android13/external/deqp/framework/common/tcuInterval.hpp

319 lines
9.9 KiB
C++

#ifndef _TCUINTERVAL_HPP
#define _TCUINTERVAL_HPP
/*-------------------------------------------------------------------------
* drawElements Quality Program Tester Core
* ----------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Interval arithmetic and floating point precisions.
*//*--------------------------------------------------------------------*/
#include "tcuDefs.hpp"
#include "deMath.h"
#include <iostream>
#include <limits>
#include <cmath>
#define TCU_INFINITY (::std::numeric_limits<float>::infinity())
#define TCU_NAN (::std::numeric_limits<float>::quiet_NaN())
namespace tcu
{
// RAII context for temporarily changing the rounding mode
class ScopedRoundingMode
{
public:
ScopedRoundingMode (deRoundingMode mode)
: m_oldMode (deGetRoundingMode()) { deSetRoundingMode(mode); }
ScopedRoundingMode (void) : m_oldMode (deGetRoundingMode()) {}
~ScopedRoundingMode (void) { deSetRoundingMode(m_oldMode); }
private:
ScopedRoundingMode (const ScopedRoundingMode&);
ScopedRoundingMode& operator= (const ScopedRoundingMode&);
const deRoundingMode m_oldMode;
};
class Interval
{
public:
// Empty interval.
Interval (void)
: m_hasNaN (false)
, m_lo (TCU_INFINITY)
, m_hi (-TCU_INFINITY)
, m_warningLo (-TCU_INFINITY)
, m_warningHi (TCU_INFINITY) {}
// Intentionally not explicit. Conversion from double to Interval is common
// and reasonable.
Interval (double val)
: m_hasNaN (!!deIsNaN(val))
, m_lo (m_hasNaN ? TCU_INFINITY : val)
, m_hi (m_hasNaN ? -TCU_INFINITY : val)
, m_warningLo (-TCU_INFINITY)
, m_warningHi (TCU_INFINITY) {}
Interval(bool hasNaN_, double lo_, double hi_)
: m_hasNaN(hasNaN_), m_lo(lo_), m_hi(hi_), m_warningLo(-TCU_INFINITY), m_warningHi(TCU_INFINITY) {}
Interval(bool hasNaN_, double lo_, double hi_, double wlo_, double whi_)
: m_hasNaN(hasNaN_), m_lo(lo_), m_hi(hi_), m_warningLo(wlo_), m_warningHi(whi_) {}
Interval (const Interval& a, const Interval& b)
: m_hasNaN (a.m_hasNaN || b.m_hasNaN)
, m_lo (de::min(a.lo(), b.lo()))
, m_hi (de::max(a.hi(), b.hi()))
, m_warningLo (de::min(a.warningLo(), b.warningLo()))
, m_warningHi (de::max(a.warningHi(), b.warningHi())) {}
double length (void) const { return m_hi - m_lo; }
double lo (void) const { return m_lo; }
double hi (void) const { return m_hi; }
double warningLo (void) const { return m_warningLo; }
double warningHi (void) const { return m_warningHi; }
bool hasNaN (void) const { return m_hasNaN; }
Interval nan (void) const { return m_hasNaN ? TCU_NAN : Interval(); }
bool empty (void) const { return m_lo > m_hi; }
// The interval is represented in double, it can extend outside the range of smaller floating-point formats
// and get rounded to infinity.
bool isFinite (double maxValue) const { return m_lo > -maxValue && m_hi < maxValue; }
bool isOrdinary (double maxValue) const { return !hasNaN() && !empty() && isFinite(maxValue); }
void warning (double lo_, double hi_)
{
m_warningLo = lo_;
m_warningHi = hi_;
}
Interval operator| (const Interval& other) const
{
return Interval(m_hasNaN || other.m_hasNaN,
de::min(m_lo, other.m_lo),
de::max(m_hi, other.m_hi),
de::min(m_warningLo, other.m_warningLo),
de::max(m_warningHi, other.m_warningHi));
}
Interval& operator|= (const Interval& other)
{
return (*this = *this | other);
}
Interval operator& (const Interval& other) const
{
return Interval(m_hasNaN && other.m_hasNaN,
de::max(m_lo, other.m_lo),
de::min(m_hi, other.m_hi),
de::max(m_warningLo, other.m_warningLo),
de::min(m_warningHi, other.m_warningHi));
}
Interval& operator&= (const Interval& other)
{
return (*this = *this & other);
}
bool contains (const Interval& other) const
{
return (other.lo() >= lo() && other.hi() <= hi() &&
(!other.hasNaN() || hasNaN()));
}
bool containsWarning(const Interval& other) const
{
return (other.lo() >= warningLo() && other.hi() <= warningHi() &&
(!other.hasNaN() || hasNaN()));
}
bool intersects (const Interval& other) const
{
return ((other.hi() >= lo() && other.lo() <= hi()) ||
(other.hasNaN() && hasNaN()));
}
Interval operator- (void) const
{
return Interval(hasNaN(), -hi(), -lo(), -warningHi(), -warningLo());
}
static Interval unbounded (bool nan = false)
{
return Interval(nan, -TCU_INFINITY, TCU_INFINITY);
}
double midpoint (void) const
{
const double h = hi();
const double l = lo();
if (h == -l)
return 0.0;
if (l == -TCU_INFINITY)
return -TCU_INFINITY;
if (h == TCU_INFINITY)
return TCU_INFINITY;
const bool negativeH = ::std::signbit(h);
const bool negativeL = ::std::signbit(l);
double ret;
if (negativeH != negativeL)
{
// Different signs. Adding both values should be safe.
