831 lines
27 KiB
C++
831 lines
27 KiB
C++
/*
|
|
* Copyright (c) 2016-2020 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#ifndef __UTILS_UTILS_H__
|
|
#define __UTILS_UTILS_H__
|
|
|
|
/** @dir .
|
|
* brief Boiler plate code used by examples. Various utilities to print types, load / store assets, etc.
|
|
*/
|
|
|
|
#include "arm_compute/core/Helpers.h"
|
|
#include "arm_compute/core/ITensor.h"
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/core/Window.h"
|
|
#include "arm_compute/runtime/Tensor.h"
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
#pragma GCC diagnostic ignored "-Wstrict-overflow"
|
|
#include "libnpy/npy.hpp"
|
|
#pragma GCC diagnostic pop
|
|
#include "support/MemorySupport.h"
|
|
#include "support/StringSupport.h"
|
|
|
|
#ifdef ARM_COMPUTE_CL
|
|
#include "arm_compute/core/CL/OpenCL.h"
|
|
#include "arm_compute/runtime/CL/CLDistribution1D.h"
|
|
#include "arm_compute/runtime/CL/CLTensor.h"
|
|
#endif /* ARM_COMPUTE_CL */
|
|
#ifdef ARM_COMPUTE_GC
|
|
#include "arm_compute/runtime/GLES_COMPUTE/GCTensor.h"
|
|
#endif /* ARM_COMPUTE_GC */
|
|
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <random>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
namespace arm_compute
|
|
{
|
|
namespace utils
|
|
{
|
|
/** Supported image types */
|
|
enum class ImageType
|
|
{
|
|
UNKNOWN,
|
|
PPM,
|
|
JPEG
|
|
};
|
|
|
|
/** Abstract Example class.
|
|
*
|
|
* All examples have to inherit from this class.
|
|
*/
|
|
class Example
|
|
{
|
|
public:
|
|
/** Setup the example.
|
|
*
|
|
* @param[in] argc Argument count.
|
|
* @param[in] argv Argument values.
|
|
*
|
|
* @return True in case of no errors in setup else false
|
|
*/
|
|
virtual bool do_setup(int argc, char **argv)
|
|
{
|
|
ARM_COMPUTE_UNUSED(argc, argv);
|
|
return true;
|
|
};
|
|
/** Run the example. */
|
|
virtual void do_run() {};
|
|
/** Teardown the example. */
|
|
virtual void do_teardown() {};
|
|
|
|
/** Default destructor. */
|
|
virtual ~Example() = default;
|
|
};
|
|
|
|
/** Run an example and handle the potential exceptions it throws
|
|
*
|
|
* @param[in] argc Number of command line arguments
|
|
* @param[in] argv Command line arguments
|
|
* @param[in] example Example to run
|
|
*/
|
|
int run_example(int argc, char **argv, std::unique_ptr<Example> example);
|
|
|
|
template <typename T>
|
|
int run_example(int argc, char **argv)
|
|
{
|
|
return run_example(argc, argv, support::cpp14::make_unique<T>());
|
|
}
|
|
|
|
/** Draw a RGB rectangular window for the detected object
|
|
*
|
|
* @param[in, out] tensor Input tensor where the rectangle will be drawn on. Format supported: RGB888
|
|
* @param[in] rect Geometry of the rectangular window
|
|
* @param[in] r Red colour to use
|
|
* @param[in] g Green colour to use
|
|
* @param[in] b Blue colour to use
|
|
*/
|
|
void draw_detection_rectangle(arm_compute::ITensor *tensor, const arm_compute::DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b);
|
|
|
|
/** Gets image type given a file
|
|
*
|
|
* @param[in] filename File to identify its image type
|
|
*
|
|
* @return Image type
|
|
*/
|
|
ImageType get_image_type_from_file(const std::string &filename);
|
|
|
|
/** Parse the ppm header from an input file stream. At the end of the execution,
|
|
* the file position pointer will be located at the first pixel stored in the ppm file
|
|
*
|
|
* @param[in] fs Input file stream to parse
|
|
*
|
|
* @return The width, height and max value stored in the header of the PPM file
|
|
*/
|
|
std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs);
|
|
|
|
/** Parse the npy header from an input file stream. At the end of the execution,
|
|
* the file position pointer will be located at the first pixel stored in the npy file //TODO
|
|
*
|
|
* @param[in] fs Input file stream to parse
|
|
*
|
|
* @return The width and height stored in the header of the NPY file
|
|
*/
|
|
std::tuple<std::vector<unsigned long>, bool, std::string> parse_npy_header(std::ifstream &fs);
|
|
|
|
/** Obtain numpy type string from DataType.
