android13/external/libabigail/include/abg-ir.h

4893 lines
111 KiB
C++

// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// -*- Mode: C++ -*-
//
// Copyright (C) 2013-2020 Red Hat, Inc.
//
// Author: Dodji Seketeli
/// @file
///
/// Types of the main internal representation of libabigail.
///
/// This internal representation abstracts the artifacts that make up
/// an application binary interface.
#ifndef __ABG_IR_H__
#define __ABG_IR_H__
#include <assert.h>
#include <stdint.h>
#include <cstdlib>
#include <functional>
#include <set>
#include <unordered_map>
#include "abg-fwd.h"
#include "abg-hash.h"
#include "abg-traverse.h"
#include "abg-config.h"
/// @file
///
/// This file contains the declarations of the Internal Representation
/// of libabigail.
/// @defgroup Memory Memory management
/// @{
///
/// How objects' lifetime is handled in libabigail.
///
/// For memory management and garbage collection of libabigail's IR
/// artifacts, we use std::shared_ptr and std::weak_ptr.
///
/// When manipulating these IR artifacts, there are a few rules to keep in
/// mind.
///
/// <b>The declaration for a type is owned by only one scope </b>
///
/// This means that for each instance of abigail::type_base (a type) there
/// is an instance of abigail::scope_decl that owns a @ref
/// abigail::decl_base_sptr (a shared pointer to an abigail::decl_base)
/// that points to the declaration of that type. The
/// abigail::type_base_sptr is added to the scope using the function
/// abigail::add_decl_to_scope().
///
/// There is a kind of type that is usually not syntactically owned by
/// a scope: it's function type. In libabigail, function types are
/// represented by abigail::function_type and abigail::method_type.
/// These types must be owned by the translation unit they originate
/// from. Adding them to the translation unit must be done by a call
/// to the method function
/// abigail::translation::bind_function_type_life_time().
///
/// <b> A declaration that has a type does NOT own the type </b>
///
/// This means that, for instance, in an abigail::var_decl (a variable
/// declaration), the type of the declaration is not owned by the
/// declaration. In other (concrete) words, the variable declaration
/// doesn't have a shared pointer to the type. Rather, it has a *weak*
/// pointer to its type. That means that it has a data member of type
/// abigail::type_base_wptr that contains the type of the declaration.
///
/// But then abigail::var_decl::get_type() returns a shared pointer that
/// is constructed from the internal weak pointer to the type. That way,
/// users of the type of the var can own a temporary reference on it and
/// be assured that the type's life time is long enough for their need.
///
/// Likewise, data members, function and template parameters similarly
/// have weak pointers on their type.
///
/// If, for a reason, you really need to keep a type alive for the
/// entire lifetime of the type system, then you can bind the life
/// time of that type to the life time of the @ref environment that is
/// supposed to outlive the type system. You do that by passing the
/// type to the function environment::keep_type_alive().
///
/// @}
namespace abigail
{
/// The namespace of the internal representation of ABI artifacts like
/// types and decls.
namespace ir
{
// Inject some std types in here.
using std::unordered_map;
/// A convenience typedef for an unordered set of pointer values
typedef unordered_set<uintptr_t> pointer_set;
/// Functor to hash a canonical type by using its pointer value.
struct canonical_type_hash
{
size_t operator()(const type_base_sptr& l) const;
size_t operator()(const type_base *l) const;
}; //end struct canonical_type_hash
/// Helper typedef for an unordered set of type_base_sptr which uses
/// pointer value to tell its members appart, because the members are
/// canonical types.
typedef unordered_set<type_base_sptr,
canonical_type_hash> canonical_type_sptr_set_type;
/// Helper typedef for a vector of pointer to type_base.
typedef vector<type_base*> type_base_ptrs_type;
/// Helper typedef for a vector of shared pointer to a type_base.
typedef vector<type_base_sptr> type_base_sptrs_type;
/// This is an abstraction of the set of resources necessary to manage
/// several aspects of the internal representations of the Abigail
/// library.
