742 lines
20 KiB
C
742 lines
20 KiB
C
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <atomic.h>
|
|
#include <gpio.h>
|
|
#include <nanohubPacket.h>
|
|
#include <plat/exti.h>
|
|
#include <plat/gpio.h>
|
|
#include <platform.h>
|
|
#include <plat/syscfg.h>
|
|
#include <heap.h>
|
|
#include <sensors.h>
|
|
#include <seos.h>
|
|
#include <slab.h>
|
|
#include <i2c.h>
|
|
#include <timer.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <variant/variant.h>
|
|
|
|
#define LPS22HB_APP_ID APP_ID_MAKE(NANOHUB_VENDOR_STMICRO, 1)
|
|
|
|
/* Sensor defs */
|
|
#define LPS22HB_INT_CFG_REG_ADDR 0x0B
|
|
#define LPS22HB_LIR_BIT 0x04
|
|
|
|
#define LPS22HB_WAI_REG_ADDR 0x0F
|
|
#define LPS22HB_WAI_REG_VAL 0xB1
|
|
|
|
#define LPS22HB_SOFT_RESET_REG_ADDR 0x11
|
|
#define LPS22HB_SOFT_RESET_BIT 0x04
|
|
#define LPS22HB_I2C_DIS 0x08
|
|
#define LPS22HB_IF_ADD_INC 0x10
|
|
|
|
#define LPS22HB_ODR_REG_ADDR 0x10
|
|
#define LPS22HB_ODR_ONE_SHOT 0x00
|
|
#define LPS22HB_ODR_1_HZ 0x10
|
|
#define LPS22HB_ODR_10_HZ 0x20
|
|
#define LPS22HB_ODR_25_HZ 0x30
|
|
#define LPS22HB_ODR_50_HZ 0x40
|
|
#define LPS22HB_ODR_75_HZ 0x50
|
|
|
|
#define LPS22HB_RPDS_L 0x18
|
|
#define LPS22HB_RPDS_H 0x19
|
|
|
|
#define LPS22HB_PRESS_OUTXL_REG_ADDR 0x28
|
|
#define LPS22HB_TEMP_OUTL_REG_ADDR 0x2B
|
|
|
|
#define LPS22HB_HECTO_PASCAL(baro_val) (baro_val/4096)
|
|
#define LPS22HB_CENTIGRADES(temp_val) (temp_val/100)
|
|
|
|
#define INFO_PRINT(fmt, ...) \
|
|
do { \
|
|
osLog(LOG_INFO, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
|
|
} while (0);
|
|
|
|
#define DEBUG_PRINT(fmt, ...) \
|
|
do { \
|
|
if (LPS22HB_DBG_ENABLED) { \
|
|
osLog(LOG_DEBUG, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
|
|
} \
|
|
} while (0);
|
|
|
|
#define ERROR_PRINT(fmt, ...) \
|
|
do { \
|
|
osLog(LOG_ERROR, "%s " fmt, "[LPS22HB]", ##__VA_ARGS__); \
|
|
} while (0);
|
|
|
|
/* DO NOT MODIFY, just to avoid compiler error if not defined using FLAGS */
|
|
#ifndef LPS22HB_DBG_ENABLED
|
|
#define LPS22HB_DBG_ENABLED 0
|
|
#endif /* LPS22HB_DBG_ENABLED */
|
|
|
|
enum lps22hbSensorEvents
|
|
{
|
|
EVT_COMM_DONE = EVT_APP_START + 1,
|
|
EVT_SENSOR_BARO_TIMER,
|
|
EVT_SENSOR_TEMP_TIMER,
|
|
EVT_TEST,
|
|
};
|
|
|
|
enum lps22hbSensorState {
|
|
SENSOR_BOOT,
|
|
SENSOR_VERIFY_ID,
|
|
SENSOR_BARO_POWER_UP,
|
|
SENSOR_BARO_POWER_DOWN,
|
|
SENSOR_BARO_START_CAL,
|
|
SENSOR_BARO_READ_CAL_MEAS,
|
|
SENSOR_BARO_CAL_DONE,
|
|
SENSOR_BARO_SET_OFFSET,
|
|
SENSOR_BARO_CFG_DONE,
|
|
SENSOR_TEMP_POWER_UP,
|
|
SENSOR_TEMP_POWER_DOWN,
|
|
SENSOR_READ_SAMPLES,
|
|
};
|
|
|
|