ret = (h + l) * 0.5;
}
else
{
// Same sign. Substracting low from high should be safe.
ret = l + (h - l) * 0.5;
}
return ret;
}
bool operator== (const Interval& other) const
{
return ((m_hasNaN == other.m_hasNaN) &&
((empty() && other.empty()) ||
(m_lo == other.m_lo && m_hi == other.m_hi)));
}
private:
bool m_hasNaN;
double m_lo;
double m_hi;
double m_warningLo;
double m_warningHi;
} DE_WARN_UNUSED_TYPE;
inline Interval operator+ (const Interval& x) { return x; }
Interval exp2 (const Interval& x);
Interval exp (const Interval& x);
int sign (const Interval& x);
Interval abs (const Interval& x);
Interval inverseSqrt (const Interval& x);
Interval operator+ (const Interval& x, const Interval& y);
Interval operator- (const Interval& x, const Interval& y);
Interval operator* (const Interval& x, const Interval& y);
Interval operator/ (const Interval& nom, const Interval& den);
inline Interval& operator+= (Interval& x, const Interval& y) { return (x = x + y); }
inline Interval& operator-= (Interval& x, const Interval& y) { return (x = x - y); }
inline Interval& operator*= (Interval& x, const Interval& y) { return (x = x * y); }
inline Interval& operator/= (Interval& x, const Interval& y) { return (x = x / y); }
std::ostream& operator<< (std::ostream& os, const Interval& interval);
#define TCU_SET_INTERVAL_BOUNDS(DST, VAR, SETLOW, SETHIGH) do \
{ \
::tcu::ScopedRoundingMode VAR##_ctx_; \
::tcu::Interval& VAR##_dst_ = (DST); \
::tcu::Interval VAR##_lo_; \
::tcu::Interval VAR##_hi_; \
\
{ \
::tcu::Interval& VAR = VAR##_lo_; \
::deSetRoundingMode(DE_ROUNDINGMODE_TO_NEGATIVE_INF); \
SETLOW; \
} \
{ \
::tcu::Interval& VAR = VAR##_hi_; \
::deSetRoundingMode(DE_ROUNDINGMODE_TO_POSITIVE_INF); \
SETHIGH; \
} \
\
VAR##_dst_ = VAR##_lo_ | VAR##_hi_; \
} while (::deGetFalse())
#define TCU_SET_INTERVAL(DST, VAR, BODY) \
TCU_SET_INTERVAL_BOUNDS(DST, VAR, BODY, BODY)
//! Set the interval DST to the image of BODY on ARG, assuming that BODY on
//! ARG is a monotone function. In practice, BODY is evaluated on both the
//! upper and lower bound of ARG, and DST is set to the union of these
//! results. While evaluating BODY, PARAM is bound to the bound of ARG, and
//! the output of BODY should be stored in VAR.
#define TCU_INTERVAL_APPLY_MONOTONE1(DST, PARAM, ARG, VAR, BODY) do \
{ \
const ::tcu::Interval& VAR##_arg_ = (ARG); \
::tcu::Interval& VAR##_dst_ = (DST); \
::tcu::Interval VAR##_lo_; \
::tcu::Interval VAR##_hi_; \
if (VAR##_arg_.empty()) \
VAR##_dst_ = Interval(); \
else \
{ \
{ \
const double PARAM = VAR##_arg_.lo(); \
::tcu::Interval& VAR = VAR##_lo_; \
BODY; \
} \
{ \
const double PARAM = VAR##_arg_.hi(); \
::tcu::Interval& VAR = VAR##_hi_; \
BODY; \
} \
VAR##_dst_ = VAR##_lo_ | VAR##_hi_; \
} \
if (VAR##_arg_.hasNaN()) \
VAR##_dst_ |= TCU_NAN; \
} while (::deGetFalse())
#define TCU_INTERVAL_APPLY_MONOTONE2(DST, P0, A0, P1, A1, VAR, BODY) \
TCU_INTERVAL_APPLY_MONOTONE1( \
DST, P0, A0, tmp2_, \
TCU_INTERVAL_APPLY_MONOTONE1(tmp2_, P1, A1, VAR, BODY))
#define TCU_INTERVAL_APPLY_MONOTONE3(DST, P0, A0, P1, A1, P2, A2, VAR, BODY) \
TCU_INTERVAL_APPLY_MONOTONE1( \
DST, P0, A0, tmp3_, \
TCU_INTERVAL_APPLY_MONOTONE2(tmp3_, P1, A1, P2, A2, VAR, BODY))
typedef double DoubleFunc1 (double);
typedef double DoubleFunc2 (double, double);
typedef double DoubleFunc3 (double, double, double);
typedef Interval DoubleIntervalFunc1 (double);
typedef Interval DoubleIntervalFunc2 (double, double);
typedef Interval DoubleIntervalFunc3 (double, double, double);
Interval applyMonotone (DoubleFunc1& func,
const Interval& arg0);
Interval applyMonotone (DoubleFunc2& func,
const Interval& arg0,
const Interval& arg1);
Interval applyMonotone (DoubleIntervalFunc1& func,
const Interval& arg0);
Interval applyMonotone (DoubleIntervalFunc2& func,
const Interval& arg0,
const Interval& arg1);
} // tcu
#endif // _TCUINTERVAL_HPP