276 lines
13 KiB
C++
276 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/runtime/NEON/functions/NEGEMM.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#include "arm_compute/runtime/TensorAllocator.h"
|
|
#include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
|
|
#include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
|
|
#include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
|
|
#include "tests/NEON/Accessor.h"
|
|
#include "tests/NEON/Helper.h"
|
|
#include "tests/PaddingCalculator.h"
|
|
#include "tests/datasets/LargeGEMMDataset.h"
|
|
#include "tests/datasets/SmallGEMMDataset.h"
|
|
#include "tests/datasets/TinyGEMMDataset.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Macros.h"
|
|
#include "tests/framework/datasets/Datasets.h"
|
|
#include "tests/validation/Validation.h"
|
|
#include "tests/validation/fixtures/GEMMFixture.h"
|
|
#include "tests/validation/fixtures/GEMMInterleave4x4Fixture.h"
|
|
#include "tests/validation/fixtures/GEMMTranspose1xWFixture.h"
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
namespace
|
|
{
|
|
constexpr AbsoluteTolerance<float> tolerance_f(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for FP32 data types */
|
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
RelativeTolerance<half_float::half> rel_tolerance_f16(half(0.2)); /**< Relative tolerance value for comparing reference's output against implementation's output for FP16 data types */
|
|
const AbsoluteTolerance<float> abs_tolerance_f16(0.2f); /**< Absolute tolerance value for comparing reference's output against implementation's output for FP16 data types */
|
|
constexpr float tolerance_num = 0.07f; /**< Tolerance number for FP16 data types */
|
|
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
|
|
/** CNN data types */
|
|
const auto CNNDataTypes = framework::dataset::make("DataType",
|
|
{
|
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
DataType::F16,
|
|
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
|
|
DataType::F32,
|
|
});
|
|
|
|
const auto data_interleave = framework::dataset::make("M", 8, 12) * framework::dataset::make("N", 8, 12);
|
|
const auto data_transpose = framework::dataset::make("M", 8, 14) * framework::dataset::make("N", 7, 14);
|
|
|
|
/** Zero padding test */
|
|
template <typename FunctionType>
|
|
bool validate_zero_padding(unsigned int dim0_value, unsigned int dim1_value)
|
|
{
|
|
const TensorShape in_shape(dim0_value, dim1_value);
|
|
|
|
// Create tensors
|
|
Tensor in = create_tensor<Tensor>(in_shape, DataType::U32);
|
|
Tensor dst;
|
|
|
|
ARM_COMPUTE_EXPECT(in.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Validate zero-padding
|
|
FunctionType func;
|
|
|
|
func.configure(&in, &dst);
|
|
|
|
return in.info()->padding().empty();
|
|
}
|
|
|
|
/* Zero padding test for GEMM kernels */
|
|
bool validate_gemm_zero_padding(const TensorShape shape0, const TensorShape shape1)
|
|
{
|
|
// Create tensors
|
|
Tensor in0 = create_tensor<Tensor>(shape0, DataType::F32);
|
|
Tensor in1 = create_tensor<Tensor>(shape1, DataType::F32);
|
|
Tensor dst;
|
|
|
|
// Validate zero-padding
|
|
NEGEMMMatrixMultiplyKernel gemm;
|
|
gemm.configure(&in0, &in1, &dst, 1.0, false);
|
|
|
|
return in0.info()->padding().empty() && in1.info()->padding().empty() && dst.info()->padding().empty();
|
|
}
|
|
} // namespace
|
|
|
|
TEST_SUITE(NEON)
|
|
TEST_SUITE(GEMM)
|
|
|
|
TEST_SUITE(TRANSPOSE_1XW)
|
|
using NEGEMMTranspose1xW = NESynthetizeFunctionWithZeroConstantBorder<NEGEMMTranspose1xWKernel, 4>;
|
|
DATA_TEST_CASE(ValidateZeroPadding, framework::DatasetMode::ALL, zip(
|
|
framework::dataset::make("N", { 1, 23, 63, 101 }),
|
|
framework::dataset::make("K", { 1, 47, 29, 27 })),
|
|
n_value, k_value)
|
|
{
|
|
bool status = validate_zero_padding<NEGEMMTranspose1xWKernel>(n_value, k_value);
|
|
ARM_COMPUTE_EXPECT(status, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
TEST_SUITE(U32)
|
|
using NEGEMMTranspose1xWFixture = GEMMTranspose1xWValidationFixture<Tensor, Accessor, NEGEMMTranspose1xW, uint32_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMTranspose1xWFixture, framework::DatasetMode::PRECOMMIT, data_transpose * framework::dataset::make("DataType", DataType::U32))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U32
|
|
|
|
TEST_SUITE(U16)
|
|
using NEGEMMTranspose1xWFixture = GEMMTranspose1xWValidationFixture<Tensor, Accessor, NEGEMMTranspose1xW, uint16_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMTranspose1xWFixture, framework::DatasetMode::PRECOMMIT, data_transpose * framework::dataset::make("DataType", DataType::U16))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U16
|
|
|
|
TEST_SUITE(U8)
|
|