#ifndef LPS22HB_I2C_BUS_ID
|
|
#error "LPS22HB_I2C_BUS_ID is not defined; please define in variant.h"
|
|
#endif
|
|
|
|
#ifndef LPS22HB_I2C_SPEED
|
|
#error "LPS22HB_I2C_SPEED is not defined; please define in variant.h"
|
|
#endif
|
|
|
|
#ifndef LPS22HB_I2C_ADDR
|
|
#error "LPS22HB_I2C_ADDR is not defined; please define in variant.h"
|
|
#endif
|
|
|
|
enum lps22hbSensorIndex {
|
|
BARO = 0,
|
|
TEMP,
|
|
NUM_OF_SENSOR,
|
|
};
|
|
|
|
//#define NUM_OF_SENSOR 1
|
|
|
|
struct lps22hbSensor {
|
|
uint32_t handle;
|
|
};
|
|
|
|
struct CalibrationData {
|
|
struct HostHubRawPacket header;
|
|
struct SensorAppEventHeader data_header;
|
|
float value;
|
|
} __attribute__((packed));
|
|
|
|
#define LPS22HB_MAX_PENDING_I2C_REQUESTS 4
|
|
#define LPS22HB_MAX_I2C_TRANSFER_SIZE 6
|
|
#define LPS22HB_MAX_BARO_EVENTS 4
|
|
|
|
struct I2cTransfer
|
|
{
|
|
size_t tx;
|
|
size_t rx;
|
|
int err;
|
|
uint8_t txrxBuf[LPS22HB_MAX_I2C_TRANSFER_SIZE];
|
|
uint8_t state;
|
|
bool inUse;
|
|
};
|
|
|
|
/* Task structure */
|
|
struct lps22hbTask {
|
|
uint32_t tid;
|
|
|
|
struct SlabAllocator *baroSlab;
|
|
|
|
/* timer */
|
|
uint32_t baroTimerHandle;
|
|
uint32_t tempTimerHandle;
|
|
|
|
/* sensor flags */
|
|
bool baroOn;
|
|
bool baroReading;
|
|
bool baroWantRead;
|
|
bool tempOn;
|
|
bool tempReading;
|
|
bool tempWantRead;
|
|
|
|
uint8_t offset_L;
|
|
uint8_t offset_H;
|
|
|
|
//int sensLastRead;
|
|
|
|
struct I2cTransfer transfers[LPS22HB_MAX_PENDING_I2C_REQUESTS];
|
|
|
|
/* Communication functions */
|
|
bool (*comm_tx)(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state);
|
|
bool (*comm_rx)(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state);
|
|
|
|
/* sensors */
|
|
struct lps22hbSensor sensors[NUM_OF_SENSOR];
|
|
};
|
|
|
|
static struct lps22hbTask mTask;
|
|
|
|
static bool baroAllocateEvt(struct SingleAxisDataEvent **evPtr, float sample, uint64_t time)
|
|
{
|
|
struct SingleAxisDataEvent *ev;
|
|
|
|
ev = *evPtr = slabAllocatorAlloc(mTask.baroSlab);
|
|
if (!ev) {
|
|
ERROR_PRINT("Failed to allocate baro evt memory");
|
|
return false;
|
|
}
|
|
|
|
memset(&ev->samples[0].firstSample, 0x00, sizeof(struct SensorFirstSample));
|
|
ev->referenceTime = time;
|
|
ev->samples[0].firstSample.numSamples = 1;
|
|
ev->samples[0].fdata = sample;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void baroFreeEvt(void *ptr)
|
|
{
|
|
slabAllocatorFree(mTask.baroSlab, ptr);
|
|
}
|
|
|
|
// Allocate a buffer and mark it as in use with the given state, or return NULL
|
|
// if no buffers available. Must *not* be called from interrupt context.
