259 lines
10 KiB
C++
259 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2017-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE
|
|
#define ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE
|
|
|
|
#include "arm_compute/core/TensorShape.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "tests/AssetsLibrary.h"
|
|
#include "tests/Globals.h"
|
|
#include "tests/IAccessor.h"
|
|
#include "tests/framework/Asserts.h"
|
|
#include "tests/framework/Fixture.h"
|
|
#include "tests/framework/ParametersLibrary.h"
|
|
#include "tests/validation/Helpers.h"
|
|
#include "tests/validation/reference/ActivationLayer.h"
|
|
|
|
#include <random>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace test
|
|
{
|
|
namespace validation
|
|
{
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class ActivationValidationGenericFixture : public framework::Fixture
|
|
{
|
|
public:
|
|
ActivationValidationGenericFixture()
|
|
: _target(parameters->get_ctx<TensorType>())
|
|
{
|
|
}
|
|
|
|
template <typename...>
|
|
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info)
|
|
{
|
|
ActivationLayerInfo info(function, alpha_beta, alpha_beta);
|
|
|
|
_in_place = in_place;
|
|
_data_type = data_type;
|
|
_output_quantization_info = calculate_output_quantization_info(_data_type, info, quantization_info);
|
|
_input_quantization_info = in_place ? _output_quantization_info : quantization_info;
|
|
|
|
_function = function;
|
|
_target = compute_target(shape, info);
|
|
_reference = compute_reference(shape, info);
|
|
}
|
|
|
|
protected:
|
|
std::vector<T> get_boundary_values(T min, T max)
|
|
{
|
|
// This function will return a vector filled with the following values that can
|
|
// represent two partitions derived from equivalent partitioning.
|
|
// * Lower parition: min, min + delta, lower quarter (nominal), center - delta
|
|
// * Upper partition: center, center + delta, upper quarter (nominal), max - delta, max
|
|
const auto delta = is_data_type_float(_data_type) ? T(0.1f) : T(1);
|
|
const auto center_value = (min + max) / 2;
|
|
const auto lower_quarter = (min + center_value) / 2;
|
|
const auto upper_quarter = (center_value + max) / 2;
|
|
|
|
std::vector<T> boundary_values{};
|
|
|
|
// To ensure all the inserted values are within the given range after subtracing/adding delta
|
|
auto insert_values = [&boundary_values, &min, &max](const std::initializer_list<T> &new_values)
|
|
{
|
|
for(auto &v : new_values)
|
|
{
|
|
if(v >= min && v <= max)
|
|
{
|
|
boundary_values.emplace_back(v);
|
|
}
|
|
}
|
|
};
|
|
|
|
insert_values({ min, static_cast<T>(min + delta), static_cast<T>(lower_quarter), static_cast<T>(center_value - delta) }); // lower partition
|
|
insert_values({ static_cast<T>(center_value), static_cast<T>(center_value + delta), static_cast<T>(upper_quarter), static_cast<T>(max - delta), max }); // upper partition
|
|
|
|
return boundary_values;
|
|
}
|
|
|
|
template <typename U>
|
|
void fill(U &&tensor)
|
|
{
|
|
if(is_data_type_float(_data_type))
|
|
{
|
|
float min_bound = 0;
|
|
float max_bound = 0;
|
|
std::tie(min_bound, max_bound) = get_activation_layer_test_bounds<T>(_function, _data_type);
|
|
library->fill_static_values(tensor, get_boundary_values(static_cast<T>(min_bound), static_cast<T>(max_bound)));
|
|
}
|
|
else
|
|
{
|
|
PixelValue min{};
|
|
PixelValue max{};
|
|
std::tie(min, max) = get_min_max(tensor.data_type());
|
|
library->fill_static_values(tensor, get_boundary_values(min.get<T>(), max.get<T>()));
|
|
}
|
|
}
|
|
|
|
TensorType compute_target(const TensorShape &shape, ActivationLayerInfo info)
|
|
{
|
|
auto ctx = parameters->get_ctx<TensorType>();
|
|
// Create tensors
|
|
