408 lines
12 KiB
C
408 lines
12 KiB
C
/* Unaligned memory access functionality.
|
|
Copyright (C) 2000-2014, 2018 Red Hat, Inc.
|
|
This file is part of elfutils.
|
|
|
|
This file is free software; you can redistribute it and/or modify
|
|
it under the terms of either
|
|
|
|
* the GNU Lesser General Public License as published by the Free
|
|
Software Foundation; either version 3 of the License, or (at
|
|
your option) any later version
|
|
|
|
or
|
|
|
|
* the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version
|
|
|
|
or both in parallel, as here.
|
|
|
|
elfutils is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received copies of the GNU General Public License and
|
|
the GNU Lesser General Public License along with this program. If
|
|
not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef _MEMORY_ACCESS_H
|
|
#define _MEMORY_ACCESS_H 1
|
|
|
|
#include <byteswap.h>
|
|
#include <endian.h>
|
|
#include <limits.h>
|
|
#include <stdint.h>
|
|
|
|
|
|
/* Number decoding macros. See 7.6 Variable Length Data. */
|
|
|
|
#define len_leb128(var) ((8 * sizeof (var) + 6) / 7)
|
|
|
|
static inline size_t
|
|
__libdw_max_len_leb128 (const size_t type_len,
|
|
const unsigned char *addr, const unsigned char *end)
|
|
{
|
|
const size_t pointer_len = likely (addr < end) ? end - addr : 0;
|
|
return likely (type_len <= pointer_len) ? type_len : pointer_len;
|
|
}
|
|
|
|
static inline size_t
|
|
__libdw_max_len_uleb128 (const unsigned char *addr, const unsigned char *end)
|
|
{
|
|
const size_t type_len = len_leb128 (uint64_t);
|
|
return __libdw_max_len_leb128 (type_len, addr, end);
|
|
}
|
|
|
|
static inline size_t
|
|
__libdw_max_len_sleb128 (const unsigned char *addr, const unsigned char *end)
|
|
{
|
|
/* Subtract one step, so we don't shift into sign bit. */
|
|
const size_t type_len = len_leb128 (int64_t) - 1;
|
|
return __libdw_max_len_leb128 (type_len, addr, end);
|
|
}
|
|
|
|
#define get_uleb128_step(var, addr, nth) \
|
|
do { \
|
|
unsigned char __b = *(addr)++; \
|
|
(var) |= (typeof (var)) (__b & 0x7f) << ((nth) * 7); \
|
|
if (likely ((__b & 0x80) == 0)) \
|
|
return (var); \
|
|
} while (0)
|
|
|
|
static inline uint64_t
|
|
__libdw_get_uleb128 (const unsigned char **addrp, const unsigned char *end)
|
|
{
|
|
uint64_t acc = 0;
|
|
|
|
/* Unroll the first step to help the compiler optimize
|
|
for the common single-byte case. */
|
|
get_uleb128_step (acc, *addrp, 0);
|
|
|
|
const size_t max = __libdw_max_len_uleb128 (*addrp - 1, end);
|
|
for (size_t i = 1; i < max; ++i)
|
|
get_uleb128_step (acc, *addrp, i);
|
|
/* Other implementations set VALUE to UINT_MAX in this
|
|
case. So we better do this as well. */
|
|
return UINT64_MAX;
|
|
}
|
|
|
|
static inline uint64_t
|
|
__libdw_get_uleb128_unchecked (const unsigned char **addrp)
|
|
{
|
|
uint64_t acc = 0;
|
|
|
|
/* Unroll the first step to help the compiler optimize
|
|
for the common single-byte case. */
|
|
get_uleb128_step (acc, *addrp, 0);
|
|
|
|
const size_t max = len_leb128 (uint64_t);
|
|
for (size_t i = 1; i < max; ++i)
|
|
get_uleb128_step (acc, *addrp, i);
|
|
/* Other implementations set VALUE to UINT_MAX in this
|
|
case. So we better do this as well. */
|
|
return UINT64_MAX;
|
|
}
|
|
|
|
/* Note, addr needs to me smaller than end. */
|
|
#define get_uleb128(var, addr, end) ((var) = __libdw_get_uleb128 (&(addr), end))
|
|
#define get_uleb128_unchecked(var, addr) ((var) = __libdw_get_uleb128_unchecked (&(addr)))
|
|
|
|
/* The signed case is similar, but we sign-extend the result. */
|
|
|
|
#define get_sleb128_step(var, addr, nth) \
|
|
do { \
|
|
unsigned char __b = *(addr)++; \
|
|
(var) |= (typeof (var)) (__b & 0x7f) << ((nth) * 7); \
|
|
if (likely ((__b & 0x80) == 0)) \
|
|
{ \
|
|
if ((__b & 0x40) != 0) \
|
|
(var) |= - ((typeof (var)) 1 << (((nth) + 1) * 7)); \
|
|
return (var); \
|
|
} \
|
|
} while (0)
|
|
|
|
static inline int64_t
|
|
__libdw_get_sleb128 (const unsigned char **addrp, const unsigned char *end)
|
|
{
|
|
/* Do the work in an unsigned type, but use implementation-defined
