android13/external/avb/libavb/avb_util.c

475 lines
11 KiB
C

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "avb_util.h"
#include <stdarg.h>
uint16_t avb_be16toh(uint16_t in) {
uint8_t* d = (uint8_t*)&in;
uint16_t ret;
ret = ((uint16_t)d[0]) << 8;
ret |= ((uint16_t)d[1]);
return ret;
}
uint32_t avb_be32toh(uint32_t in) {
uint8_t* d = (uint8_t*)&in;
uint32_t ret;
ret = ((uint32_t)d[0]) << 24;
ret |= ((uint32_t)d[1]) << 16;
ret |= ((uint32_t)d[2]) << 8;
ret |= ((uint32_t)d[3]);
return ret;
}
uint64_t avb_be64toh(uint64_t in) {
uint8_t* d = (uint8_t*)&in;
uint64_t ret;
ret = ((uint64_t)d[0]) << 56;
ret |= ((uint64_t)d[1]) << 48;
ret |= ((uint64_t)d[2]) << 40;
ret |= ((uint64_t)d[3]) << 32;
ret |= ((uint64_t)d[4]) << 24;
ret |= ((uint64_t)d[5]) << 16;
ret |= ((uint64_t)d[6]) << 8;
ret |= ((uint64_t)d[7]);
return ret;
}
/* Converts a 16-bit unsigned integer from host to big-endian byte order. */
uint16_t avb_htobe16(uint16_t in) {
union {
uint16_t word;
uint8_t bytes[2];
} ret;
ret.bytes[0] = (in >> 8) & 0xff;
ret.bytes[1] = in & 0xff;
return ret.word;
}
/* Converts a 32-bit unsigned integer from host to big-endian byte order. */
uint32_t avb_htobe32(uint32_t in) {
union {
uint32_t word;
uint8_t bytes[4];
} ret;
ret.bytes[0] = (in >> 24) & 0xff;
ret.bytes[1] = (in >> 16) & 0xff;
ret.bytes[2] = (in >> 8) & 0xff;
ret.bytes[3] = in & 0xff;
return ret.word;
}
/* Converts a 64-bit unsigned integer from host to big-endian byte order. */
uint64_t avb_htobe64(uint64_t in) {
union {
uint64_t word;
uint8_t bytes[8];
} ret;
ret.bytes[0] = (in >> 56) & 0xff;
ret.bytes[1] = (in >> 48) & 0xff;
ret.bytes[2] = (in >> 40) & 0xff;
ret.bytes[3] = (in >> 32) & 0xff;
ret.bytes[4] = (in >> 24) & 0xff;
ret.bytes[5] = (in >> 16) & 0xff;
ret.bytes[6] = (in >> 8) & 0xff;
ret.bytes[7] = in & 0xff;
return ret.word;
}
int avb_safe_memcmp(const void* s1, const void* s2, size_t n) {
const unsigned char* us1 = s1;
const unsigned char* us2 = s2;
int result = 0;
if (0 == n) {
return 0;
}
/*
* Code snippet without data-dependent branch due to Nate Lawson
* (nate@root.org) of Root Labs.