|
|
*
|
|
* @param[in] data_type Data type.
|
|
*
|
|
* @return numpy type string.
|
|
*/
|
|
inline std::string get_typestring(DataType data_type)
|
|
{
|
|
// Check endianness
|
|
const unsigned int i = 1;
|
|
const char *c = reinterpret_cast<const char *>(&i);
|
|
std::string endianness;
|
|
if(*c == 1)
|
|
{
|
|
endianness = std::string("<");
|
|
}
|
|
else
|
|
{
|
|
endianness = std::string(">");
|
|
}
|
|
const std::string no_endianness("|");
|
|
|
|
switch(data_type)
|
|
{
|
|
case DataType::U8:
|
|
case DataType::QASYMM8:
|
|
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
|
|
case DataType::S8:
|
|
case DataType::QSYMM8:
|
|
case DataType::QSYMM8_PER_CHANNEL:
|
|
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
|
|
case DataType::U16:
|
|
case DataType::QASYMM16:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
|
|
case DataType::S16:
|
|
case DataType::QSYMM16:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
|
|
case DataType::U32:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
|
|
case DataType::S32:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
|
|
case DataType::U64:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
|
|
case DataType::S64:
|
|
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
|
|
case DataType::F16:
|
|
return endianness + "f" + support::cpp11::to_string(sizeof(half));
|
|
case DataType::F32:
|
|
return endianness + "f" + support::cpp11::to_string(sizeof(float));
|
|
case DataType::F64:
|
|
return endianness + "f" + support::cpp11::to_string(sizeof(double));
|
|
case DataType::SIZET:
|
|
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
|
|
default:
|
|
ARM_COMPUTE_ERROR("Data type not supported");
|
|
}
|
|
}
|
|
|
|
/** Maps a tensor if needed
|
|
*
|
|
* @param[in] tensor Tensor to be mapped
|
|
* @param[in] blocking Specified if map is blocking or not
|
|
*/
|
|
template <typename T>
|
|
inline void map(T &tensor, bool blocking)
|
|
{
|
|
ARM_COMPUTE_UNUSED(tensor);
|
|
ARM_COMPUTE_UNUSED(blocking);
|
|
}
|
|
|
|
/** Unmaps a tensor if needed
|
|
*
|
|
* @param tensor Tensor to be unmapped
|
|
*/
|
|
template <typename T>
|
|
inline void unmap(T &tensor)
|
|
{
|
|
ARM_COMPUTE_UNUSED(tensor);
|
|
}
|
|
|
|
#ifdef ARM_COMPUTE_CL
|
|
/** Maps a tensor if needed
|
|
*
|
|
* @param[in] tensor Tensor to be mapped
|
|
* @param[in] blocking Specified if map is blocking or not
|
|
*/
|
|
inline void map(CLTensor &tensor, bool blocking)
|
|
{
|
|
tensor.map(blocking);
|
|
}
|
|
|
|
/** Unmaps a tensor if needed
|
|
*
|
|
* @param tensor Tensor to be unmapped
