251 lines
7.6 KiB
C++
251 lines
7.6 KiB
C++
/*
|
|
* Copyright (c) 2016-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Error.h"
|
|
|
|
#include <cmath>
|
|
#include <numeric>
|
|
|
|
namespace arm_compute
|
|
{
|
|
template <size_t dimension>
|
|
struct IncrementIterators
|
|
{
|
|
template <typename T, typename... Ts>
|
|
static void unroll(T &&it, Ts &&... iterators)
|
|
{
|
|
auto increment = [](T && it)
|
|
{
|
|
it.increment(dimension);
|
|
};
|
|
utility::for_each(increment, std::forward<T>(it), std::forward<Ts>(iterators)...);
|
|
}
|
|
static void unroll()
|
|
{
|
|
// End of recursion
|
|
}
|
|
};
|
|
|
|
template <size_t dim>
|
|
struct ForEachDimension
|
|
{
|
|
template <typename L, typename... Ts>
|
|
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
|
|
{
|
|
const auto &d = w[dim - 1];
|
|
|
|
for(auto v = d.start(); v < d.end(); v += d.step(), IncrementIterators < dim - 1 >::unroll(iterators...))
|
|
{
|
|
id.set(dim - 1, v);
|
|
ForEachDimension < dim - 1 >::unroll(w, id, lambda_function, iterators...);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ForEachDimension<0>
|
|
{
|
|
template <typename L, typename... Ts>
|
|
static void unroll(const Window &w, Coordinates &id, L &&lambda_function, Ts &&... iterators)
|
|
{
|
|
ARM_COMPUTE_UNUSED(w, iterators...);
|
|
lambda_function(id);
|
|
}
|
|
};
|
|
|
|
template <typename L, typename... Ts>
|
|
inline void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators)
|
|
{
|
|
w.validate();
|
|
|
|
for(unsigned int i = 0; i < Coordinates::num_max_dimensions; ++i)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(w[i].step() == 0);
|
|
}
|
|
|
|
Coordinates id;
|
|
ForEachDimension<Coordinates::num_max_dimensions>::unroll(w, id, std::forward<L>(lambda_function), std::forward<Ts>(iterators)...);
|
|
}
|
|
|
|
inline constexpr Iterator::Iterator()
|
|
: _ptr(nullptr), _dims()
|
|
{
|
|
}
|
|
|
|
inline Iterator::Iterator(const ITensor *tensor, const Window &win)
|
|
: Iterator()
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(tensor == nullptr);
|
|
ARM_COMPUTE_ERROR_ON(tensor->info() == nullptr);
|
|
|
|
const ITensorInfo *info = tensor->info();
|
|
const Strides &strides = info->strides_in_bytes();
|
|
|
|
_ptr = tensor->buffer() + info->offset_first_element_in_bytes();
|
|
|
|
//Initialize the stride for each dimension and calculate the position of the first element of the iteration:
|
|
for(unsigned int n = 0; n < info->num_dimensions(); ++n)
|
|
{
|
|
_dims[n]._stride = win[n].step() * strides[n];
|
|
std::get<0>(_dims)._dim_start += static_cast<size_t>(strides[n]) * win[n].start();
|
|
}
|
|
|
|
//Copy the starting point to all the dimensions:
|
|
for(unsigned int n = 1; n < Coordinates::num_max_dimensions; ++n)
|
|
{
|
|
_dims[n]._dim_start = std::get<0>(_dims)._dim_start;
|
|
}
|
|
|
|
ARM_COMPUTE_ERROR_ON_WINDOW_DIMENSIONS_GTE(win, info->num_dimensions());
|
|
}
|
|
|
|
inline void Iterator::increment(const size_t dimension)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions);
|
|
|
|
_dims[dimension]._dim_start += _dims[dimension]._stride;
|
|
|
|
for(unsigned int n = 0; n < dimension; ++n)
|
|
{
|
|
_dims[n]._dim_start = _dims[dimension]._dim_start;
|
|
}
|
|
}
|
|
|
|
inline constexpr size_t Iterator::offset() const
|
|
{
|
|
return _dims.at(0)._dim_start;
|
|
}
|
|
|
|
inline constexpr uint8_t *Iterator::ptr() const
|
|
{
|
|
return _ptr + _dims.at(0)._dim_start;
|
|
}
|
|
|
|
inline void Iterator::reset(const size_t dimension)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(dimension >= Coordinates::num_max_dimensions - 1);
|
|
|
|
_dims[dimension]._dim_start = _dims[dimension + 1]._dim_start;
|
|
|
|
for(unsigned int n = 0; n < dimension; ++n)
|
|
{
|
|
_dims[n]._dim_start = _dims[dimension]._dim_start;
|
|
}
|
|
}
|
|
|
|
inline Coordinates index2coords(const TensorShape &shape, int index)
|
|
{
|
|
int num_elements = shape.total_size();
|
|
|
|
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]!");
|
|
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape!");
|
|
|
|
Coordinates coord{ 0 };
|
|
|
|
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
|
|
{
|
|
num_elements /= shape[d];
|
|
coord.set(d, index / num_elements);
|
|
index %= num_elements;
|
|
}
|
|
|
|
return coord;
|
|
}
|
|
|
|
inline int coords2index(const TensorShape &shape, const Coordinates &coord)
|
|
{
|
|
int num_elements = shape.total_size();
|
|
ARM_COMPUTE_UNUSED(num_elements);
|
|
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create linear index from empty shape!");
|
|
|
|
int index = 0;
|
|
int stride = 1;
|
|
|
|
for(unsigned int d = 0; d < coord.num_dimensions(); ++d)
|
|
{
|
|
index += coord[d] * stride;
|
|
stride *= shape[d];
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
inline size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
|
|
|
|
/* Return the index based on the data layout
|
|
* [N C H W]
|
|
* [3 2 1 0]
|
|
* [N H W C]
|
|
*/
|
|
switch(data_layout_dimension)
|
|
{
|
|
case DataLayoutDimension::CHANNEL:
|
|
return (data_layout == DataLayout::NCHW) ? 2 : 0;
|
|
break;
|
|
case DataLayoutDimension::HEIGHT:
|
|
return (data_layout == DataLayout::NCHW) ? 1 : 2;
|
|
break;
|
|
case DataLayoutDimension::WIDTH:
|
|
return (data_layout == DataLayout::NCHW) ? 0 : 1;
|
|
break;
|
|
case DataLayoutDimension::BATCHES:
|
|
return 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ARM_COMPUTE_ERROR("Data layout index not supported!");
|
|
}
|
|
|
|
inline DataLayoutDimension get_index_data_layout_dimension(const DataLayout data_layout, const size_t index)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
|
|
|
|
/* Return the index based on the data layout
|
|
* [N C H W]
|
|
* [3 2 1 0]
|
|
* [N H W C]
|
|
*/
|
|
switch(index)
|
|
{
|
|
case 0:
|
|
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::WIDTH : DataLayoutDimension::CHANNEL;
|
|
break;
|
|
case 1:
|
|
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::HEIGHT : DataLayoutDimension::WIDTH;
|
|
break;
|
|
case 2:
|
|
return (data_layout == DataLayout::NCHW) ? DataLayoutDimension::CHANNEL : DataLayoutDimension::HEIGHT;
|
|
break;
|
|
case 3:
|
|
return DataLayoutDimension::BATCHES;
|
|
break;
|
|
default:
|
|
ARM_COMPUTE_ERROR("Index value not supported!");
|
|
break;
|
|
}
|
|
}
|
|
} // namespace arm_compute
|