|
|
static struct I2cTransfer *allocXfer(uint8_t state)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mTask.transfers); i++) {
|
|
if (!mTask.transfers[i].inUse) {
|
|
mTask.transfers[i].inUse = true;
|
|
mTask.transfers[i].state = state;
|
|
return &mTask.transfers[i];
|
|
}
|
|
}
|
|
|
|
ERROR_PRINT("Ran out of i2c buffers!");
|
|
return NULL;
|
|
}
|
|
|
|
static inline void releaseXfer(struct I2cTransfer *xfer)
|
|
{
|
|
xfer->inUse = false;
|
|
}
|
|
|
|
static void i2cCallback(void *cookie, size_t tx, size_t rx, int err)
|
|
{
|
|
struct I2cTransfer *xfer = cookie;
|
|
|
|
xfer->tx = tx;
|
|
xfer->rx = rx;
|
|
xfer->err = err;
|
|
|
|
osEnqueuePrivateEvt(EVT_COMM_DONE, cookie, NULL, mTask.tid);
|
|
if (err != 0)
|
|
ERROR_PRINT("i2c error (tx: %d, rx: %d, err: %d)\n", tx, rx, err);
|
|
}
|
|
|
|
static bool i2c_read(uint8_t addr, uint16_t len, uint32_t delay, uint8_t state)
|
|
{
|
|
struct I2cTransfer *xfer = allocXfer(state);
|
|
int ret = -1;
|
|
|
|
if (xfer != NULL) {
|
|
xfer->txrxBuf[0] = 0x80 | addr;
|
|
if ((ret = i2cMasterTxRx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 1, xfer->txrxBuf, len, i2cCallback, xfer)) < 0) {
|
|
releaseXfer(xfer);
|
|
DEBUG_PRINT("i2c_read: i2cMasterTxRx operation failed (ret: %d)\n", ret);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return (ret == -1) ? false : true;
|
|
}
|
|
|
|
static bool i2c_write(uint8_t addr, uint8_t data, uint32_t delay, uint8_t state)
|
|
{
|
|
struct I2cTransfer *xfer = allocXfer(state);
|
|
int ret = -1;
|
|
|
|
if (xfer != NULL) {
|
|
xfer->txrxBuf[0] = addr;
|
|
xfer->txrxBuf[1] = data;
|
|
if ((ret = i2cMasterTx(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_ADDR, xfer->txrxBuf, 2, i2cCallback, xfer)) < 0) {
|
|
releaseXfer(xfer);
|
|
DEBUG_PRINT("i2c_write: i2cMasterTx operation failed (ret: %d)\n", ret);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return (ret == -1) ? false : true;
|
|
}
|
|
|
|
static void sendCalibrationResult(uint8_t status, float value)
|
|
{
|
|
struct CalibrationData *data = heapAlloc(sizeof(struct CalibrationData));
|
|
if (!data) {
|
|
ERROR_PRINT("Couldn't alloc cal result pkt\n");
|
|
return;
|
|
}
|
|
|
|
data->header.appId = LPS22HB_APP_ID;
|
|
data->header.dataLen = (sizeof(struct CalibrationData) - sizeof(struct HostHubRawPacket));
|
|
data->data_header.msgId = SENSOR_APP_MSG_ID_CAL_RESULT;
|
|
data->data_header.sensorType = SENS_TYPE_BARO;
|
|
data->data_header.status = status;
|
|
|
|
data->value = value;
|
|
|
|
if (!osEnqueueEvtOrFree(EVT_APP_TO_HOST, data, heapFree))
|
|
ERROR_PRINT("Couldn't send cal result evt\n");
|
|
}
|
|
|
|
/* Sensor Info */
|
|
static void sensorBaroTimerCallback(uint32_t timerId, void *data)
|
|
{
|
|
osEnqueuePrivateEvt(EVT_SENSOR_BARO_TIMER, data, NULL, mTask.tid);
|
|
}
|
|
|
|
static void sensorTempTimerCallback(uint32_t timerId, void *data)
|
|
{
|
|
osEnqueuePrivateEvt(EVT_SENSOR_TEMP_TIMER, data, NULL, mTask.tid);
|
|
}
|
|
|
|
#define DEC_INFO(name, type, axis, inter, samples, rates) \
|
|
.sensorName = name, \
|
|
.sensorType = type, \
|
|
.numAxis = axis, \
|
|
.interrupt = inter, \
|
|