|
|
*/
|
|
inline void unmap(CLTensor &tensor)
|
|
{
|
|
tensor.unmap();
|
|
}
|
|
|
|
/** Maps a distribution if needed
|
|
*
|
|
* @param[in] distribution Distribution to be mapped
|
|
* @param[in] blocking Specified if map is blocking or not
|
|
*/
|
|
inline void map(CLDistribution1D &distribution, bool blocking)
|
|
{
|
|
distribution.map(blocking);
|
|
}
|
|
|
|
/** Unmaps a distribution if needed
|
|
*
|
|
* @param distribution Distribution to be unmapped
|
|
*/
|
|
inline void unmap(CLDistribution1D &distribution)
|
|
{
|
|
distribution.unmap();
|
|
}
|
|
#endif /* ARM_COMPUTE_CL */
|
|
|
|
#ifdef ARM_COMPUTE_GC
|
|
/** Maps a tensor if needed
|
|
*
|
|
* @param[in] tensor Tensor to be mapped
|
|
* @param[in] blocking Specified if map is blocking or not
|
|
*/
|
|
inline void map(GCTensor &tensor, bool blocking)
|
|
{
|
|
tensor.map(blocking);
|
|
}
|
|
|
|
/** Unmaps a tensor if needed
|
|
*
|
|
* @param tensor Tensor to be unmapped
|
|
*/
|
|
inline void unmap(GCTensor &tensor)
|
|
{
|
|
tensor.unmap();
|
|
}
|
|
#endif /* ARM_COMPUTE_GC */
|
|
|
|
/** Specialized class to generate random non-zero FP16 values.
|
|
* uniform_real_distribution<half> generates values that get rounded off to zero, causing
|
|
* differences between ACL and reference implementation
|
|
*/
|
|
class uniform_real_distribution_fp16
|
|
{
|
|
half min{ 0.0f }, max{ 0.0f };
|
|
std::uniform_real_distribution<float> neg{ min, -0.3f };
|
|
std::uniform_real_distribution<float> pos{ 0.3f, max };
|
|
std::uniform_int_distribution<uint8_t> sign_picker{ 0, 1 };
|
|
|
|
public:
|
|
using result_type = half;
|
|
/** Constructor
|
|
*
|
|
* @param[in] a Minimum value of the distribution
|
|
* @param[in] b Maximum value of the distribution
|
|
*/
|
|
explicit uniform_real_distribution_fp16(half a = half(0.0), half b = half(1.0))
|
|
: min(a), max(b)
|
|
{
|
|
}
|
|
|
|
/** () operator to generate next value
|
|
*
|
|
* @param[in] gen an uniform random bit generator object
|
|
*/
|
|
half operator()(std::mt19937 &gen)
|
|
{
|
|
if(sign_picker(gen))
|
|
{
|
|
return (half)neg(gen);
|
|
}
|
|
return (half)pos(gen);
|
|
}
|
|
};
|
|
|
|
/** Numpy data loader */
|
|
class NPYLoader
|
|
{
|
|
public:
|
|
/** Default constructor */
|
|
NPYLoader()
|
|
: _fs(), _shape(), _fortran_order(false), _typestring(), _file_layout(DataLayout::NCHW)
|
|
{
|
|
}
|
|
|
|
/** Open a NPY file and reads its metadata
|
|
*
|
|
* @param[in] npy_filename File to open
|
|
* @param[in] file_layout (Optional) Layout in which the weights are stored in the file.
