android13/external/deqp/framework/common/tcuFloatFormat.cpp

427 lines
12 KiB
C++

/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Adjustable-precision floating point operations.
*//*--------------------------------------------------------------------*/
#include "tcuFloatFormat.hpp"
#include "deMath.h"
#include "deUniquePtr.hpp"
#include <sstream>
#include <iomanip>
#include <limits>
namespace tcu
{
namespace
{
Interval chooseInterval(YesNoMaybe choice, const Interval& no, const Interval& yes)
{
switch (choice)
{
case NO: return no;
case YES: return yes;
case MAYBE: return no | yes;
default: DE_FATAL("Impossible case");
}
return Interval();
}
double computeMaxValue (int maxExp, int fractionBits)
{
return (deLdExp(1.0, maxExp) +
deLdExp(double((1ull << fractionBits) - 1), maxExp - fractionBits));
}
} // anonymous
FloatFormat::FloatFormat (int minExp,
int maxExp,
int fractionBits,
bool exactPrecision,
YesNoMaybe hasSubnormal_,
YesNoMaybe hasInf_,
YesNoMaybe hasNaN_)
: m_minExp (minExp)
, m_maxExp (maxExp)
, m_fractionBits (fractionBits)
, m_hasSubnormal (hasSubnormal_)
, m_hasInf (hasInf_)
, m_hasNaN (hasNaN_)
, m_exactPrecision (exactPrecision)
, m_maxValue (computeMaxValue(maxExp, fractionBits))
{
DE_ASSERT(minExp <= maxExp);
}
/*-------------------------------------------------------------------------
* On the definition of ULP
*
* The GLSL spec does not define ULP. However, it refers to IEEE 754, which
* (reportedly) uses Harrison's definition:
*
* ULP(x) is the distance between the closest floating point numbers
* a and be such that a <= x <= b and a != b
*
* Note that this means that when x = 2^n, ULP(x) = 2^(n-p-1), i.e. it is the
* distance to the next lowest float, not next highest.
*
* Furthermore, it is assumed that ULP is calculated relative to the exact
* value, not the approximation. This is because otherwise a less accurate
* approximation could be closer in ULPs, because its ULPs are bigger.
*
* For details, see "On the definition of ulp(x)" by Jean-Michel Muller
*
*-----------------------------------------------------------------------*/
double FloatFormat::ulp (double x, double count) const
{
int exp = 0;
const double frac = deFractExp(deAbs(x), &exp);
if (deIsNaN(frac))
return TCU_NAN;
else if (deIsInf(frac))
return deLdExp(1.0, m_maxExp - m_fractionBits);
else if (frac == 1.0)
{
// Harrison's ULP: choose distance to closest (i.e. next lower) at binade
// boundary.
--exp;
}
else if (frac == 0.0)
exp = m_minExp;
// ULP cannot be lower than the smallest quantum.
exp = de::max(exp, m_minExp);
{
const double oneULP = deLdExp(1.0, exp - m_fractionBits);
ScopedRoundingMode ctx (DE_ROUNDINGMODE_TO_POSITIVE_INF);
return oneULP * count;
}
}
//! Return the difference between the given nominal exponent and
//! the exponent of the lowest significand bit of the
//! representation of a number with this format.
//! For normal numbers this is the number of significand bits, but
//! for subnormals it is less and for values of exp where 2^exp is too
//! small to represent it is <0
int FloatFormat::exponentShift (int exp) const
{
return m_fractionBits - de::max(m_minExp - exp, 0);
}
//! Return the number closest to `d` that is exactly representable with the
//! significand bits and minimum exponent of the floatformat. Round up if
//! `upward` is true, otherwise down.
double FloatFormat::round (double d, bool upward) const
{
int exp = 0;
const double frac = deFractExp(d, &exp);
const int shift = exponentShift(exp);
const double shiftFrac = deLdExp(frac, shift);
const double roundFrac = upward ? deCeil(shiftFrac) : deFloor(shiftFrac);
return deLdExp(roundFrac, exp - shift);
}
//! Return the range of numbers that `d` might be converted to in the
//! floatformat, given its limitations with infinities, subnormals and maximum
//! exponent.