.minSamples = samples, \
|
|
.supportedRates = rates
|
|
|
|
static uint32_t lps22hbRates[] = {
|
|
SENSOR_HZ(1.0f),
|
|
SENSOR_HZ(10.0f),
|
|
SENSOR_HZ(25.0f),
|
|
SENSOR_HZ(50.0f),
|
|
SENSOR_HZ(75.0f),
|
|
0
|
|
};
|
|
|
|
// should match "supported rates in length" and be the timer length for that rate in nanosecs
|
|
static const uint64_t lps22hbRatesRateVals[] =
|
|
{
|
|
1 * 1000000000ULL,
|
|
1000000000ULL / 10,
|
|
1000000000ULL / 25,
|
|
1000000000ULL / 50,
|
|
1000000000ULL / 75,
|
|
};
|
|
|
|
|
|
static const struct SensorInfo lps22hbSensorInfo[NUM_OF_SENSOR] =
|
|
{
|
|
{ DEC_INFO("Pressure", SENS_TYPE_BARO, NUM_AXIS_ONE, NANOHUB_INT_NONWAKEUP,
|
|
300, lps22hbRates) },
|
|
{ DEC_INFO("Temperature", SENS_TYPE_AMBIENT_TEMP, NUM_AXIS_EMBEDDED, NANOHUB_INT_NONWAKEUP,
|
|
20, lps22hbRates) },
|
|
};
|
|
|
|
/* Sensor Operations */
|
|
static bool baroPower(bool on, void *cookie)
|
|
{
|
|
bool oldMode = mTask.baroOn || mTask.tempOn;
|
|
bool newMode = on || mTask.tempOn;
|
|
uint32_t state = on ? SENSOR_BARO_POWER_UP : SENSOR_BARO_POWER_DOWN;
|
|
bool ret = true;
|
|
|
|
INFO_PRINT("baroPower %s\n", on ? "enable" : "disable");
|
|
if (!on && mTask.baroTimerHandle) {
|
|
timTimerCancel(mTask.baroTimerHandle);
|
|
mTask.baroTimerHandle = 0;
|
|
mTask.baroReading = false;
|
|
}
|
|
|
|
if (oldMode != newMode) {
|
|
if (on)
|
|
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
|
|
else
|
|
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
|
|
} else
|
|
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
|
|
|
|
if (!ret) {
|
|
DEBUG_PRINT("baroPower comm_tx failed\n");
|
|
return(false);
|
|
}
|
|
|
|
mTask.baroReading = false;
|
|
mTask.baroOn = on;
|
|
return true;
|
|
}
|
|
|
|
static bool baroFwUpload(void *cookie)
|
|
{
|
|
return sensorSignalInternalEvt(mTask.sensors[BARO].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
|
|
}
|
|
|
|
static bool baroSetRate(uint32_t rate, uint64_t latency, void *cookie)
|
|
{
|
|
INFO_PRINT("baroSetRate %lu Hz - %llu ns\n", rate, latency);
|
|
|
|
if (mTask.baroTimerHandle)
|
|
timTimerCancel(mTask.baroTimerHandle);
|
|
|
|
mTask.baroTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
|
|
lps22hbRatesRateVals, rate), 0, 50, sensorBaroTimerCallback, NULL, false);
|
|
|
|
return sensorSignalInternalEvt(mTask.sensors[BARO].handle,
|
|
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
|
|
}
|
|
|
|
static bool baroFlush(void *cookie)
|
|
{
|
|
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_BARO), SENSOR_DATA_EVENT_FLUSH, NULL);
|
|
}
|
|
|
|
static bool baroCalibrate(void *cookie)
|
|
{
|
|
INFO_PRINT("baroCalibrate\n");
|
|
|
|
if (mTask.baroOn) {
|
|
ERROR_PRINT("cannot calibrate while baro is active\n");
|
|
sendCalibrationResult(SENSOR_APP_EVT_STATUS_BUSY, 0.0f);
|
|
return false;
|
|
}
|
|
|
|
mTask.comm_tx(LPS22HB_RPDS_L, 0, 0, SENSOR_BARO_START_CAL);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Offset data is sent in hPa, and must be transformed in 16th of hPa.
|
|
* Since offset is expected to be summed to the out regs but the sensor
|
|
* will actually subctract it then we need to invert the sign.