|
|
*/
|
|
void open(const std::string &npy_filename, DataLayout file_layout = DataLayout::NCHW)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(is_open());
|
|
try
|
|
{
|
|
_fs.open(npy_filename, std::ios::in | std::ios::binary);
|
|
ARM_COMPUTE_EXIT_ON_MSG_VAR(!_fs.good(), "Failed to load binary data from %s", npy_filename.c_str());
|
|
_fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
|
_file_layout = file_layout;
|
|
|
|
std::tie(_shape, _fortran_order, _typestring) = parse_npy_header(_fs);
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", npy_filename.c_str(), e.what());
|
|
}
|
|
}
|
|
/** Return true if a NPY file is currently open */
|
|
bool is_open()
|
|
{
|
|
return _fs.is_open();
|
|
}
|
|
|
|
/** Return true if a NPY file is in fortran order */
|
|
bool is_fortran()
|
|
{
|
|
return _fortran_order;
|
|
}
|
|
|
|
/** Initialise the tensor's metadata with the dimensions of the NPY file currently open
|
|
*
|
|
* @param[out] tensor Tensor to initialise
|
|
* @param[in] dt Data type to use for the tensor
|
|
*/
|
|
template <typename T>
|
|
void init_tensor(T &tensor, arm_compute::DataType dt)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(!is_open());
|
|
ARM_COMPUTE_ERROR_ON(dt != arm_compute::DataType::F32);
|
|
|
|
// Use the size of the input NPY tensor
|
|
TensorShape shape;
|
|
shape.set_num_dimensions(_shape.size());
|
|
for(size_t i = 0; i < _shape.size(); ++i)
|
|
{
|
|
size_t src = i;
|
|
if(_fortran_order)
|
|
{
|
|
src = _shape.size() - 1 - i;
|
|
}
|
|
shape.set(i, _shape.at(src));
|
|
}
|
|
|
|
arm_compute::TensorInfo tensor_info(shape, 1, dt);
|
|
tensor.allocator()->init(tensor_info);
|
|
}
|
|
|
|
/** Fill a tensor with the content of the currently open NPY file.
|
|
*
|
|
* @note If the tensor is a CLTensor, the function maps and unmaps the tensor
|
|
*
|
|
* @param[in,out] tensor Tensor to fill (Must be allocated, and of matching dimensions with the opened NPY).
|
|
*/
|
|
template <typename T>
|
|
void fill_tensor(T &tensor)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON(!is_open());
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::QASYMM8, arm_compute::DataType::S32, arm_compute::DataType::F32, arm_compute::DataType::F16);
|
|
try
|
|
{
|
|
// Map buffer if creating a CLTensor
|
|
map(tensor, true);
|
|
|
|
// Check if the file is large enough to fill the tensor
|
|
const size_t current_position = _fs.tellg();
|
|
_fs.seekg(0, std::ios_base::end);
|
|
const size_t end_position = _fs.tellg();
|
|
_fs.seekg(current_position, std::ios_base::beg);
|
|
|
|
ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < tensor.info()->tensor_shape().total_size() * tensor.info()->element_size(),
|
|
"Not enough data in file");
|
|
ARM_COMPUTE_UNUSED(end_position);
|
|
|
|
// Check if the typestring matches the given one
|
|
std::string expect_typestr = get_typestring(tensor.info()->data_type());
|
|
ARM_COMPUTE_ERROR_ON_MSG(_typestring != expect_typestr, "Typestrings mismatch");
|
|
|
|
bool are_layouts_different = (_file_layout != tensor.info()->data_layout());
|
|
// Correct dimensions (Needs to match TensorShape dimension corrections)
|
|
if(_shape.size() != tensor.info()->tensor_shape().num_dimensions())
|
|
{
|
|
for(int i = static_cast<int>(_shape.size()) - 1; i > 0; --i)
|
|
{
|
|
if(_shape[i] == 1)
|
|
{
|
|
_shape.pop_back();
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
TensorShape permuted_shape = tensor.info()->tensor_shape();
|
|
arm_compute::PermutationVector perm;
|
|
if(are_layouts_different && tensor.info()->tensor_shape().num_dimensions() > 2)
|
|
{
|
|
perm = (tensor.info()->data_layout() == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
|
|
arm_compute::PermutationVector perm_vec = (tensor.info()->data_layout() == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
|
|
|
|
arm_compute::permute(permuted_shape, perm_vec);
|
|
}
|
|
|
|
// Validate tensor shape
|
|
ARM_COMPUTE_ERROR_ON_MSG(_shape.size() != tensor.info()->tensor_shape().num_dimensions(), "Tensor ranks mismatch");
|
|
for(size_t i = 0; i < _shape.size(); ++i)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_MSG(permuted_shape[i] != _shape[i], "Tensor dimensions mismatch");
|
|
}
|
|
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case arm_compute::DataType::QASYMM8:
|
|
case arm_compute::DataType::S32:
|
|
case arm_compute::DataType::F32:
|
|
case arm_compute::DataType::F16:
|
|
{
|
|
// Read data
|
|
if(!are_layouts_different && !_fortran_order && tensor.info()->padding().empty())
|
|
{
|
|
// If tensor has no padding read directly from stream.
