180 lines
9.4 KiB
C++
180 lines
9.4 KiB
C++
/*
|
|
* Copyright (c) 2019-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEFFT1D.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEFFT2D.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEFFTConvolutionLayer.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#include "tests/NEON/Accessor.h"
|
|
#include "tests/datasets/SmallConvolutionLayerDataset.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/fixtures/FFTFixture.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
const auto data_types = framework::dataset::make("DataType", { DataType::F32 });
|
|
const auto shapes_1d = framework::dataset::make("TensorShape", { TensorShape(2U, 2U, 3U), TensorShape(3U, 2U, 3U),
|
|
TensorShape(4U, 2U, 3U), TensorShape(5U, 2U, 3U),
|
|
TensorShape(7U, 2U, 3U), TensorShape(8U, 2U, 3U),
|
|
TensorShape(9U, 2U, 3U), TensorShape(25U, 2U, 3U),
|
|
TensorShape(49U, 2U, 3U), TensorShape(64U, 2U, 3U),
|
|
TensorShape(16U, 2U, 3U), TensorShape(32U, 2U, 3U),
|
|
TensorShape(96U, 2U, 2U)
|
|
});
|
|
|
|
const auto shapes_2d = framework::dataset::make("TensorShape", { TensorShape(2U, 2U, 3U), TensorShape(3U, 6U, 3U),
|
|
TensorShape(4U, 5U, 3U), TensorShape(5U, 7U, 3U),
|
|
TensorShape(7U, 25U, 3U), TensorShape(8U, 2U, 3U),
|
|
TensorShape(9U, 16U, 3U), TensorShape(25U, 32U, 3U),
|
|
TensorShape(192U, 128U, 2U)
|
|
});
|
|
|
|
const auto ActivationFunctionsSmallDataset = framework::dataset::make("ActivationInfo",
|
|
{
|
|
ActivationLayerInfo(),
|
|
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 0.5f)
|
|
});
|
|
|
|
RelativeTolerance<float> tolerance_f32(0.1f); /**< Relative tolerance value for FP32 */
|
|
constexpr float tolerance_num = 0.07f; /**< Tolerance number */
|
|
|
|
} // namespace
|
|
TEST_SUITE(NEON)
|
|
TEST_SUITE(FFT1D)
|
|
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
|
|
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Mismatching data types
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Mismatching shapes
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 3, DataType::F32), // Invalid channels
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Unsupported axis
|
|
TensorInfo(TensorShape(11U, 13U, 2U), 2, DataType::F32), // Undecomposable FFT
|
|
TensorInfo(TensorShape(25U, 13U, 2U), 2, DataType::F32),
|
|
}),
|
|
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F16),
|
|
TensorInfo(TensorShape(16U, 13U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(11U, 13U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(25U, 13U, 2U), 2, DataType::F32),
|
|
})),
|
|
framework::dataset::make("Axis", { 0, 0, 0, 2, 0, 0 })),
|
|
framework::dataset::make("Expected", { false, false, false, false, false, true })),
|
|
input_info, output_info, axis, expected)
|
|
{
|
|
FFT1DInfo desc;
|
|
desc.axis = axis;
|
|
const Status s = NEFFT1D::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), desc);
|
|
ARM_COMPUTE_EXPECT(bool(s) == expected, framework::LogLevel::ERRORS);
|
|
}
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
|
|
template <typename T>
|
|
using NEFFT1DFixture = FFTValidationFixture<Tensor, Accessor, NEFFT1D, FFT1DInfo, T>;
|
|
|
|
TEST_SUITE(Float)
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEFFT1DFixture<float>, framework::DatasetMode::ALL, combine(shapes_1d, framework::dataset::make("DataType", DataType::F32)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f32, tolerance_num);
|
|
}
|
|
TEST_SUITE_END() // FP32
|
|
TEST_SUITE_END() // Float
|
|
TEST_SUITE_END() // FFT1D
|
|
|
|
TEST_SUITE(FFT2D)
|
|
// *INDENT-OFF*
|
|
// clang-format off
|
|
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(
|
|
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32), // Mismatching data types
|
|
TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32), // Mismatching shapes
|
|
TensorInfo(TensorShape(32U, 25U, 2U), 3, DataType::F32), // Invalid channels
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Undecomposable FFT
|
|
TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32),
|
|
}),
|
|
framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F16),
|
|
TensorInfo(TensorShape(16U, 25U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 25U, 2U), 1, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
|
|
TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32),
|
|
})),
|
|
framework::dataset::make("Expected", { false, false, false, false, true })),
|
|
input_info, output_info, expected)
|
|
{
|
|
const Status s = NEFFT2D::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), FFT2DInfo());
|
|
ARM_COMPUTE_EXPECT(bool(s) == expected, framework::LogLevel::ERRORS);
|
|
}
|
|
// clang-format on
|
|
// *INDENT-ON*
|
|
|
|
template <typename T>
|
|
using NEFFT2DFixture = FFTValidationFixture<Tensor, Accessor, NEFFT2D, FFT2DInfo, T>;
|
|
|
|
TEST_SUITE(Float)
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEFFT2DFixture<float>, framework::DatasetMode::ALL, combine(shapes_2d, framework::dataset::make("DataType", DataType::F32)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f32, tolerance_num);
|
|
}
|
|
TEST_SUITE_END() // FP32
|
|
TEST_SUITE_END() // Float
|
|
TEST_SUITE_END() // FFT2D
|
|
|
|
TEST_SUITE(FFTConvolutionLayer)
|
|
|
|
template <typename T>
|
|
using NEFFTConvolutionLayerFixture = FFTConvolutionValidationFixture<Tensor, Accessor, NEFFTConvolutionLayer, T>;
|
|
|
|
TEST_SUITE(Float)
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEFFTConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallFFTConvolutionLayerDataset(),
|
|
framework::dataset::make("DataType", DataType::F32)),
|
|
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
|
|
ActivationFunctionsSmallDataset))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f32, tolerance_num);
|
|
}
|
|
TEST_SUITE_END() // FP32
|
|
TEST_SUITE_END() // Float
|
|
TEST_SUITE_END() // FFTConvolutionLayer
|
|
|
|
TEST_SUITE_END() // NEON
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|