Interval FloatFormat::clampValue (double d) const
{
const double rSign = deSign(d);
int rExp = 0;
DE_ASSERT(!deIsNaN(d));
deFractExp(d, &rExp);
if (rExp < m_minExp)
return chooseInterval(m_hasSubnormal, rSign * 0.0, d);
else if (deIsInf(d) || rExp > m_maxExp)
return chooseInterval(m_hasInf, rSign * getMaxValue(), rSign * TCU_INFINITY);
return Interval(d);
}
//! Return the range of numbers that might be used with this format to
//! represent a number within `x`.
Interval FloatFormat::convert (const Interval& x) const
{
Interval ret;
Interval tmp = x;
if (x.hasNaN())
{
// If NaN might be supported, NaN is a legal return value
if (m_hasNaN != NO)
ret |= TCU_NAN;
// If NaN might not be supported, any (non-NaN) value is legal,
// _subject_ to clamping. Hence we modify tmp, not ret.
if (m_hasNaN != YES)
tmp = Interval::unbounded();
}
// Round both bounds _inwards_ to closest representable values.
if (!tmp.empty())
ret |= clampValue(round(tmp.lo(), false)) | clampValue(round(tmp.hi(), true));
// If this format's precision is not exact, the (possibly out-of-bounds)
// original value is also a possible result.
if (!m_exactPrecision)
ret |= x;
return ret;
}
double FloatFormat::roundOut (double d, bool upward, bool roundUnderOverflow) const
{
int exp = 0;
deFractExp(d, &exp);
if (roundUnderOverflow && exp > m_maxExp && (upward == (d < 0.0)))
return deSign(d) * getMaxValue();
else
return round(d, upward);
}
//! Round output of an operation.
//! \param roundUnderOverflow Can +/-inf rounded to min/max representable;
//! should be false if any of operands was inf, true otherwise.
Interval FloatFormat::roundOut (const Interval& x, bool roundUnderOverflow) const
{
Interval ret = x.nan();
if (!x.empty())
ret |= Interval(roundOut(x.lo(), false, roundUnderOverflow),
roundOut(x.hi(), true, roundUnderOverflow));
return ret;
}
std::string FloatFormat::floatToHex (double x) const
{
if (deIsNaN(x))
return "NaN";
else if (deIsInf(x))
return (x < 0.0 ? "-" : "+") + std::string("inf");
else if (x == 0.0) // \todo [2014-03-27 lauri] Negative zero
return "0.0";
int exp = 0;
const double frac = deFractExp(deAbs(x), &exp);
const int shift = exponentShift(exp);
const deUint64 bits = deUint64(deLdExp(frac, shift));
const deUint64 whole = bits >> m_fractionBits;
const deUint64 fraction = bits & ((deUint64(1) << m_fractionBits) - 1);
const int exponent = exp + m_fractionBits - shift;
const int numDigits = (m_fractionBits + 3) / 4;
const deUint64 aligned = fraction << (numDigits * 4 - m_fractionBits);
std::ostringstream oss;
oss << (x < 0 ? "-" : "")
<< "0x" << whole << "."