*/
while (n--) {
result |= *us1++ ^ *us2++;
}
return result != 0;
}
bool avb_safe_add_to(uint64_t* value, uint64_t value_to_add) {
uint64_t original_value;
avb_assert(value != NULL);
original_value = *value;
*value += value_to_add;
if (*value < original_value) {
avb_error("Overflow when adding values.\n");
return false;
}
return true;
}
bool avb_safe_add(uint64_t* out_result, uint64_t a, uint64_t b) {
uint64_t dummy;
if (out_result == NULL) {
out_result = &dummy;
}
*out_result = a;
return avb_safe_add_to(out_result, b);
}
bool avb_validate_utf8(const uint8_t* data, size_t num_bytes) {
size_t n;
unsigned int num_cc;
for (n = 0, num_cc = 0; n < num_bytes; n++) {
uint8_t c = data[n];
if (num_cc > 0) {
if ((c & (0x80 | 0x40)) == 0x80) {
/* 10xx xxxx */
} else {
goto fail;
}
num_cc--;
} else {
if (c < 0x80) {
num_cc = 0;
} else if ((c & (0x80 | 0x40 | 0x20)) == (0x80 | 0x40)) {
/* 110x xxxx */
num_cc = 1;
} else if ((c & (0x80 | 0x40 | 0x20 | 0x10)) == (0x80 | 0x40 | 0x20)) {
/* 1110 xxxx */
num_cc = 2;
} else if ((c & (0x80 | 0x40 | 0x20 | 0x10 | 0x08)) ==
(0x80 | 0x40 | 0x20 | 0x10)) {
/* 1111 0xxx */
num_cc = 3;
} else {
goto fail;
}
}
}
if (num_cc != 0) {
goto fail;
}
return true;
fail:
return false;
}
bool avb_str_concat(char* buf,
size_t buf_size,
const char* str1,
size_t str1_len,
const char* str2,
size_t str2_len) {
uint64_t combined_len;
// Doesn't make sense to pass 0 for buf_size since there's
// no room for the terminating NUL byte.
if (buf_size == 0) {
return false;
}
if (!avb_safe_add(&combined_len, str1_len, str2_len)) {
avb_error("Overflow when adding string sizes.\n");
return false;
}
if (combined_len > buf_size - 1) {
avb_error("Insufficient buffer space.\n");
return false;
}
avb_memcpy(buf, str1, str1_len);
avb_memcpy(buf + str1_len, str2, str2_len);
buf[combined_len] = '\0';
return true;
}
void* avb_malloc(size_t size) {
void* ret = avb_malloc_(size);
if (ret == NULL) {
avb_error("Failed to allocate memory.\n");
return NULL;
}
return ret;
}
void* avb_calloc(size_t size) {
void* ret = avb_malloc(size);
if (ret == NULL) {
return NULL;
}
avb_memset(ret, '\0', size);
return ret;
}
char* avb_strdup(const char* str) {
size_t len = avb_strlen(str);
char* ret = avb_malloc(len + 1);
if (ret == NULL) {
return NULL;
}
avb_memcpy(ret, str, len);
ret[len] = '\0';
return ret;
}
const char* avb_strstr(const char* haystack, const char* needle) {
size_t n, m;
/* Look through |haystack| and check if the first character of
* |needle| matches. If so, check the rest of |needle|.
*/
for (n = 0; haystack[n] != '\0'; n++) {
if (haystack[n] != needle[0]) {
continue;
}
for (m = 1;; m++) {
if (needle[m] == '\0') {
return haystack + n;
}
if (haystack[n + m] != needle[m]) {
break;
}
}
}
return NULL;
}
const char* avb_strv_find_str(const char* const* strings,
const char* str,
size_t str_size) {
size_t n;
for (n = 0; strings[n] != NULL; n++) {
if (avb_strlen(strings[n]) == str_size &&
avb_memcmp(strings[n], str, str_size) == 0) {
return strings[n];
}
}
return NULL;
}
char* avb_replace(const char* str, const char* search, const char* replace) {
char* ret = NULL;
size_t ret_len = 0;
size_t search_len, replace_len;
const char* str_after_last_replace;
search_len = avb_strlen(search);
replace_len = avb_strlen(replace);
str_after_last_replace = str;
while (*str != '\0') {
const char* s;
size_t num_before;
size_t num_new;
s = avb_strstr(str, search);