|
|
*/
|
|
static bool baroCfgData(void *data, void *cookie)
|
|
{
|
|
float offset_f = *((float *)data) * 16;
|
|
int32_t offset;
|
|
bool ret;
|
|
|
|
offset_f = (offset_f > 0) ? offset_f + 0.5f : offset_f - 0.5f;
|
|
offset = -(int32_t)offset_f;
|
|
|
|
INFO_PRINT("baroCfgData %ld\n", offset);
|
|
|
|
mTask.offset_H = (offset >> 8) & 0xff;
|
|
mTask.offset_L = (offset & 0xff);
|
|
|
|
ret = mTask.comm_tx(LPS22HB_RPDS_L, mTask.offset_L, 0, SENSOR_BARO_SET_OFFSET);
|
|
if (!ret)
|
|
DEBUG_PRINT("baroCfgData: comm_tx failed\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool tempPower(bool on, void *cookie)
|
|
{
|
|
bool oldMode = mTask.baroOn || mTask.tempOn;
|
|
bool newMode = on || mTask.baroOn;
|
|
uint32_t state = on ? SENSOR_TEMP_POWER_UP : SENSOR_TEMP_POWER_DOWN;
|
|
bool ret = true;
|
|
|
|
INFO_PRINT("tempPower %s\n", on ? "enable" : "disable");
|
|
if (!on && mTask.tempTimerHandle) {
|
|
timTimerCancel(mTask.tempTimerHandle);
|
|
mTask.tempTimerHandle = 0;
|
|
mTask.tempReading = false;
|
|
}
|
|
|
|
if (oldMode != newMode) {
|
|
if (on)
|
|
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_10_HZ, 0, state);
|
|
else
|
|
ret = mTask.comm_tx(LPS22HB_ODR_REG_ADDR, LPS22HB_ODR_ONE_SHOT, 0, state);
|
|
} else
|
|
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, on, 0);
|
|
|
|
if (!ret) {
|
|
DEBUG_PRINT("tempPower comm_tx failed\n");
|
|
return(false);
|
|
}
|
|
|
|
mTask.tempReading = false;
|
|
mTask.tempOn = on;
|
|
return true;
|
|
}
|
|
|
|
static bool tempFwUpload(void *cookie)
|
|
{
|
|
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle, SENSOR_INTERNAL_EVT_FW_STATE_CHG, 1, 0);
|
|
}
|
|
|
|
static bool tempSetRate(uint32_t rate, uint64_t latency, void *cookie)
|
|
{
|
|
if (mTask.tempTimerHandle)
|
|
timTimerCancel(mTask.tempTimerHandle);
|
|
|
|
INFO_PRINT("tempSetRate %lu Hz - %llu ns\n", rate, latency);
|
|
mTask.tempTimerHandle = timTimerSet(sensorTimerLookupCommon(lps22hbRates,
|
|
lps22hbRatesRateVals, rate), 0, 50, sensorTempTimerCallback, NULL, false);
|
|
|
|
return sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
|
|
SENSOR_INTERNAL_EVT_RATE_CHG, rate, latency);
|
|
}
|
|
|
|
static bool tempFlush(void *cookie)
|
|
{
|
|
return osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), SENSOR_DATA_EVENT_FLUSH, NULL);
|
|
}
|
|
|
|
#define DEC_OPS(power, firmware, rate, flush, cal, cfg) \
|
|
.sensorPower = power, \
|
|
.sensorFirmwareUpload = firmware, \
|
|
.sensorSetRate = rate, \
|
|
.sensorFlush = flush, \
|
|
.sensorCalibrate = cal, \
|
|
.sensorCfgData = cfg
|
|
|
|
static const struct SensorOps lps22hbSensorOps[NUM_OF_SENSOR] =
|
|
{
|
|
{ DEC_OPS(baroPower, baroFwUpload, baroSetRate, baroFlush, baroCalibrate, baroCfgData) },
|
|
{ DEC_OPS(tempPower, tempFwUpload, tempSetRate, tempFlush, NULL, NULL) },
|
|
};
|
|
|
|
static int handleCommDoneEvt(const void* evtData)
|
|
{
|
|
uint8_t i;
|
|
int baro_val;
|
|
