367 lines
9.9 KiB
C
367 lines
9.9 KiB
C
/* Function return value location for IA64 ABI.
|
|
Copyright (C) 2006-2010, 2014 Red Hat, Inc.
|
|
This file is part of elfutils.
|
|
|
|
This file is free software; you can redistribute it and/or modify
|
|
it under the terms of either
|
|
|
|
* the GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 3 of the License, or (at
|
|
your option) any later version
|
|
|
|
or
|
|
|
|
* the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version
|
|
|
|
or both in parallel, as here.
|
|
|
|
elfutils is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received copies of the GNU General Public License and
|
|
the GNU Lesser General Public License along with this program. If
|
|
not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <assert.h>
|
|
#include <dwarf.h>
|
|
|
|
#define BACKEND ia64_
|
|
#include "libebl_CPU.h"
|
|
|
|
|
|
/* r8, or pair r8, r9, or aggregate up to r8-r11. */
|
|
static const Dwarf_Op loc_intreg[] =
|
|
{
|
|
{ .atom = DW_OP_reg8 }, { .atom = DW_OP_piece, .number = 8 },
|
|
{ .atom = DW_OP_reg9 }, { .atom = DW_OP_piece, .number = 8 },
|
|
{ .atom = DW_OP_reg10 }, { .atom = DW_OP_piece, .number = 8 },
|
|
{ .atom = DW_OP_reg11 }, { .atom = DW_OP_piece, .number = 8 },
|
|
};
|
|
#define nloc_intreg 1
|
|
#define nloc_intregs(n) (2 * (n))
|
|
|
|
/* f8, or aggregate up to f8-f15. */
|
|
#define DEFINE_FPREG(size) \
|
|
static const Dwarf_Op loc_fpreg_##size[] = \
|
|
{ \
|
|
{ .atom = DW_OP_regx, .number = 128 + 8 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 9 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 10 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 11 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 12 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 13 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 14 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
{ .atom = DW_OP_regx, .number = 128 + 15 }, \
|
|
{ .atom = DW_OP_piece, .number = size }, \
|
|
}
|
|
#define nloc_fpreg 1
|
|
#define nloc_fpregs(n) (2 * (n))
|
|
|
|
DEFINE_FPREG (4);
|
|
DEFINE_FPREG (8);
|
|
DEFINE_FPREG (10);
|
|
|
|
#undef DEFINE_FPREG
|
|
|
|
|
|
/* The return value is a structure and is actually stored in stack space
|
|
passed in a hidden argument by the caller. But, the compiler
|
|
helpfully returns the address of that space in r8. */
|
|
static const Dwarf_Op loc_aggregate[] =
|
|
{
|
|
{ .atom = DW_OP_breg8, .number = 0 }
|
|
};
|
|
#define nloc_aggregate 1
|
|
|
|
|
|
static inline int
|
|
compute_hfa (const Dwarf_Op *loc, int nregs,
|
|
const Dwarf_Op **locp, int fpregs_used)
|
|
{
|
|
if (fpregs_used == 0)
|
|
*locp = loc;
|
|
else if (*locp != loc)
|
|
return 9;
|
|
return fpregs_used + nregs;
|
|
}
|
|
|
|
/* If this type is an HFA small enough to be returned in FP registers,
|
|
return the number of registers to use. Otherwise 9, or -1 for errors. */
|
|
static int
|
|
hfa_type (Dwarf_Die *typedie, Dwarf_Word size,
|
|
const Dwarf_Op **locp, int fpregs_used)
|
|
{
|
|
/* Descend the type structure, counting elements and finding their types.
|
|
If we find a datum that's not an FP type (and not quad FP), punt.
|
|
If we find a datum that's not the same FP type as the first datum, punt.