if (s == NULL) {
break;
}
num_before = s - str;
if (ret == NULL) {
num_new = num_before + replace_len + 1;
ret = avb_malloc(num_new);
if (ret == NULL) {
goto out;
}
avb_memcpy(ret, str, num_before);
avb_memcpy(ret + num_before, replace, replace_len);
ret[num_new - 1] = '\0';
ret_len = num_new - 1;
} else {
char* new_str;
num_new = ret_len + num_before + replace_len + 1;
new_str = avb_malloc(num_new);
if (new_str == NULL) {
goto out;
}
avb_memcpy(new_str, ret, ret_len);
avb_memcpy(new_str + ret_len, str, num_before);
avb_memcpy(new_str + ret_len + num_before, replace, replace_len);
new_str[num_new - 1] = '\0';
avb_free(ret);
ret = new_str;
ret_len = num_new - 1;
}
str = s + search_len;
str_after_last_replace = str;
}
if (ret == NULL) {
ret = avb_strdup(str_after_last_replace);
if (ret == NULL) {
goto out;
}
} else {
size_t num_remaining = avb_strlen(str_after_last_replace);
size_t num_new = ret_len + num_remaining + 1;
char* new_str = avb_malloc(num_new);
if (new_str == NULL) {
goto out;
}
avb_memcpy(new_str, ret, ret_len);
avb_memcpy(new_str + ret_len, str_after_last_replace, num_remaining);
new_str[num_new - 1] = '\0';
avb_free(ret);
ret = new_str;
ret_len = num_new - 1;
}
out:
return ret;
}
/* We only support a limited amount of strings in avb_strdupv(). */
#define AVB_STRDUPV_MAX_NUM_STRINGS 32
char* avb_strdupv(const char* str, ...) {
va_list ap;
const char* strings[AVB_STRDUPV_MAX_NUM_STRINGS];
size_t lengths[AVB_STRDUPV_MAX_NUM_STRINGS];
size_t num_strings, n;
uint64_t total_length;
char *ret = NULL, *dest;
num_strings = 0;
total_length = 0;
va_start(ap, str);
do {
size_t str_len = avb_strlen(str);
strings[num_strings] = str;
lengths[num_strings] = str_len;
if (!avb_safe_add_to(&total_length, str_len)) {
avb_fatal("Overflow while determining total length.\n");
break;
}
num_strings++;
if (num_strings == AVB_STRDUPV_MAX_NUM_STRINGS) {
avb_fatal("Too many strings passed.\n");
break;
}
str = va_arg(ap, const char*);
} while (str != NULL);
va_end(ap);
ret = avb_malloc(total_length + 1);
if (ret == NULL) {
goto out;
}
dest = ret;
for (n = 0; n < num_strings; n++) {
avb_memcpy(dest, strings[n], lengths[n]);
dest += lengths[n];
}
*dest = '\0';
avb_assert(dest == ret + total_length);
out:
return ret;
}
const char* avb_basename(const char* str) {
int64_t n;
size_t len;
len = avb_strlen(str);
if (len >= 2) {
for (n = len - 2; n >= 0; n--) {
if (str[n] == '/') {
return str + n + 1;
}
}
}
return str;
}
void avb_uppercase(char* str) {
size_t i;
for (i = 0; str[i] != '\0'; ++i) {
if (str[i] <= 0x7A && str[i] >= 0x61) {
str[i] -= 0x20;
}
}
}
char* avb_bin2hex(const uint8_t* data, size_t data_len) {
const char hex_digits[17] = "0123456789abcdef";
char* hex_data;
size_t n;
hex_data = avb_malloc(data_len * 2 + 1);
if (hex_data == NULL) {
return NULL;
}
for (n = 0; n < data_len; n++) {
hex_data[n * 2] = hex_digits[data[n] >> 4];
hex_data[n * 2 + 1] = hex_digits[data[n] & 0x0f];
}
hex_data[n * 2] = '\0';
return hex_data;
}
size_t avb_uint64_to_base10(uint64_t value,
char digits[AVB_MAX_DIGITS_UINT64]) {
char rev_digits[AVB_MAX_DIGITS_UINT64];
size_t n, num_digits;
for (num_digits = 0; num_digits < AVB_MAX_DIGITS_UINT64 - 1;) {
rev_digits[num_digits++] = avb_div_by_10(&value) + '0';
if (value == 0) {
break;
}
}
for (n = 0; n < num_digits; n++) {
digits[n] = rev_digits[num_digits - 1 - n];
}
digits[n] = '\0';
return n;
}