248 lines
11 KiB
C++
248 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2019-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/CPP/functions/CPPTopKV.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#include "arm_compute/runtime/TensorAllocator.h"
|
|
#include "tests/NEON/Accessor.h"
|
|
#include "tests/PaddingCalculator.h"
|
|
#include "tests/datasets/ShapeDatasets.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/fixtures/PermuteFixture.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
template <typename U, typename T>
|
|
inline void fill_tensor(U &&tensor, const std::vector<T> &v)
|
|
{
|
|
std::memcpy(tensor.data(), v.data(), sizeof(T) * v.size());
|
|
}
|
|
} // namespace
|
|
|
|
TEST_SUITE(CPP)
|
|
TEST_SUITE(TopKV)
|
|
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
|
|
framework::dataset::make("PredictionsInfo", { TensorInfo(TensorShape(20, 10), 1, DataType::F32),
|
|
TensorInfo(TensorShape(10, 20), 1, DataType::F16), // Mismatching batch_size
|
|
TensorInfo(TensorShape(20, 10), 1, DataType::S8), // Unsupported data type
|
|
TensorInfo(TensorShape(10, 10, 10), 1, DataType::F32), // Wrong predictions dimensions
|
|
TensorInfo(TensorShape(20, 10), 1, DataType::F32)}), // Wrong output dimension
|
|
framework::dataset::make("TargetsInfo",{ TensorInfo(TensorShape(10), 1, DataType::U32),
|
|
TensorInfo(TensorShape(10), 1, DataType::U32),
|
|
TensorInfo(TensorShape(10), 1, DataType::U32),
|
|
TensorInfo(TensorShape(10), 1, DataType::U32),
|
|
TensorInfo(TensorShape(10), 1, DataType::U32)})),
|
|
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(10), 1, DataType::U8),
|
|
TensorInfo(TensorShape(10), 1, DataType::U8),
|
|
TensorInfo(TensorShape(10), 1, DataType::U8),
|
|
TensorInfo(TensorShape(10), 1, DataType::U8),
|
|
TensorInfo(TensorShape(1), 1, DataType::U8)})),
|
|
|
|
framework::dataset::make("k",{ 0, 1, 2, 3, 4 })),
|
|
framework::dataset::make("Expected", {true, false, false, false, false })),
|
|
prediction_info, targets_info, output_info, k, expected)
|
|
{
|
|
const Status status = CPPTopKV::validate(&prediction_info.clone()->set_is_resizable(false),&targets_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), k);
|
|
ARM_COMPUTE_EXPECT(bool(status) == expected, framework::LogLevel::ERRORS);
|
|
}
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
|
|
TEST_CASE(Float, framework::DatasetMode::ALL)
|
|
{
|
|
const unsigned int k = 5;
|
|
|
|
Tensor predictions = create_tensor<Tensor>(TensorShape(10, 20), DataType::F32);
|
|
Tensor targets = create_tensor<Tensor>(TensorShape(20), DataType::U32);
|
|
|
|
predictions.allocator()->allocate();
|
|
targets.allocator()->allocate();
|
|
|
|
// Fill the tensors with random pre-generated values
|
|
fill_tensor(Accessor(predictions), std::vector<float>
|
|
{
|
|
0.8147, 0.6557, 0.4387, 0.7513, 0.3517, 0.1622, 0.1067, 0.8530, 0.7803, 0.5470,
|
|
0.9058, 0.0357, 0.3816, 0.2551, 0.8308, 0.7943, 0.9619, 0.6221, 0.3897, 0.2963,
|
|
0.1270, 0.8491, 0.7655, 0.5060, 0.5853, 0.3112, 0.0046, 0.3510, 0.2417, 0.7447,
|
|
0.9134, 0.9340, 0.7952, 0.6991, 0.5497, 0.5285, 0.7749, 0.5132, 0.4039, 0.1890,
|
|
0.6324, 0.6787, 0.1869, 0.8909, 0.9172, 0.1656, 0.8173, 0.4018, 0.0965, 0.6868,