short temp_val;
|
|
//uint32_t state = (uint32_t)evtData;
|
|
struct SingleAxisDataEvent *baroSample;
|
|
union EmbeddedDataPoint sample;
|
|
struct I2cTransfer *xfer = (struct I2cTransfer *)evtData;
|
|
uint8_t *ptr_samples;
|
|
|
|
switch (xfer->state) {
|
|
case SENSOR_BOOT:
|
|
if (!mTask.comm_rx(LPS22HB_WAI_REG_ADDR, 1, 1, SENSOR_VERIFY_ID)) {
|
|
DEBUG_PRINT("Not able to read WAI\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
case SENSOR_VERIFY_ID:
|
|
/* Check the sensor ID */
|
|
if (xfer->err != 0 || xfer->txrxBuf[0] != LPS22HB_WAI_REG_VAL) {
|
|
DEBUG_PRINT("WAI returned is: %02x\n", xfer->txrxBuf[0]);
|
|
break;
|
|
}
|
|
|
|
|
|
INFO_PRINT("Device ID is correct! (%02x)\n", xfer->txrxBuf[0]);
|
|
for (i = 0; i < NUM_OF_SENSOR; i++)
|
|
sensorRegisterInitComplete(mTask.sensors[i].handle);
|
|
|
|
/* TEST the environment in standalone mode */
|
|
//osEnqueuePrivateEvt(EVT_TEST, NULL, NULL, mTask.tid);
|
|
break;
|
|
|
|
case SENSOR_BARO_POWER_UP:
|
|
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
|
|
break;
|
|
|
|
case SENSOR_BARO_POWER_DOWN:
|
|
sensorSignalInternalEvt(mTask.sensors[BARO].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
|
|
break;
|
|
|
|
case SENSOR_TEMP_POWER_UP:
|
|
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, true, 0);
|
|
break;
|
|
|
|
case SENSOR_TEMP_POWER_DOWN:
|
|
sensorSignalInternalEvt(mTask.sensors[TEMP].handle,
|
|
SENSOR_INTERNAL_EVT_POWER_STATE_CHG, false, 0);
|
|
break;
|
|
|
|
case SENSOR_BARO_START_CAL:
|
|
mTask.comm_tx(LPS22HB_RPDS_H, 0, 0, SENSOR_BARO_READ_CAL_MEAS);
|
|
break;
|
|
|
|
case SENSOR_BARO_READ_CAL_MEAS:
|
|
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 3, 1, SENSOR_BARO_CAL_DONE);
|
|
break;
|
|
|
|
case SENSOR_BARO_CAL_DONE:
|
|
ptr_samples = xfer->txrxBuf;
|
|
|
|
baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
|
|
((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
|
|
|
|
sendCalibrationResult(SENSOR_APP_EVT_STATUS_SUCCESS, LPS22HB_HECTO_PASCAL((float)baro_val));
|
|
break;
|
|
|
|
case SENSOR_BARO_SET_OFFSET:
|
|
mTask.comm_tx(LPS22HB_RPDS_H, mTask.offset_H, 0, SENSOR_BARO_CFG_DONE);
|
|
break;
|
|
|
|
case SENSOR_BARO_CFG_DONE:
|
|
break;
|
|
|
|
case SENSOR_READ_SAMPLES:
|
|
if (mTask.baroOn && mTask.baroWantRead) {
|
|
float pressure_hPa;
|
|
|
|
mTask.baroWantRead = false;
|
|
ptr_samples = xfer->txrxBuf;
|
|
|
|
baro_val = ((ptr_samples[2] << 16) & 0xff0000) |
|
|
((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
|
|
|
|
mTask.baroReading = false;
|
|
pressure_hPa = LPS22HB_HECTO_PASCAL((float)baro_val);
|
|
//osLog(LOG_INFO, "baro: %p\n", sample.vptr);
|
|
if (baroAllocateEvt(&baroSample, pressure_hPa, sensorGetTime())) {
|
|
osEnqueueEvtOrFree(sensorGetMyEventType(SENS_TYPE_BARO), baroSample, baroFreeEvt);
|
|
}
|
|
}
|
|
|
|
if (mTask.tempOn && mTask.tempWantRead) {
|
|
mTask.tempWantRead = false;
|
|
ptr_samples = &xfer->txrxBuf[3];
|
|
|
|