TensorType src = create_tensor<TensorType>(shape, _data_type, 1, _input_quantization_info, DataLayout::NCHW, ctx);
|
|
TensorType dst = create_tensor<TensorType>(shape, _data_type, 1, _output_quantization_info, DataLayout::NCHW, ctx);
|
|
|
|
// Create and configure function
|
|
FunctionType act_layer(ctx);
|
|
|
|
TensorType *dst_ptr = _in_place ? nullptr : &dst;
|
|
|
|
act_layer.configure(&src, dst_ptr, info);
|
|
|
|
ARM_COMPUTE_EXPECT(src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
// Allocate tensors
|
|
src.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!src.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
|
|
if(!_in_place)
|
|
{
|
|
dst.allocator()->allocate();
|
|
ARM_COMPUTE_EXPECT(!dst.info()->is_resizable(), framework::LogLevel::ERRORS);
|
|
}
|
|
|
|
// Fill tensors
|
|
fill(AccessorType(src));
|
|
|
|
// Compute function
|
|
act_layer.run();
|
|
|
|
if(_in_place)
|
|
{
|
|
return src;
|
|
}
|
|
else
|
|
{
|
|
return dst;
|
|
}
|
|
}
|
|
|
|
SimpleTensor<T> compute_reference(const TensorShape &shape, ActivationLayerInfo info)
|
|
{
|
|
// Create reference
|
|
SimpleTensor<T> src{ shape, _data_type, 1, _input_quantization_info };
|
|
|
|
// Fill reference
|
|
fill(src);
|
|
|
|
return reference::activation_layer<T>(src, info, _output_quantization_info);
|
|
}
|
|
|
|
private:
|
|
QuantizationInfo calculate_output_quantization_info(DataType dt, const ActivationLayerInfo &act_info, const QuantizationInfo &default_qinfo)
|
|
{
|
|
auto qasymm8_max = float(std::numeric_limits<uint8_t>::max()) + 1.f;
|
|
auto qasymm8_signed_max = float(std::numeric_limits<int8_t>::max()) + 1.f;
|
|
auto qsymm16_max = float(std::numeric_limits<int16_t>::max()) + 1.f;
|
|
|
|
switch(act_info.activation())
|
|
{
|
|
case ActivationLayerInfo::ActivationFunction::TANH:
|
|
if(dt == DataType::QSYMM16)
|
|
{
|
|
return QuantizationInfo(1.f / qsymm16_max, 0);
|
|
}
|
|
else if(dt == DataType::QASYMM8)
|
|
{
|
|
return QuantizationInfo(1.f / (0.5 * qasymm8_max), int(0.5 * qasymm8_max));
|
|
}
|
|
else if(dt == DataType::QASYMM8_SIGNED)
|
|
{
|
|
return QuantizationInfo(1.f / qasymm8_signed_max, 0);
|
|
}
|
|
else
|
|
{
|
|
return default_qinfo;
|
|
}
|
|
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
|
|
if(dt == DataType::QSYMM16)
|
|
{
|
|
return QuantizationInfo(1.f / qsymm16_max, 0);
|
|
}
|
|
else if(dt == DataType::QASYMM8)
|
|
{
|
|
return QuantizationInfo(1.f / qasymm8_max, 0);
|
|
}
|
|
else if(dt == DataType::QASYMM8_SIGNED)
|
|
{
|
|
return QuantizationInfo(1.f / (2.f * qasymm8_signed_max), -int(qasymm8_signed_max));
|
|
}
|
|
else
|
|
{
|
|
return default_qinfo;
|
|
}
|
|
default:
|
|
return default_qinfo;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
TensorType _target{};
|
|
SimpleTensor<T> _reference{};
|
|
bool _in_place{};
|
|
QuantizationInfo _input_quantization_info{};
|
|
QuantizationInfo _output_quantization_info{};
|
|
DataType _data_type{};
|
|
ActivationLayerInfo::ActivationFunction _function{};
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class ActivationValidationFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type)
|
|
{
|
|
ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, QuantizationInfo());
|
|
}
|
|
};
|
|
|
|
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
|
|
class ActivationValidationQuantizedFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
|
|
{
|
|
public:
|
|
template <typename...>
|
|
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info)
|
|
{
|
|
ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, quantization_info);
|
|
}
|
|
};
|
|
|
|
} // namespace validation
|
|
} // namespace test
|
|
} // namespace arm_compute
|
|
#endif /* ARM_COMPUTE_TEST_ACTIVATION_LAYER_FIXTURE */
|