<< std::hex << std::setw(numDigits) << std::setfill('0') << aligned
<< "p" << std::dec << std::setw(0) << exponent;
return oss.str();
}
std::string FloatFormat::intervalToHex (const Interval& interval) const
{
if (interval.empty())
return interval.hasNaN() ? "{ NaN }" : "{}";
else if (interval.lo() == interval.hi())
return (std::string(interval.hasNaN() ? "{ NaN, " : "{ ") +
floatToHex(interval.lo()) + " }");
else if (interval == Interval::unbounded(true))
return "<any>";
return (std::string(interval.hasNaN() ? "{ NaN } | " : "") +
"[" + floatToHex(interval.lo()) + ", " + floatToHex(interval.hi()) + "]");
}
template <typename T>
static FloatFormat nativeFormat (void)
{
typedef std::numeric_limits<T> Limits;
DE_ASSERT(Limits::radix == 2);
return FloatFormat(Limits::min_exponent - 1, // These have a built-in offset of one
Limits::max_exponent - 1,
Limits::digits - 1, // don't count the hidden bit
Limits::has_denorm != std::denorm_absent,
Limits::has_infinity ? YES : NO,
Limits::has_quiet_NaN ? YES : NO,
((Limits::has_denorm == std::denorm_present) ? YES :
(Limits::has_denorm == std::denorm_absent) ? NO :
MAYBE));
}
FloatFormat FloatFormat::nativeFloat (void)
{
return nativeFormat<float>();
}
FloatFormat FloatFormat::nativeDouble (void)
{
return nativeFormat<double>();
}
NormalizedFormat::NormalizedFormat (int fractionBits)
: FloatFormat(0, 0, fractionBits, true, tcu::YES)
{
}
double NormalizedFormat::round(double d, bool upward) const
{
const int fractionBits = getFractionBits();
if (fractionBits <= 0)
return d;
const int maxIntValue = (1 << fractionBits) - 1;
const double value = d * maxIntValue;
const double normValue = upward ? deCeil(value) : deFloor(value);
return normValue / maxIntValue;
}
double NormalizedFormat::ulp(double x, double count) const
{
(void) x;
const int maxIntValue = (1 << getFractionBits()) - 1;
const double precision = 1.0 / maxIntValue;
return precision * count;
}
double NormalizedFormat::roundOut (double d, bool upward, bool roundUnderOverflow) const
{
if (roundUnderOverflow && deAbs(d) > 1.0 && (upward == (d < 0.0)))
return deSign(d);
else
return round(d, upward);
}
namespace
{
using std::string;
using std::ostringstream;
using de::MovePtr;
using de::UniquePtr;
class Test
{
protected:
Test (MovePtr<FloatFormat> fmt) : m_fmt(fmt) {}
double p (int e) const { return deLdExp(1.0, e); }
void check (const string& expr,
double result,
double reference) const;
void testULP (double arg, double ref) const;
void testRound (double arg, double refDown, double refUp) const;
UniquePtr<FloatFormat> m_fmt;
};
void Test::check (const string& expr, double result, double reference) const
{
if (result != reference)
{
ostringstream oss;
oss << expr << " returned " << result << ", expected " << reference;
TCU_FAIL(oss.str().c_str());
}
}
void Test::testULP (double arg, double ref) const
{
ostringstream oss;
oss << "ulp(" << arg << ")";
check(oss.str(), m_fmt->ulp(arg), ref);
}
void Test::testRound (double arg, double refDown, double refUp) const
{
{
ostringstream oss;
oss << "round(" << arg << ", false)";
check(oss.str(), m_fmt->round(arg, false), refDown);
}
{
ostringstream oss;
oss << "round(" << arg << ", true)";
check(oss.str(), m_fmt->round(arg, true), refUp);
}
}
class TestBinary32 : public Test
{
public:
TestBinary32 (void)
: Test (MovePtr<FloatFormat>(new FloatFormat(-126, 127, 23, true))) {}
void runTest (void) const;
};
void TestBinary32::runTest (void) const
{
testULP(p(0), p(-24));
testULP(p(0) + p(-23), p(-23));
testULP(p(-124), p(-148));
testULP(p(-125), p(-149));
testULP(p(-125) + p(-140), p(-148));
testULP(p(-126), p(-149));
testULP(p(-130), p(-149));
testRound(p(0) + p(-20) + p(-40), p(0) + p(-20), p(0) + p(-20) + p(-23));
testRound(p(-126) - p(-150), p(-126) - p(-149), p(-126));
TCU_CHECK(m_fmt->floatToHex(p(0)) == "0x1.000000p0");
TCU_CHECK(m_fmt->floatToHex(p(8) + p(-4)) == "0x1.001000p8");
TCU_CHECK(m_fmt->floatToHex(p(-140)) == "0x0.000400p-126");
TCU_CHECK(m_fmt->floatToHex(p(-140)) == "0x0.000400p-126");
TCU_CHECK(m_fmt->floatToHex(p(-126) + p(-125)) == "0x1.800000p-125");
}
} // anonymous
void FloatFormat_selfTest (void)
{
TestBinary32 test32;
test32.runTest();
}
} // tcu