temp_val = ((ptr_samples[1] << 8) & 0xff00) | (ptr_samples[0]);
|
|
|
|
mTask.tempReading = false;
|
|
sample.fdata = LPS22HB_CENTIGRADES((float)temp_val);
|
|
//osLog(LOG_INFO, "temp: %p\n", sample.vptr);
|
|
osEnqueueEvt(sensorGetMyEventType(SENS_TYPE_AMBIENT_TEMP), sample.vptr, NULL);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
releaseXfer(xfer);
|
|
return (0);
|
|
}
|
|
|
|
static void handleEvent(uint32_t evtType, const void* evtData)
|
|
{
|
|
switch (evtType) {
|
|
case EVT_APP_START:
|
|
INFO_PRINT("EVT_APP_START\n");
|
|
osEventUnsubscribe(mTask.tid, EVT_APP_START);
|
|
|
|
mTask.comm_tx(LPS22HB_SOFT_RESET_REG_ADDR,
|
|
LPS22HB_SOFT_RESET_BIT, 0, SENSOR_BOOT);
|
|
break;
|
|
|
|
case EVT_COMM_DONE:
|
|
//INFO_PRINT("EVT_COMM_DONE %d\n", (int)evtData);
|
|
handleCommDoneEvt(evtData);
|
|
break;
|
|
|
|
case EVT_SENSOR_BARO_TIMER:
|
|
//INFO_PRINT("EVT_SENSOR_BARO_TIMER\n");
|
|
|
|
mTask.baroWantRead = true;
|
|
|
|
/* Start sampling for a value */
|
|
if (!mTask.baroReading && !mTask.tempReading) {
|
|
mTask.baroReading = true;
|
|
|
|
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
|
|
}
|
|
|
|
break;
|
|
|
|
case EVT_SENSOR_TEMP_TIMER:
|
|
//INFO_PRINT("EVT_SENSOR_TEMP_TIMER\n");
|
|
|
|
mTask.tempWantRead = true;
|
|
|
|
/* Start sampling for a value */
|
|
if (!mTask.baroReading && !mTask.tempReading) {
|
|
mTask.tempReading = true;
|
|
|
|
mTask.comm_rx(LPS22HB_PRESS_OUTXL_REG_ADDR, 5, 1, SENSOR_READ_SAMPLES);
|
|
}
|
|
|
|
break;
|
|
|
|
case EVT_TEST:
|
|
INFO_PRINT("EVT_TEST\n");
|
|
|
|
baroPower(true, NULL);
|
|
tempPower(true, NULL);
|
|
baroSetRate(SENSOR_HZ(1), 0, NULL);
|
|
tempSetRate(SENSOR_HZ(1), 0, NULL);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static bool startTask(uint32_t task_id)
|
|
{
|
|
uint8_t i;
|
|
size_t slabSize;
|
|
|
|
mTask.tid = task_id;
|
|
|
|
INFO_PRINT("task started\n");
|
|
|
|
mTask.baroOn = mTask.tempOn = false;
|
|
mTask.baroReading = mTask.tempReading = false;
|
|
|
|
mTask.offset_H = 0;
|
|
mTask.offset_L = 0;
|
|
|
|
slabSize = sizeof(struct SingleAxisDataEvent) + sizeof(struct SingleAxisDataPoint);
|
|
|
|
mTask.baroSlab = slabAllocatorNew(slabSize, 4, LPS22HB_MAX_BARO_EVENTS);
|
|
if (!mTask.baroSlab) {
|
|
ERROR_PRINT("Failed to allocate baroSlab memory\n");
|
|
return false;
|
|
}
|
|
|
|
/* Init the communication part */
|
|
i2cMasterRequest(LPS22HB_I2C_BUS_ID, LPS22HB_I2C_SPEED);
|
|
|
|
mTask.comm_tx = i2c_write;
|
|
mTask.comm_rx = i2c_read;
|
|
|
|
for (i = 0; i < NUM_OF_SENSOR; i++) {
|
|
mTask.sensors[i].handle =
|
|
sensorRegister(&lps22hbSensorInfo[i], &lps22hbSensorOps[i], NULL, false);
|
|
}
|
|
|
|
osEventSubscribe(mTask.tid, EVT_APP_START);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void endTask(void)
|
|
{
|
|
INFO_PRINT("task ended\n");
|
|
slabAllocatorDestroy(mTask.baroSlab);
|
|
}
|
|
|
|
INTERNAL_APP_INIT(LPS22HB_APP_ID, 0, startTask, endTask, handleEvent);
|