|
|
behavior to cast to signed on return. This avoids some undefined
|
|
behavior when shifting. */
|
|
uint64_t acc = 0;
|
|
|
|
/* Unroll the first step to help the compiler optimize
|
|
for the common single-byte case. */
|
|
get_sleb128_step (acc, *addrp, 0);
|
|
|
|
const size_t max = __libdw_max_len_sleb128 (*addrp - 1, end);
|
|
for (size_t i = 1; i < max; ++i)
|
|
get_sleb128_step (acc, *addrp, i);
|
|
if (*addrp == end)
|
|
return INT64_MAX;
|
|
|
|
/* There might be one extra byte. */
|
|
unsigned char b = **addrp;
|
|
++*addrp;
|
|
if (likely ((b & 0x80) == 0))
|
|
{
|
|
/* We only need the low bit of the final byte, and as it is the
|
|
sign bit, we don't need to do anything else here. */
|
|
acc |= ((typeof (acc)) b) << 7 * max;
|
|
return acc;
|
|
}
|
|
|
|
/* Other implementations set VALUE to INT_MAX in this
|
|
case. So we better do this as well. */
|
|
return INT64_MAX;
|
|
}
|
|
|
|
static inline int64_t
|
|
__libdw_get_sleb128_unchecked (const unsigned char **addrp)
|
|
{
|
|
/* Do the work in an unsigned type, but use implementation-defined
|
|
behavior to cast to signed on return. This avoids some undefined
|
|
behavior when shifting. */
|
|
uint64_t acc = 0;
|
|
|
|
/* Unroll the first step to help the compiler optimize
|
|
for the common single-byte case. */
|
|
get_sleb128_step (acc, *addrp, 0);
|
|
|
|
/* Subtract one step, so we don't shift into sign bit. */
|
|
const size_t max = len_leb128 (int64_t) - 1;
|
|
for (size_t i = 1; i < max; ++i)
|
|
get_sleb128_step (acc, *addrp, i);
|
|
|
|
/* There might be one extra byte. */
|
|
unsigned char b = **addrp;
|
|
++*addrp;
|
|
if (likely ((b & 0x80) == 0))
|
|
{
|
|
/* We only need the low bit of the final byte, and as it is the
|
|
sign bit, we don't need to do anything else here. */
|
|
acc |= ((typeof (acc)) b) << 7 * max;
|
|
return acc;
|
|
}
|
|
|
|
/* Other implementations set VALUE to INT_MAX in this
|
|
case. So we better do this as well. */
|
|
return INT64_MAX;
|
|
}
|
|
|
|
#define get_sleb128(var, addr, end) ((var) = __libdw_get_sleb128 (&(addr), end))
|
|
#define get_sleb128_unchecked(var, addr) ((var) = __libdw_get_sleb128_unchecked (&(addr)))
|
|
|
|
|
|
/* We use simple memory access functions in case the hardware allows it.
|
|
The caller has to make sure we don't have alias problems. */
|
|
#if ALLOW_UNALIGNED
|
|
|
|
# define read_2ubyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? bswap_16 (*((const uint16_t *) (Addr))) \
|
|
: *((const uint16_t *) (Addr)))
|
|
# define read_2sbyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? (int16_t) bswap_16 (*((const int16_t *) (Addr))) \
|
|
: *((const int16_t *) (Addr)))
|
|
|
|
# define read_4ubyte_unaligned_noncvt(Addr) \
|
|
*((const uint32_t *) (Addr))
|
|
# define read_4ubyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? bswap_32 (*((const uint32_t *) (Addr))) \
|
|
: *((const uint32_t *) (Addr)))
|
|
# define read_4sbyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? (int32_t) bswap_32 (*((const int32_t *) (Addr))) \
|
|
: *((const int32_t *) (Addr)))
|
|
|
|
# define read_8ubyte_unaligned_noncvt(Addr) \
|
|
*((const uint64_t *) (Addr))
|
|
# define read_8ubyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? bswap_64 (*((const uint64_t *) (Addr))) \
|
|
: *((const uint64_t *) (Addr)))
|
|
# define read_8sbyte_unaligned(Dbg, Addr) \
|
|
(unlikely ((Dbg)->other_byte_order) \
|
|
? (int64_t) bswap_64 (*((const int64_t *) (Addr))) \
|
|
: *((const int64_t *) (Addr)))
|
|
|
|
#else
|
|
|
|
union unaligned
|
|
{
|
|
void *p;
|
|
uint16_t u2;
|
|
uint32_t u4;
|
|
uint64_t u8;
|
|
int16_t s2;
|
|
int32_t s4;
|
|
int64_t s8;
|
|
} attribute_packed;
|
|
|
|
# define read_2ubyte_unaligned(Dbg, Addr) \
|
|
read_2ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
# define read_2sbyte_unaligned(Dbg, Addr) \
|
|
read_2sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
# define read_4ubyte_unaligned(Dbg, Addr) \
|
|
read_4ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
# define read_4sbyte_unaligned(Dbg, Addr) \
|