|
|
_fs.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
|
|
}
|
|
else
|
|
{
|
|
// If tensor has padding or is in fortran order accessing tensor elements through execution window.
|
|
Window window;
|
|
const unsigned int num_dims = _shape.size();
|
|
if(_fortran_order)
|
|
{
|
|
for(unsigned int dim = 0; dim < num_dims; dim++)
|
|
{
|
|
permuted_shape.set(dim, _shape[num_dims - dim - 1]);
|
|
perm.set(dim, num_dims - dim - 1);
|
|
}
|
|
if(are_layouts_different)
|
|
{
|
|
// Permute only if num_dimensions greater than 2
|
|
if(num_dims > 2)
|
|
{
|
|
if(_file_layout == DataLayout::NHWC) // i.e destination is NCHW --> permute(1,2,0)
|
|
{
|
|
arm_compute::permute(perm, arm_compute::PermutationVector(1U, 2U, 0U));
|
|
}
|
|
else
|
|
{
|
|
arm_compute::permute(perm, arm_compute::PermutationVector(2U, 0U, 1U));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
window.use_tensor_dimensions(permuted_shape);
|
|
|
|
execute_window_loop(window, [&](const Coordinates & id)
|
|
{
|
|
Coordinates dst(id);
|
|
arm_compute::permute(dst, perm);
|
|
_fs.read(reinterpret_cast<char *>(tensor.ptr_to_element(dst)), tensor.info()->element_size());
|
|
});
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported data type");
|
|
}
|
|
|
|
// Unmap buffer if creating a CLTensor
|
|
unmap(tensor);
|
|
}
|
|
catch(const std::ifstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Loading NPY file: %s", e.what());
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::ifstream _fs;
|
|
std::vector<unsigned long> _shape;
|
|
bool _fortran_order;
|
|
std::string _typestring;
|
|
DataLayout _file_layout;
|
|
};
|
|
|
|
/** Template helper function to save a tensor image to a PPM file.
|
|
*
|
|
* @note Only U8 and RGB888 formats supported.
|
|
* @note Only works with 2D tensors.
|
|
* @note If the input tensor is a CLTensor, the function maps and unmaps the image
|
|
*
|
|
* @param[in] tensor The tensor to save as PPM file
|
|
* @param[in] ppm_filename Filename of the file to create.
|
|
*/
|
|
template <typename T>
|
|
void save_to_ppm(T &tensor, const std::string &ppm_filename)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::Format::RGB888, arm_compute::Format::U8);
|
|
ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2);
|
|
|
|
std::ofstream fs;
|
|
|
|
try
|
|
{
|
|
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
|
|
fs.open(ppm_filename, std::ios::out | std::ios::binary);
|
|
|
|
const unsigned int width = tensor.info()->tensor_shape()[0];
|
|
const unsigned int height = tensor.info()->tensor_shape()[1];
|
|
|
|
fs << "P6\n"
|
|
<< width << " " << height << " 255\n";
|
|
|
|
// Map buffer if creating a CLTensor/GCTensor
|
|
map(tensor, true);
|
|
|
|
switch(tensor.info()->format())
|
|
{
|
|
case arm_compute::Format::U8:
|
|
{
|
|
arm_compute::Window window;
|
|
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1));
|
|
window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
|
|
|
|
arm_compute::Iterator in(&tensor, window);
|
|
|
|
arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
|
|
{
|
|
const unsigned char value = *in.ptr();
|
|
|
|
fs << value << value << value;
|
|
},
|
|
in);
|
|
|
|
break;
|
|
}
|
|
case arm_compute::Format::RGB888:
|
|
{
|
|
arm_compute::Window window;
|
|
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, width));
|
|
window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
|
|
|
|
arm_compute::Iterator in(&tensor, window);
|
|
|
|
arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
|
|
{
|
|
fs.write(reinterpret_cast<std::fstream::char_type *>(in.ptr()), width * tensor.info()->element_size());
|
|
},
|
|
in);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
ARM_COMPUTE_ERROR("Unsupported format");
|
|
}
|
|
|
|
// Unmap buffer if creating a CLTensor/GCTensor
|
|
unmap(tensor);
|
|
}
|
|
catch(const std::ofstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", ppm_filename.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
/** Template helper function to save a tensor image to a NPY file.
