BIG_RANGE 0x7
#define VOD_MAX_RANGE 0xf
/* Analog Register Part: reg11 */
#define DATA_SAMPLE_PHASE_SET_MASK GENMASK(7, 6)
#define DATA_SAMPLE_PHASE_SET(x) UPDATE(x, 7, 6)
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK BIT(0)
#define REG_DIG_RSTN_NORMAL BIT(0)
#define REG_DIG_RSTN_RESET 0
/* Digital Register Part: reg01 */
#define INV_PIN_TXCLKESC_0_ENABLE_MASK BIT(1)
#define INV_PIN_TXCLKESC_0_ENABLE BIT(1)
#define INV_PIN_TXCLKESC_0_DISABLE 0
#define INV_PIN_TXBYTECLKHS_ENABLE_MASK BIT(0)
#define INV_PIN_TXBYTECLKHS_ENABLE BIT(0)
#define INV_PIN_TXBYTECLKHS_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg00 */
#define DIFF_SIGNAL_SWAP_ENABLE_MASK BIT(4)
#define DIFF_SIGNAL_SWAP_ENABLE BIT(4)
#define DIFF_SIGNAL_SWAP_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK GENMASK(5, 0)
#define T_LPX_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_ZERO_CNT_HI_MASK BIT(7)
#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_ENABLE_MASK BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE 0
#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_CLK_POST_HI_MASK GENMASK(7, 6)
#define T_CLK_POST_HI(x) UPDATE(x, 7, 6)
#define T_TA_GO_CNT_MASK GENMASK(5, 0)
#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_HS_EXIT_CNT_HI_MASK BIT(6)
#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
#define PSEC_PER_NSEC 1000L
#define PSECS_PER_SEC 1000000000000LL
enum inno_video_phy_functions {
INNO_PHY_PADCTL_FUNC_MIPI,
INNO_PHY_PADCTL_FUNC_LVDS,
INNO_PHY_PADCTL_FUNC_TTL,
INNO_PHY_PADCTL_FUNC_IDLE,
};
struct mipi_dphy_timing {
unsigned int clkmiss;
unsigned int clkpost;
unsigned int clkpre;
unsigned int clkprepare;
unsigned int clksettle;
unsigned int clktermen;
unsigned int clktrail;
unsigned int clkzero;
unsigned int dtermen;
unsigned int eot;
unsigned int hsexit;
unsigned int hsprepare;
unsigned int hszero;
unsigned int hssettle;
unsigned int hsskip;
unsigned int hstrail;
unsigned int init;
unsigned int lpx;
unsigned int taget;
unsigned int tago;
unsigned int tasure;
unsigned int wakeup;
};
struct inno_mipi_dphy_timing {
unsigned int max_lane_mbps;
u8 lpx;
u8 hs_prepare;
u8 clk_lane_hs_zero;
u8 data_lane_hs_zero;
u8 hs_trail;
};
struct inno_mipi_dphy {
struct device *dev;
struct clk *ref_clk;
struct clk *pclk;
struct regmap *regmap;
struct reset_control *rst;
struct regmap *grf;
unsigned int lanes;
unsigned long lane_rate;
struct {
struct clk_hw hw;
u8 prediv;
u16 fbdiv;
} pll;
};
enum {
REGISTER_PART_ANALOG,
REGISTER_PART_DIGITAL,
REGISTER_PART_CLOCK_LANE,
REGISTER_PART_DATA0_LANE,
REGISTER_PART_DATA1_LANE,
REGISTER_PART_DATA2_LANE,
REGISTER_PART_DATA3_LANE,
};
static const
struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table[] = {
{ 110, 0x02, 0x7f, 0x16, 0x02, 0x02},
{ 150, 0x02, 0x7f, 0x16, 0x03, 0x02},
{ 200, 0x02, 0x7f, 0x17, 0x04, 0x02},
{ 250, 0x02, 0x7f, 0x17, 0x05, 0x04},
{ 300, 0x02, 0x7f, 0x18, 0x06, 0x04},
{ 400, 0x03, 0x7e, 0x19, 0x07, 0x04},
{ 500, 0x03, 0x7c, 0x1b, 0x07, 0x08},
{ 600, 0x03, 0x70, 0x1d, 0x08, 0x10},
{ 700, 0x05, 0x40, 0x1e, 0x08, 0x30},
{ 800, 0x05, 0x02, 0x1f, 0x09, 0x30},
{1000, 0x05, 0x08, 0x20, 0x09, 0x30},
{1200, 0x06, 0x03, 0x32, 0x14, 0x0f},
{1400, 0x09, 0x03, 0x32, 0x14, 0x0f},
{1600, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
{1800, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
{2000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
{2200, 0x13, 0x64, 0x7e, 0x15, 0x0b},
{2400, 0x13, 0x33, 0x7f, 0x15, 0x6a},
{2500, 0x15, 0x54, 0x7f, 0x15, 0x6a},
};