|
|
If we count more than eight total homogeneous FP data, punt. */
|
|
|
|
int tag = DWARF_TAG_OR_RETURN (typedie);
|
|
switch (tag)
|
|
{
|
|
Dwarf_Attribute attr_mem;
|
|
|
|
case -1:
|
|
return -1;
|
|
|
|
case DW_TAG_base_type:;
|
|
Dwarf_Word encoding;
|
|
if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding,
|
|
&attr_mem), &encoding) != 0)
|
|
return -1;
|
|
|
|
#define hfa(loc, nregs) compute_hfa(loc, nregs, locp, fpregs_used)
|
|
switch (encoding)
|
|
{
|
|
case DW_ATE_float:
|
|
switch (size)
|
|
{
|
|
case 4: /* float */
|
|
return hfa (loc_fpreg_4, 1);
|
|
case 8: /* double */
|
|
return hfa (loc_fpreg_8, 1);
|
|
case 10: /* x86-style long double, not really used */
|
|
return hfa (loc_fpreg_10, 1);
|
|
}
|
|
break;
|
|
|
|
case DW_ATE_complex_float:
|
|
switch (size)
|
|
{
|
|
case 4 * 2: /* complex float */
|
|
return hfa (loc_fpreg_4, 2);
|
|
case 8 * 2: /* complex double */
|
|
return hfa (loc_fpreg_8, 2);
|
|
case 10 * 2: /* complex long double (x86-style) */
|
|
return hfa (loc_fpreg_10, 2);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case DW_TAG_structure_type:
|
|
case DW_TAG_class_type:
|
|
case DW_TAG_union_type:;
|
|
Dwarf_Die child_mem;
|
|
switch (dwarf_child (typedie, &child_mem))
|
|
{
|
|
default:
|
|
return -1;
|
|
|
|
case 1: /* No children: empty struct. */
|
|
break;
|
|
|
|
case 0:; /* Look at each element. */
|
|
int max_used = fpregs_used;
|
|
do
|
|
switch (dwarf_tag (&child_mem))
|
|
{
|
|
case -1:
|
|
return -1;
|
|
|
|
case DW_TAG_member:;
|
|
Dwarf_Die child_type_mem;
|
|
Dwarf_Die *child_typedie
|
|
= dwarf_formref_die (dwarf_attr_integrate (&child_mem,
|
|
DW_AT_type,
|
|
&attr_mem),
|
|
&child_type_mem);
|
|
Dwarf_Word child_size;
|
|
if (dwarf_aggregate_size (child_typedie, &child_size) != 0)
|
|
return -1;
|
|
if (tag == DW_TAG_union_type)
|
|
{
|
|
int used = hfa_type (child_typedie, child_size,
|
|
locp, fpregs_used);
|
|
if (used < 0 || used > 8)
|
|
return used;
|
|
if (used > max_used)
|
|
max_used = used;
|
|
}
|
|
else
|
|
{
|
|
fpregs_used = hfa_type (child_typedie, child_size,
|
|
locp, fpregs_used);
|
|
if (fpregs_used < 0 || fpregs_used > 8)
|
|
return fpregs_used;
|
|
}
|
|
}
|
|
while (dwarf_siblingof (&child_mem, &child_mem) == 0);
|
|
if (tag == DW_TAG_union_type)
|
|
fpregs_used = max_used;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case DW_TAG_array_type:
|
|
if (size == 0)
|
|
break;
|
|
|
|
Dwarf_Die base_type_mem;
|
|
Dwarf_Die *base_typedie
|
|
= dwarf_formref_die (dwarf_attr_integrate (typedie, DW_AT_type,
|
|
&attr_mem),
|
|
&base_type_mem);
|
|
Dwarf_Word base_size;
|
|
if (dwarf_aggregate_size (base_typedie, &base_size) != 0)
|
|
return -1;
|
|
|
|
int used = hfa_type (base_typedie, base_size, locp, 0);
|
|
if (used < 0 || used > 8)
|
|
return used;
|
|
if (size % (*locp)[1].number != 0)
|
|
return 0;
|
|
fpregs_used += used * (size / (*locp)[1].number);
|
|
break;
|
|
|
|
default:
|
|
return 9;
|
|
}
|
|
|
|
return fpregs_used;
|
|
}
|
|
|
|
int
|
|
ia64_return_value_location (Dwarf_Die *functypedie, const Dwarf_Op **locp)
|
|
{
|
|
/* Start with the function's type, and get the DW_AT_type attribute,
|
|