|
|
*
|
|
* @note Only F32 data type supported.
|
|
* @note If the input tensor is a CLTensor, the function maps and unmaps the image
|
|
*
|
|
* @param[in] tensor The tensor to save as NPY file
|
|
* @param[in] npy_filename Filename of the file to create.
|
|
* @param[in] fortran_order If true, save matrix in fortran order.
|
|
*/
|
|
template <typename T, typename U = float>
|
|
void save_to_npy(T &tensor, const std::string &npy_filename, bool fortran_order)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::F32, arm_compute::DataType::QASYMM8);
|
|
|
|
std::ofstream fs;
|
|
try
|
|
{
|
|
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
|
|
fs.open(npy_filename, std::ios::out | std::ios::binary);
|
|
|
|
std::vector<npy::ndarray_len_t> shape(tensor.info()->num_dimensions());
|
|
|
|
for(unsigned int i = 0, j = tensor.info()->num_dimensions() - 1; i < tensor.info()->num_dimensions(); ++i, --j)
|
|
{
|
|
shape[i] = tensor.info()->tensor_shape()[!fortran_order ? j : i];
|
|
}
|
|
|
|
// Map buffer if creating a CLTensor
|
|
map(tensor, true);
|
|
|
|
using typestring_type = typename std::conditional<std::is_floating_point<U>::value, float, qasymm8_t>::type;
|
|
|
|
std::vector<typestring_type> tmp; /* Used only to get the typestring */
|
|
npy::Typestring typestring_o{ tmp };
|
|
std::string typestring = typestring_o.str();
|
|
|
|
std::ofstream stream(npy_filename, std::ofstream::binary);
|
|
npy::write_header(stream, typestring, fortran_order, shape);
|
|
|
|
arm_compute::Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
|
|
arm_compute::Iterator in(&tensor, window);
|
|
|
|
arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
|
|
{
|
|
stream.write(reinterpret_cast<const char *>(in.ptr()), sizeof(typestring_type));
|
|
},
|
|
in);
|
|
|
|
// Unmap buffer if creating a CLTensor
|
|
unmap(tensor);
|
|
}
|
|
catch(const std::ofstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", npy_filename.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
/** Load the tensor with pre-trained data from a binary file
|
|
*
|
|
* @param[in] tensor The tensor to be filled. Data type supported: F32.
|
|
* @param[in] filename Filename of the binary file to load from.