static inline struct inno_mipi_dphy *hw_to_inno(struct clk_hw *hw)
{
return container_of(hw, struct inno_mipi_dphy, pll.hw);
}
static void inno_update_bits(struct inno_mipi_dphy *inno, u8 first, u8 second,
u8 mask, u8 val)
{
u32 reg = INNO_PHY_REG(first, second) << 2;
regmap_update_bits(inno->regmap, reg, mask, val);
}
static void inno_mipi_dphy_reset(struct inno_mipi_dphy *inno)
{
/* Reset analog */
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_RESET);
udelay(1);
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
/* Reset digital */
inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
udelay(1);
inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
}
static void inno_mipi_dphy_power_work_enable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_ENABLE);
}
static void inno_mipi_dphy_power_work_disable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_DISABLE);
}
static void inno_mipi_dphy_bandgap_power_enable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
}
static void inno_mipi_dphy_bandgap_power_disable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
}
static void inno_mipi_dphy_lane_enable(struct inno_mipi_dphy *inno)
{
u8 val = LANE_EN_CK;
switch (inno->lanes) {
case 1:
val |= LANE_EN_0;
break;
case 2:
val |= LANE_EN_1 | LANE_EN_0;
break;
case 3:
val |= LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
break;
case 4:
default:
val |= LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
break;
}
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, val);
}
static void inno_mipi_dphy_lane_disable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
}
static void inno_mipi_dphy_pll_enable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
CLOCK_LANE_VOD_RANGE_SET_MASK,
CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
}
static void inno_mipi_dphy_pll_disable(struct inno_mipi_dphy *inno)
{
inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
}
static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
unsigned long period)
{
/* Global Operation Timing Parameters */
timing->clkmiss = 0;
/*
* The D-PHY spec define the clk post min time is 60ns + 52UI and
* no define max time, so we set 200 + 52UI leave move margin.
*/
timing->clkpost = 200 + 52 * period / PSEC_PER_NSEC;
timing->clkpre = 8 * period / PSEC_PER_NSEC;
timing->clkprepare = 65;
timing->clksettle = 95;
timing->clktermen = 0;
timing->clktrail = 80;
timing->clkzero = 260;
timing->dtermen = 0;
timing->eot = 0;
timing->hsexit = 120;
timing->hsprepare = 65 + 4 * period / PSEC_PER_NSEC;
timing->hszero = 145 + 6 * period / PSEC_PER_NSEC;
timing->hssettle = 85 + 6 * period / PSEC_PER_NSEC;
timing->hsskip = 40;
timing->hstrail = max(8 * period / PSEC_PER_NSEC,
60 + 4 * period / PSEC_PER_NSEC);
timing->init = 100000;
timing->lpx = 60;
timing->taget = 5 * timing->lpx;
timing->tago = 4 * timing->lpx;
timing->tasure = 2 * timing->lpx;
timing->wakeup = 1000000;
}
static const struct inno_mipi_dphy_timing *
inno_mipi_dphy_get_timing(struct inno_mipi_dphy *inno)
{
const struct inno_mipi_dphy_timing *timings;
unsigned int num_timings;
unsigned int lane_mbps = inno->lane_rate / USEC_PER_SEC;
unsigned int i;
timings = inno_mipi_dphy_timing_table;
num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
for (i = 0; i < num_timings; i++)
if (lane_mbps <= timings[i].max_lane_mbps)
break;
if (i == num_timings)
--i;
return &timings[i];
}
static void inno_mipi_dphy_timing_init(struct inno_mipi_dphy *inno)
{
struct mipi_dphy_timing gotp;
const struct inno_mipi_dphy_timing *timing;