which is the type of the return value. */
|
|
Dwarf_Die die_mem, *typedie = &die_mem;
|
|
int tag = dwarf_peeled_die_type (functypedie, typedie);
|
|
if (tag <= 0)
|
|
return tag;
|
|
|
|
Dwarf_Word size;
|
|
switch (tag)
|
|
{
|
|
case -1:
|
|
return -1;
|
|
|
|
case DW_TAG_subrange_type:
|
|
if (! dwarf_hasattr_integrate (typedie, DW_AT_byte_size))
|
|
{
|
|
Dwarf_Attribute attr_mem, *attr;
|
|
attr = dwarf_attr_integrate (typedie, DW_AT_type, &attr_mem);
|
|
typedie = dwarf_formref_die (attr, &die_mem);
|
|
tag = DWARF_TAG_OR_RETURN (typedie);
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
case DW_TAG_base_type:
|
|
case DW_TAG_enumeration_type:
|
|
case DW_TAG_pointer_type:
|
|
case DW_TAG_ptr_to_member_type:
|
|
{
|
|
Dwarf_Attribute attr_mem;
|
|
if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_byte_size,
|
|
&attr_mem), &size) != 0)
|
|
{
|
|
if (tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type)
|
|
size = 8;
|
|
else
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (tag == DW_TAG_base_type)
|
|
{
|
|
Dwarf_Attribute attr_mem;
|
|
Dwarf_Word encoding;
|
|
if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding,
|
|
&attr_mem),
|
|
&encoding) != 0)
|
|
return -1;
|
|
|
|
switch (encoding)
|
|
{
|
|
case DW_ATE_float:
|
|
switch (size)
|
|
{
|
|
case 4: /* float */
|
|
*locp = loc_fpreg_4;
|
|
return nloc_fpreg;
|
|
case 8: /* double */
|
|
*locp = loc_fpreg_8;
|
|
return nloc_fpreg;
|
|
case 10: /* x86-style long double, not really used */
|
|
*locp = loc_fpreg_10;
|
|
return nloc_fpreg;
|
|
case 16: /* long double, IEEE quad format */
|
|
*locp = loc_intreg;
|
|
return nloc_intregs (2);
|
|
}
|
|
return -2;
|
|
|
|
case DW_ATE_complex_float:
|
|
switch (size)
|
|
{
|
|
case 4 * 2: /* complex float */
|
|
*locp = loc_fpreg_4;
|
|
return nloc_fpregs (2);
|
|
case 8 * 2: /* complex double */
|
|
*locp = loc_fpreg_8;
|
|
return nloc_fpregs (2);
|
|
case 10 * 2: /* complex long double (x86-style) */
|
|
*locp = loc_fpreg_10;
|
|
return nloc_fpregs (2);
|
|
case 16 * 2: /* complex long double (IEEE quad) */
|
|
*locp = loc_intreg;
|
|
return nloc_intregs (4);
|
|
}
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
intreg:
|
|
*locp = loc_intreg;
|
|
if (size <= 8)
|
|
return nloc_intreg;
|
|
if (size <= 32)
|
|
return nloc_intregs ((size + 7) / 8);
|
|
|
|
large:
|
|
*locp = loc_aggregate;
|
|
return nloc_aggregate;
|
|
|
|
case DW_TAG_structure_type:
|
|
case DW_TAG_class_type:
|
|
case DW_TAG_union_type:
|
|
case DW_TAG_array_type:
|
|
if (dwarf_aggregate_size (typedie, &size) != 0)
|
|
return -1;
|
|
|
|
/* If this qualifies as an homogeneous floating-point aggregate
|
|
(HFA), then it should be returned in FP regs. */
|
|
int nfpreg = hfa_type (typedie, size, locp, 0);
|
|
if (nfpreg < 0)
|
|
return nfpreg;
|
|
else if (nfpreg > 0 && nfpreg <= 8)
|
|
return nfpreg == 1 ? nloc_fpreg : nloc_fpregs (nfpreg);
|
|
|
|
if (size > 32)
|
|
goto large;
|
|
|
|
goto intreg;
|
|
}
|
|
|
|
/* XXX We don't have a good way to return specific errors from ebl calls.
|
|
This value means we do not understand the type, but it is well-formed
|
|
DWARF and might be valid. */
|
|
return -2;
|
|
}
|