|
|
0.0975, 0.7577, 0.4898, 0.9593, 0.2858, 0.6020, 0.8687, 0.0760, 0.1320, 0.1835,
|
|
0.2785, 0.7431, 0.4456, 0.5472, 0.7572, 0.2630, 0.0844, 0.2399, 0.9421, 0.3685,
|
|
0.5469, 0.3922, 0.6463, 0.1386, 0.7537, 0.6541, 0.3998, 0.1233, 0.9561, 0.6256,
|
|
0.9575, 0.6555, 0.7094, 0.1493, 0.3804, 0.6892, 0.2599, 0.1839, 0.5752, 0.7802,
|
|
0.9649, 0.1712, 0.7547, 0.2575, 0.5678, 0.7482, 0.8001, 0.2400, 0.0598, 0.0811,
|
|
0.1576, 0.7060, 0.2760, 0.8407, 0.0759, 0.4505, 0.4314, 0.4173, 0.2348, 0.9294,
|
|
0.9706, 0.0318, 0.6797, 0.2543, 0.0540, 0.0838, 0.9106, 0.0497, 0.3532, 0.7757,
|
|
0.9572, 0.2769, 0.6551, 0.8143, 0.5308, 0.2290, 0.1818, 0.9027, 0.8212, 0.4868,
|
|
0.4854, 0.0462, 0.1626, 0.2435, 0.7792, 0.9133, 0.2638, 0.9448, 0.0154, 0.4359,
|
|
0.8003, 0.0971, 0.1190, 0.9293, 0.9340, 0.1524, 0.1455, 0.4909, 0.0430, 0.4468,
|
|
0.1419, 0.8235, 0.4984, 0.3500, 0.1299, 0.8258, 0.1361, 0.4893, 0.1690, 0.3063,
|
|
0.4218, 0.6948, 0.9597, 0.1966, 0.5688, 0.5383, 0.8693, 0.3377, 0.6491, 0.5085,
|
|
0.9157, 0.3171, 0.3404, 0.2511, 0.4694, 0.9961, 0.5797, 0.9001, 0.7317, 0.5108,
|
|
0.7922, 0.9502, 0.5853, 0.6160, 0.0119, 0.0782, 0.5499, 0.3692, 0.6477, 0.8176,
|
|
0.9595, 0.0344, 0.2238, 0.4733, 0.3371, 0.4427, 0.1450, 0.1112, 0.4509, 0.7948
|
|
});
|
|
|
|
fill_tensor(Accessor(targets), std::vector<int> { 1, 5, 7, 2, 8, 1, 2, 1, 2, 4, 3, 9, 4, 1, 9, 9, 4, 1, 2, 4 });
|
|
|
|
// Determine the output through the CPP kernel
|
|
Tensor output;
|
|
CPPTopKV topkv;
|
|
topkv.configure(&predictions, &targets, &output, k);
|
|
|
|
output.allocator()->allocate();
|
|
|
|
// Run the kernel
|
|
topkv.run();
|
|
|
|
// Validate against the expected values
|
|
SimpleTensor<uint8_t> expected_output(TensorShape(20), DataType::U8);
|
|
fill_tensor(expected_output, std::vector<uint8_t> { 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0 });
|
|
validate(Accessor(output), expected_output);
|
|
}
|
|
|
|
TEST_CASE(QASYMM8, framework::DatasetMode::ALL)
|
|
{
|
|
const unsigned int k = 5;
|
|
|
|
Tensor predictions = create_tensor<Tensor>(TensorShape(10, 20), DataType::QASYMM8, 1, QuantizationInfo());
|
|
Tensor targets = create_tensor<Tensor>(TensorShape(20), DataType::U32);
|
|
|
|
predictions.allocator()->allocate();
|
|
targets.allocator()->allocate();
|
|
|
|
// Fill the tensors with random pre-generated values
|
|
fill_tensor(Accessor(predictions), std::vector<uint8_t>
|
|
{
|
|
133, 235, 69, 118, 140, 179, 189, 203, 137, 157,
|
|
242, 1, 196, 170, 166, 25, 102, 244, 24, 254,
|
|
164, 119, 49, 198, 140, 135, 175, 84, 29, 136,
|
|
246, 109, 74, 90, 185, 136, 181, 172, 35, 123,
|
|
62, 118, 24, 170, 134, 221, 114, 113, 174, 206,
|
|
174, 198, 148, 107, 255, 125, 6, 214, 127, 59,
|
|
75, 83, 175, 216, 56, 101, 85, 197, 49, 128,
|
|
172, 201, 140, 214, 28, 172, 109, 43, 127, 231,
|
|
178, 121, 109, 66, 29, 190, 70, 221, 38, 148,
|
|
18, 10, 165, 158, 17, 134, 51, 254, 15, 217,
|
|
66, 46, 166, 150, 104, 90, 211, 132, 218, 190,
|
|
58, 185, 174, 139, 115, 39, 111, 227, 144, 151,
|
|
171, 122, 163, 223, 94, 151, 228, 151, 238, 64,
|
|
217, 40, 242, 68, 196, 68, 101, 40, 179, 171,
|
|
89, 88, 54, 82, 161, 12, 197, 52, 150, 22,
|
|
200, 156, 182, 31, 198, 194, 102, 105, 209, 161,