using NEGEMMTranspose1xWFixture = GEMMTranspose1xWValidationFixture<Tensor, Accessor, NEGEMMTranspose1xW, uint8_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMTranspose1xWFixture, framework::DatasetMode::PRECOMMIT, data_transpose * framework::dataset::make("DataType", DataType::U8))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U8
|
|
|
|
TEST_SUITE_END() // TRANSPOSE_1XW
|
|
|
|
TEST_SUITE(INTERLEAVE_4X4)
|
|
using NEGEMMInterleave4x4 = NESynthetizeFunctionWithZeroConstantBorder<NEGEMMInterleave4x4Kernel, 4>;
|
|
|
|
DATA_TEST_CASE(ValidateZeroPadding, framework::DatasetMode::ALL, zip(
|
|
framework::dataset::make("M", { 1, 23, 63, 101 }),
|
|
framework::dataset::make("K", { 1, 47, 29, 27 })),
|
|
m_value, k_value)
|
|
{
|
|
bool status = validate_zero_padding<NEGEMMInterleave4x4Kernel>(m_value, k_value);
|
|
ARM_COMPUTE_EXPECT(status, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
TEST_SUITE(U32)
|
|
using NEGEMMInterleave4x4Fixture = GEMMInterleave4x4ValidationFixture<Tensor, Accessor, NEGEMMInterleave4x4, uint32_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMInterleave4x4Fixture, framework::DatasetMode::PRECOMMIT, data_interleave * framework::dataset::make("DataType", DataType::U32))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U32
|
|
|
|
TEST_SUITE(U16)
|
|
using NEGEMMInterleave4x4Fixture = GEMMInterleave4x4ValidationFixture<Tensor, Accessor, NEGEMMInterleave4x4, uint16_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMInterleave4x4Fixture, framework::DatasetMode::PRECOMMIT, data_interleave * framework::dataset::make("DataType", DataType::U16))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U16
|
|
|
|
TEST_SUITE(U8)
|
|
using NEGEMMInterleave4x4Fixture = GEMMInterleave4x4ValidationFixture<Tensor, Accessor, NEGEMMInterleave4x4, uint8_t>;
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMInterleave4x4Fixture, framework::DatasetMode::PRECOMMIT, data_interleave * framework::dataset::make("DataType", DataType::QASYMM8))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference);
|
|
}
|
|
TEST_SUITE_END() // U8
|
|
|
|
TEST_SUITE_END() // INTERLEAVE_4X4
|
|
|
|
//TODO(COMPMID-415): Validate valid region
|
|
|
|
template <typename T>
|
|
using NEGEMMFixture = GEMMValidationFixture<Tensor, Accessor, NEGEMM, T>;
|
|
|
|
template <typename T>
|
|
using NEGEMMFixtureDisabledC = GEMMValidationFixture<Tensor, Accessor, NEGEMM, T, true>;
|
|
|
|
TEST_SUITE(Float)
|
|
DATA_TEST_CASE(ValidateZeroPadding, framework::DatasetMode::ALL, zip(framework::dataset::make("In0", { TensorShape(21U, 13U),
|
|
TensorShape(31U, 1U),
|
|
TensorShape(31U, 1U),
|
|
TensorShape(8U, 2U),
|
|
TensorShape(38U, 12U),
|
|
TensorShape(32U, 1U)
|
|
}),
|
|
framework::dataset::make("In1", { TensorShape(33U, 21U),
|
|
TensorShape(23U, 31U),
|
|
TensorShape(23U, 31U),
|
|
TensorShape(16U, 8U),
|
|
TensorShape(21U, 38U),
|
|
TensorShape(17U, 32U)
|
|
})),
|
|
shape0, shape1)
|
|
{
|
|
bool status = validate_gemm_zero_padding(shape0, shape1);
|
|
ARM_COMPUTE_EXPECT(status, framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
|
TEST_SUITE(FP16)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallGEMMDataset(),
|
|
framework::dataset::make("ReshapeWeights", { true, false })),
|
|
framework::dataset::make("DataType", DataType::F16)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, rel_tolerance_f16, tolerance_num, abs_tolerance_f16);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEGEMMFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeGEMMDataset(),
|
|
framework::dataset::make("ReshapeWeights", { true, false })),
|
|
|
|
framework::dataset::make("DataType", DataType::F16)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, rel_tolerance_f16, tolerance_num, abs_tolerance_f16);
|
|
}
|
|
TEST_SUITE_END()
|
|
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
|
|
|
|
TEST_SUITE(FP32)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallGEMMDataset(),
|
|
framework::dataset::make("ReshapeWeights", { true, false })),
|
|
|
|
framework::dataset::make("DataType", DataType::F32)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f);
|
|
}
|
|
FIXTURE_DATA_TEST_CASE(RunLarge, NEGEMMFixture<float>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeGEMMDataset(),
|
|
framework::dataset::make("ReshapeWeights", { true, false })),
|
|
|
|
framework::dataset::make("DataType", DataType::F32)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f);
|
|
}
|
|
TEST_SUITE(DisabledC)
|
|
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMFixtureDisabledC<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallGEMMDataset(),
|
|
framework::dataset::make("ReshapeWeights", { true, false })),
|
|
|
|
framework::dataset::make("DataType", DataType::F32)))
|
|
{
|
|
// Validate output
|
|
validate(Accessor(_target), _reference, tolerance_f);
|
|
}
|
|
TEST_SUITE_END()
|
|
|
|
TEST_SUITE_END()
|
|
TEST_SUITE_END()
|
|
|
|
TEST_SUITE_END()
|
|
TEST_SUITE_END()
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|