|
|
*/
|
|
template <typename T>
|
|
void load_trained_data(T &tensor, const std::string &filename)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
|
|
|
|
std::ifstream fs;
|
|
|
|
try
|
|
{
|
|
fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
|
|
// Open file
|
|
fs.open(filename, std::ios::in | std::ios::binary);
|
|
|
|
if(!fs.good())
|
|
{
|
|
throw std::runtime_error("Could not load binary data: " + filename);
|
|
}
|
|
|
|
// Map buffer if creating a CLTensor/GCTensor
|
|
map(tensor, true);
|
|
|
|
Window window;
|
|
|
|
window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, 1, 1));
|
|
|
|
for(unsigned int d = 1; d < tensor.info()->num_dimensions(); ++d)
|
|
{
|
|
window.set(d, Window::Dimension(0, tensor.info()->tensor_shape()[d], 1));
|
|
}
|
|
|
|
arm_compute::Iterator in(&tensor, window);
|
|
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
fs.read(reinterpret_cast<std::fstream::char_type *>(in.ptr()), tensor.info()->tensor_shape()[0] * tensor.info()->element_size());
|
|
},
|
|
in);
|
|
|
|
// Unmap buffer if creating a CLTensor/GCTensor
|
|
unmap(tensor);
|
|
}
|
|
catch(const std::ofstream::failure &e)
|
|
{
|
|
ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", filename.c_str(), e.what());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void fill_random_tensor(T &tensor, float lower_bound, float upper_bound)
|
|
{
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor.info()->tensor_shape());
|
|
|
|
map(tensor, true);
|
|
|
|
Iterator it(&tensor, window);
|
|
|
|
switch(tensor.info()->data_type())
|
|
{
|
|
case arm_compute::DataType::F16:
|
|
{
|
|
std::uniform_real_distribution<float> dist(lower_bound, upper_bound);
|
|
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
*reinterpret_cast<half *>(it.ptr()) = (half)dist(gen);
|
|
},
|
|
it);
|
|
|
|
break;
|
|
}
|
|
case arm_compute::DataType::F32:
|
|
{
|
|
std::uniform_real_distribution<float> dist(lower_bound, upper_bound);
|
|
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
*reinterpret_cast<float *>(it.ptr()) = dist(gen);
|
|
},
|
|
it);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
ARM_COMPUTE_ERROR("Unsupported format");
|
|
}
|
|
}
|
|
|
|
unmap(tensor);
|
|
}
|
|
|
|
template <typename T>
|
|
void init_sgemm_output(T &dst, T &src0, T &src1, arm_compute::DataType dt)
|
|
{
|
|
dst.allocator()->init(TensorInfo(TensorShape(src1.info()->dimension(0), src0.info()->dimension(1), src0.info()->dimension(2)), 1, dt));
|
|
}
|
|
/** This function returns the amount of memory free reading from /proc/meminfo
|
|
*
|
|
* @return The free memory in kB
|
|
*/
|
|
uint64_t get_mem_free_from_meminfo();
|
|
|
|
/** Compare two tensors
|
|
*
|
|
* @param[in] tensor1 First tensor to be compared.
|
|
* @param[in] tensor2 Second tensor to be compared.
|
|
* @param[in] tolerance Tolerance used for the comparison.
|
|
*
|
|
* @return The number of mismatches
|
|
*/
|
|
template <typename T>
|
|
int compare_tensor(ITensor &tensor1, ITensor &tensor2, T tolerance)
|
|
{
|
|
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&tensor1, &tensor2);
|
|
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(&tensor1, &tensor2);
|
|
|
|
int num_mismatches = 0;
|
|
Window window;
|
|
window.use_tensor_dimensions(tensor1.info()->tensor_shape());
|
|
|
|
map(tensor1, true);
|
|
map(tensor2, true);
|
|
|
|
Iterator itensor1(&tensor1, window);
|
|
Iterator itensor2(&tensor2, window);
|
|
|
|
execute_window_loop(window, [&](const Coordinates &)
|
|
{
|
|
if(std::abs(*reinterpret_cast<T *>(itensor1.ptr()) - *reinterpret_cast<T *>(itensor2.ptr())) > tolerance)
|
|
{
|
|
++num_mismatches;
|
|
}
|
|
},
|
|
itensor1, itensor2);
|
|
|
|
unmap(itensor1);
|
|
unmap(itensor2);
|
|
|
|
return num_mismatches;
|
|
}
|
|
} // namespace utils
|
|
} // namespace arm_compute
|
|
#endif /* __UTILS_UTILS_H__*/
|