|
|
173, 50, 61, 241, 239, 63, 207, 192, 226, 170,
|
|
2, 190, 31, 166, 250, 114, 194, 212, 254, 187,
|
|
155, 63, 156, 123, 50, 177, 97, 203, 1, 229,
|
|
100, 235, 116, 164, 36, 92, 56, 82, 222, 252
|
|
});
|
|
|
|
fill_tensor(Accessor(targets), std::vector<int> { 1, 5, 7, 2, 8, 1, 2, 1, 2, 4, 3, 9, 4, 1, 9, 9, 4, 1, 2, 4 });
|
|
|
|
// Determine the output through the CPP kernel
|
|
Tensor output;
|
|
CPPTopKV topkv;
|
|
topkv.configure(&predictions, &targets, &output, k);
|
|
|
|
output.allocator()->allocate();
|
|
|
|
// Run the kernel
|
|
topkv.run();
|
|
|
|
// Validate against the expected values
|
|
SimpleTensor<uint8_t> expected_output(TensorShape(20), DataType::U8);
|
|
fill_tensor(expected_output, std::vector<uint8_t> { 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0 });
|
|
validate(Accessor(output), expected_output);
|
|
}
|
|
|
|
TEST_CASE(QASYMM8_SIGNED, framework::DatasetMode::ALL)
|
|
{
|
|
const unsigned int k = 5;
|
|
|
|
Tensor predictions = create_tensor<Tensor>(TensorShape(10, 20), DataType::QASYMM8_SIGNED, 1, QuantizationInfo());
|
|
Tensor targets = create_tensor<Tensor>(TensorShape(20), DataType::U32);
|
|
|
|
predictions.allocator()->allocate();
|
|
targets.allocator()->allocate();
|
|
|
|
// Fill the tensors with random pre-generated values
|
|
fill_tensor(Accessor(predictions), std::vector<int8_t>
|
|
{
|
|
123, -34, 69, 118, 20, -45, 99, -98, 127, 117, //-34
|
|
-99, 1, -128, 90, 60, 25, 102, 76, 24, -110, //25
|
|
99, 119, 49, 43, -40, 60, 43, 84, 29, 67, //84
|
|
33, 109, 74, 90, 90, 44, 98, 90, 35, 123, //74
|
|
62, 118, 24, -32, 34, 21, 114, 113, 124, 20, //124
|
|
74, 98, 48, 107, 127, 125, 6, -98, 127, 59, //98
|
|
75, 83, 75, -118, 56, 101, 85, 97, 49, 127, //75
|
|
72, -20, 40, 14, 28, -30, 109, 43, 127, -31, //-20
|
|
78, 121, 109, 66, 29, 90, 70, 21, 38, 48, //109
|
|
18, 10, 115, 124, 17, 123, 51, 54, 15, 17, //17
|
|
66, 46, -66, 125, 104, 90, 123, 113, -54, -126, //125
|
|
58, -85, 74, 39, 115, 39, 111, -27, 44, 51, //51
|
|
71, 122, -34, -123, 94, 113, 125, 111, 38, 64, //94
|
|
-17, 40, 42, 68, 96, 68, 101, 40, 79, 71, //40
|
|
89, 88, 54, 82, 127, 12, 112, 52, 125, 22, //22
|
|
-128, 56, 82, 31, 98, 94, 102, 105, 127, 123, //123
|
|
112, 50, 61, 41, 39, 63, -77, 92, 26, 70, //39
|
|
2, 90, 31, 99, -34, 114, 112, 126, 127, 87, //90
|
|
125, 63, 56, 123, 50, -77, 97, -93, 1, 29, //56
|
|
100, -35, 116, 64, 36, 92, 56, 82, -22, -118 //36
|
|
});
|
|
|
|
fill_tensor(Accessor(targets), std::vector<int> { 1, 5, 7, 2, 8, 1, 2, 1, 2, 4, 3, 9, 4, 1, 9, 9, 4, 1, 2, 4 });
|
|
|
|
// Determine the output through the CPP kernel
|
|
Tensor output;
|
|
CPPTopKV topkv;
|
|
topkv.configure(&predictions, &targets, &output, k);
|
|
|
|
output.allocator()->allocate();
|
|
|
|
// Run the kernel
|
|
topkv.run();
|
|
|
|
// Validate against the expected values
|
|
SimpleTensor<int8_t> expected_output(TensorShape(20), DataType::U8);
|
|
fill_tensor(expected_output, std::vector<int8_t> { 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0 });
|
|
validate(Accessor(output), expected_output);
|
|
}
|
|
|
|
TEST_SUITE_END() // TopKV
|
|
TEST_SUITE_END() // CPP
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|