|
read_4sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
# define read_8ubyte_unaligned(Dbg, Addr) \
|
|
read_8ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
# define read_8sbyte_unaligned(Dbg, Addr) \
|
|
read_8sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
|
|
|
|
static inline uint16_t
|
|
read_2ubyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return bswap_16 (up->u2);
|
|
return up->u2;
|
|
}
|
|
static inline int16_t
|
|
read_2sbyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return (int16_t) bswap_16 (up->u2);
|
|
return up->s2;
|
|
}
|
|
|
|
static inline uint32_t
|
|
read_4ubyte_unaligned_noncvt (const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
return up->u4;
|
|
}
|
|
static inline uint32_t
|
|
read_4ubyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return bswap_32 (up->u4);
|
|
return up->u4;
|
|
}
|
|
static inline int32_t
|
|
read_4sbyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return (int32_t) bswap_32 (up->u4);
|
|
return up->s4;
|
|
}
|
|
|
|
static inline uint64_t
|
|
read_8ubyte_unaligned_noncvt (const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
return up->u8;
|
|
}
|
|
static inline uint64_t
|
|
read_8ubyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return bswap_64 (up->u8);
|
|
return up->u8;
|
|
}
|
|
static inline int64_t
|
|
read_8sbyte_unaligned_1 (bool other_byte_order, const void *p)
|
|
{
|
|
const union unaligned *up = p;
|
|
if (unlikely (other_byte_order))
|
|
return (int64_t) bswap_64 (up->u8);
|
|
return up->s8;
|
|
}
|
|
|
|
#endif /* allow unaligned */
|
|
|
|
|
|
#define read_2ubyte_unaligned_inc(Dbg, Addr) \
|
|
({ uint16_t t_ = read_2ubyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 2); \
|
|
t_; })
|
|
#define read_2sbyte_unaligned_inc(Dbg, Addr) \
|
|
({ int16_t t_ = read_2sbyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 2); \
|
|
t_; })
|
|
|
|
#define read_4ubyte_unaligned_inc(Dbg, Addr) \
|
|
({ uint32_t t_ = read_4ubyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 4); \
|
|
t_; })
|
|
#define read_4sbyte_unaligned_inc(Dbg, Addr) \
|
|
({ int32_t t_ = read_4sbyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 4); \
|
|
t_; })
|
|
|
|
#define read_8ubyte_unaligned_inc(Dbg, Addr) \
|
|
({ uint64_t t_ = read_8ubyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 8); \
|
|
t_; })
|
|
#define read_8sbyte_unaligned_inc(Dbg, Addr) \
|
|
({ int64_t t_ = read_8sbyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 8); \
|
|
t_; })
|
|
|
|
/* 3ubyte reads are only used for DW_FORM_addrx3 and DW_FORM_strx3.
|
|
And are probably very rare. They are not optimized. They are
|
|
handled as if reading a 4byte value with the first (for big endian)
|
|
or last (for little endian) byte zero. */
|
|
|
|
static inline int
|
|
file_byte_order (bool other_byte_order)
|
|
{
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
return other_byte_order ? __BIG_ENDIAN : __LITTLE_ENDIAN;
|
|
#else
|
|
return other_byte_order ? __LITTLE_ENDIAN : __BIG_ENDIAN;
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t
|
|
read_3ubyte_unaligned (Dwarf *dbg, const unsigned char *p)
|
|
{
|
|
union
|
|
{
|
|
uint32_t u4;
|
|
unsigned char c[4];
|
|
} d;
|
|
bool other_byte_order = dbg->other_byte_order;
|
|
|
|
if (file_byte_order (other_byte_order) == __BIG_ENDIAN)
|
|
{
|
|
d.c[0] = 0x00;
|
|
d.c[1] = p[0];
|
|
d.c[2] = p[1];
|
|
d.c[3] = p[2];
|
|
}
|
|
else
|
|
{
|
|
d.c[0] = p[0];
|
|
d.c[1] = p[1];
|
|
d.c[2] = p[2];
|
|
d.c[3] = 0x00;
|
|
}
|
|
|
|
if (other_byte_order)
|
|
return bswap_32 (d.u4);
|
|
else
|
|
return d.u4;
|
|
}
|
|
|
|
|
|
#define read_3ubyte_unaligned_inc(Dbg, Addr) \
|
|
({ uint32_t t_ = read_3ubyte_unaligned (Dbg, Addr); \
|
|
Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 3); \
|
|
t_; })
|
|
|
|
#define read_addr_unaligned_inc(Nbytes, Dbg, Addr) \
|
|
(assert ((Nbytes) == 4 || (Nbytes) == 8), \
|
|
((Nbytes) == 4 ? read_4ubyte_unaligned_inc (Dbg, Addr) \
|
|
: read_8ubyte_unaligned_inc (Dbg, Addr)))
|
|
|
|
#endif /* memory-access.h */
|