unsigned long txbyteclk, txclkesc, ui, sys_clk;
unsigned int esc_clk_div;
u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
u32 hs_prepare, hs_trail, hs_zero;
unsigned int i;
memset(&gotp, 0, sizeof(gotp));
txbyteclk = inno->lane_rate / 8;
sys_clk = clk_get_rate(inno->pclk);
esc_clk_div = DIV_ROUND_UP(txbyteclk, 20000000);
txclkesc = txbyteclk / esc_clk_div;
ui = DIV_ROUND_CLOSEST_ULL(PSECS_PER_SEC, inno->lane_rate);
dev_dbg(inno->dev, "txbyteclk=%ld, ui=%ld, sys_clk=%ld\n",
txbyteclk, ui, sys_clk);
mipi_dphy_timing_get_default(&gotp, ui);
timing = inno_mipi_dphy_get_timing(inno);
hs_exit = DIV_ROUND_UP(gotp.hsexit * txbyteclk, NSEC_PER_SEC);
clk_post = DIV_ROUND_UP(gotp.clkpost * txbyteclk, NSEC_PER_SEC);
clk_pre = DIV_ROUND_UP(gotp.clkpre * txbyteclk, NSEC_PER_SEC);
wakeup = DIV_ROUND_UP(gotp.wakeup * sys_clk, NSEC_PER_SEC);
if (wakeup > 0x3ff)
wakeup = 0x3ff;
ta_go = DIV_ROUND_UP(gotp.tago * txclkesc, NSEC_PER_SEC);
ta_sure = DIV_ROUND_UP(gotp.tasure * txclkesc, NSEC_PER_SEC);
ta_wait = DIV_ROUND_UP(gotp.taget * txclkesc, NSEC_PER_SEC);
lpx = timing->lpx;
hs_prepare = timing->hs_prepare;
hs_trail = timing->hs_trail;
for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
if (i == REGISTER_PART_CLOCK_LANE)
hs_zero = timing->clk_lane_hs_zero;
else
hs_zero = timing->data_lane_hs_zero;
dev_dbg(inno->dev, "lpx=%x\n", lpx);
dev_dbg(inno->dev,
"hs_trail=%x, hs_exit=%x, hs_prepare=%x, hs_zero=%x\n",
hs_trail, hs_exit, hs_prepare, hs_zero);
dev_dbg(inno->dev, "clk_pre=%x, clk_post=%x\n",
clk_pre, clk_post);
dev_dbg(inno->dev, "ta_go=%x, ta_sure=%x, ta_wait=%x\n",
ta_go, ta_sure, ta_wait);
inno_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
T_LPX_CNT(lpx));
inno_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
T_HS_PREPARE_CNT(hs_prepare));
inno_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
T_HS_ZERO_CNT_HI(hs_zero >> 6));
inno_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
T_HS_ZERO_CNT_LO(hs_zero));
inno_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
T_HS_TRAIL_CNT(hs_trail));
inno_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
T_HS_EXIT_CNT_HI(hs_exit >> 5));
inno_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
T_HS_EXIT_CNT_LO(hs_exit));
inno_update_bits(inno, i, 0x10, T_CLK_POST_HI_MASK,
T_CLK_POST_HI(clk_post >> 4));
inno_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
T_CLK_POST_CNT_LO(clk_post));
inno_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
T_CLK_PRE_CNT(clk_pre));
inno_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
T_WAKEUP_CNT_HI(wakeup >> 8));
inno_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
T_WAKEUP_CNT_LO(wakeup));
inno_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
T_TA_GO_CNT(ta_go));
inno_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
T_TA_SURE_CNT(ta_sure));
inno_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
T_TA_WAIT_CNT(ta_wait));
}
}
static unsigned long inno_mipi_dphy_pll_round_rate(struct inno_mipi_dphy *inno,
unsigned long prate,
unsigned long rate,
u8 *prediv, u16 *fbdiv)
{
const struct inno_mipi_dphy_timing *timings;
unsigned int num_timings;
unsigned long best_freq = 0;
unsigned int fin, fout, max_fout;
u8 min_prediv, max_prediv;
u8 _prediv, best_prediv = 1;
u16 _fbdiv, best_fbdiv = 1;
u32 min_delta = UINT_MAX;
timings = inno_mipi_dphy_timing_table;
num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
/*
* The PLL output frequency can be calculated using a simple formula:
* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
* PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
*/
fin = prate / USEC_PER_SEC;
fout = 2 * (rate / USEC_PER_SEC);
max_fout = 2 * timings[num_timings - 1].max_lane_mbps;
if (fout > max_fout)
fout = max_fout;
/* constraint: 5Mhz < Fref / prediv < 40MHz */
min_prediv = DIV_ROUND_UP(fin, 40);
max_prediv = fin / 5;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u32 delta, tmp;
_fbdiv = fout * _prediv / fin;
/*
* The all possible settings of feedback divider are
* 12, 13, 14, 16, ~ 511
*/
if ((_fbdiv == 15) || (_fbdiv < 12) || (_fbdiv > 511))
continue;
tmp = _fbdiv * fin / _prediv;
delta = abs(fout - tmp);
if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
min_delta = delta;
best_freq = tmp * USEC_PER_SEC;
}
}
if (best_freq) {
*prediv = best_prediv;
*fbdiv = best_fbdiv;
}
return best_freq / 2;
}
static int inno_mipi_dphy_power_on(struct phy *phy)
{
struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
clk_prepare_enable(inno->pclk);
pm_runtime_get_sync(inno->dev);
inno_mipi_dphy_bandgap_power_enable(inno);
inno_mipi_dphy_power_work_enable(inno);
inno_mipi_dphy_pll_enable(inno);
inno_mipi_dphy_lane_enable(inno);
inno_mipi_dphy_reset(inno);
inno_mipi_dphy_timing_init(inno);
udelay(1);
return 0;
}
static int inno_mipi_dphy_power_off(struct phy *phy)
{
struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
inno_mipi_dphy_lane_disable(inno);
inno_mipi_dphy_pll_disable(inno);
inno_mipi_dphy_power_work_disable(inno);
inno_mipi_dphy_bandgap_power_disable(inno);
pm_runtime_put(inno->dev);
clk_disable_unprepare(inno->pclk);
return 0;
}
static const struct phy_ops inno_mipi_dphy_ops = {
.power_on = inno_mipi_dphy_power_on,
.power_off = inno_mipi_dphy_power_off,
.owner = THIS_MODULE,
};
static long inno_mipi_dphy_pll_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *prate)
{
struct inno_mipi_dphy *inno = hw_to_inno(hw);
unsigned long fin = *prate;
unsigned long fout;
u16 fbdiv = 1;
u8 prediv = 1;
fout = inno_mipi_dphy_pll_round_rate(inno, fin, rate,
&prediv, &fbdiv);
dev_dbg(inno->dev, "%s: fin=%lu, req_rate=%lu\n",
__func__, *prate, rate);
dev_dbg(inno->dev, "%s: fout=%lu, prediv=%u, fbdiv=%u\n",
__func__, fout, prediv, fbdiv);
inno->pll.prediv = prediv;
inno->pll.fbdiv = fbdiv;
return fout;
}
static int inno_mipi_dphy_pll_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_mipi_dphy *inno = hw_to_inno(hw);
dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, rate);
inno->lane_rate = rate;
return 0;
}
static unsigned long
inno_mipi_dphy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
{
struct inno_mipi_dphy *inno = hw_to_inno(hw);
dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, inno->lane_rate);
return inno->lane_rate;
}
static const struct clk_ops inno_mipi_dphy_pll_clk_ops = {
.round_rate = inno_mipi_dphy_pll_clk_round_rate,
.set_rate = inno_mipi_dphy_pll_clk_set_rate,
.recalc_rate = inno_mipi_dphy_pll_clk_recalc_rate,
};
static int inno_mipi_dphy_pll_register(struct inno_mipi_dphy *inno)
{
struct device *dev = inno->dev;
struct device_node *np = dev->of_node;
struct clk *clk;
const char *parent_name;
struct clk_init_data init = {};
int ret;
parent_name = __clk_get_name(inno->ref_clk);
ret = of_property_read_string(np, "clock-output-names", &init.name);
if (ret < 0) {
dev_err(dev, "Missing clock-output-names property: %d\n", ret);
return ret;
}
init.ops = &inno_mipi_dphy_pll_clk_ops;
init.parent_names = (const char * const *)&parent_name;
init.num_parents = 1;
init.flags = 0;
inno->pll.hw.init = &init;
clk = devm_clk_register(dev, &inno->pll.hw);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "failed to register PLL: %d\n", ret);
return ret;
}
return of_clk_add_provider(np, of_clk_src_simple_get, clk);
}
static void inno_mipi_dphy_pll_unregister(struct inno_mipi_dphy *inno)
{
of_clk_del_provider(inno->dev->of_node);
}
static int inno_mipi_dphy_parse_dt(struct inno_mipi_dphy *inno)
{
struct device *dev = inno->dev;
if (of_property_read_u32(dev->of_node, "inno,lanes", &inno->lanes))
inno->lanes = 4;
return 0;
}
static const struct regmap_config inno_mipi_dphy_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = 0x3ac,
};
static int inno_mipi_dphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct inno_mipi_dphy *inno;
struct phy_provider *phy_provider;
struct phy *phy;
struct resource *res;
void __iomem *regs;
int ret;
inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = dev;
platform_set_drvdata(pdev, inno);
ret = inno_mipi_dphy_parse_dt(inno);
if (ret) {
dev_err(dev, "failed to parse DT\n");
return ret;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
inno->regmap = devm_regmap_init_mmio(dev, regs,
&inno_mipi_dphy_regmap_config);
if (IS_ERR(inno->regmap)) {
ret = PTR_ERR(inno->regmap);
dev_err(dev, "failed to init regmap: %d\n", ret);
return ret;
}
inno->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(inno->ref_clk)) {
dev_err(dev, "failed to get reference clock\n");
return PTR_ERR(inno->ref_clk);
}
inno->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(inno->pclk)) {
dev_err(dev, "failed to get pclk\n");
return PTR_ERR(inno->pclk);
}
inno->rst = devm_reset_control_get(dev, "apb");
if (IS_ERR(inno->rst)) {
dev_err(dev, "failed to get system reset control\n");
return PTR_ERR(inno->rst);
}
inno->grf = syscon_regmap_lookup_by_phandle(dev->of_node,
"rockchip,grf");
if (IS_ERR(inno->grf)) {
dev_err(dev, "failed to get grf regmap\n");
return PTR_ERR(inno->grf);
}
phy = devm_phy_create(dev, NULL, &inno_mipi_dphy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create MIPI D-PHY\n");
return PTR_ERR(phy);
}
phy_set_drvdata(phy, inno);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
dev_err(dev, "failed to register phy provider\n");
return PTR_ERR(phy_provider);
}
ret = inno_mipi_dphy_pll_register(inno);
if (ret)
return ret;
pm_runtime_enable(dev);
return 0;
}
static int inno_mipi_dphy_remove(struct platform_device *pdev)
{
struct inno_mipi_dphy *inno = platform_get_drvdata(pdev);
inno_mipi_dphy_pll_unregister(inno);
pm_runtime_disable(inno->dev);
return 0;
}
static const struct of_device_id inno_mipi_dphy_of_match[] = {
{ .compatible = "rockchip,rk1808-mipi-dphy", },
{ .compatible = "rockchip,rk3568-mipi-dphy", },
{ .compatible = "rockchip,rv1126-mipi-dphy", },
{}
};
MODULE_DEVICE_TABLE(of, inno_mipi_dphy_of_match);
static struct platform_driver inno_mipi_dphy_driver = {
.driver = {
.name = "inno-mipi-dphy",
.of_match_table = of_match_ptr(inno_mipi_dphy_of_match),
},
.probe = inno_mipi_dphy_probe,
.remove = inno_mipi_dphy_remove,
};
#ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
static int __init inno_mipi_dphy_driver_init(void)
{
return platform_driver_register(&inno_mipi_dphy_driver);
}
fs_initcall(inno_mipi_dphy_driver_init);
static void __exit inno_mipi_dphy_driver_exit(void)
{
platform_driver_unregister(&inno_mipi_dphy_driver);
}
module_exit(inno_mipi_dphy_driver_exit);
#else
module_platform_driver(inno_mipi_dphy_driver);
#endif
MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Innosilicon MIPI D-PHY Driver");
MODULE_LICENSE("GPL v2");