///
/// An environment can be seen as the boundaries in which all related
/// Abigail artifacts live. So before doing anything using this
/// library, the first thing to create is, well, you know it now, an
/// environment.
///
/// Note that the lifetime of environment objects must be longer than
/// the lifetime of any other type in the Abigail system. So a given
/// instance of @ref environment must stay around as long as you are
/// using libabigail. It's only when you are done using the library
/// that you can de-allocate the environment instance.
class environment
{
public:
struct priv;
std::unique_ptr<priv> priv_;
/// A convenience typedef for a map of canonical types. The key is
/// the pretty representation string of a particular type and the
/// value is the vector of canonical types that have the same pretty
/// representation string.
typedef std::unordered_map<string, std::vector<type_base_sptr> >
canonical_types_map_type;
environment();
virtual ~environment();
canonical_types_map_type&
get_canonical_types_map();
const canonical_types_map_type&
get_canonical_types_map() const;
const type_base_sptr&
get_void_type() const;
const type_base_sptr&
get_variadic_parameter_type() const;
bool
canonicalization_is_done() const;
void
canonicalization_is_done(bool);
bool
do_on_the_fly_canonicalization() const;
void
do_on_the_fly_canonicalization(bool f);
bool
decl_only_class_equals_definition() const;
void
decl_only_class_equals_definition(bool f) const;
bool
use_enum_binary_only_equality() const;
void
use_enum_binary_only_equality(bool f) const;
bool
is_void_type(const type_base_sptr&) const;
bool
is_void_type(const type_base*) const;
bool
is_variadic_parameter_type(const type_base*) const;
bool
is_variadic_parameter_type(const type_base_sptr&) const;
interned_string
intern(const string&) const;
const config&
get_config() const;
#ifdef WITH_DEBUG_SELF_COMPARISON
void
set_self_comparison_debug_input(const corpus_sptr& corpus);
void
get_self_comparison_debug_inputs(corpus_sptr& first_corpus,
corpus_sptr& second_corpus);
void
self_comparison_debug_is_on(bool);
bool
self_comparison_debug_is_on() const;
#endif
#ifdef WITH_DEBUG_TYPE_CANONICALIZATION
void
debug_type_canonicalization_is_on(bool flag);
bool
debug_type_canonicalization_is_on() const;
#endif
vector<type_base_sptr>* get_canonical_types(const char* name);
type_base* get_canonical_type(const char* name, unsigned index);
#ifdef WITH_DEBUG_SELF_COMPARISON
unordered_map<string, uintptr_t>&
get_type_id_canonical_type_map() const;
unordered_map<uintptr_t, string>&
get_pointer_type_id_map();
string
get_type_id_from_pointer(uintptr_t ptr);
uintptr_t
get_canonical_type_from_type_id(const char*);
#endif
friend class class_or_union;
friend class class_decl;
friend class function_type;
friend void keep_type_alive(type_base_sptr);
}; // end class environment
class location_manager;
/// @brief The source location of a token.
///
/// This represents the location of a token coming from a given
/// translation unit. This location is actually an abstraction of
/// cursor in the table of all the locations of all the tokens of the
/// translation unit. That table is managed by the @ref location_manager
/// type. To get the file path, line and column numbers associated to
/// a given instance of @ref location, you need to use the
/// location_manager::expand_location method.
class location
{
unsigned value_;
// The location manager to use to decode the value above. There is
// one location manager per translation unit, and the location
// manager's life time is managed by its translation unit.
location_manager* loc_manager_;
// Whether the location is artificial. Being artificial means that
// the location wasn't generated by the original emitter of the
// metadata (i.e, the compiler if the metadata is debug info). For
// instance, implicit location derived from the position of XML
// elements in the abixml file is represented as artificial
// locations.
bool is_artificial_;
location(unsigned v, location_manager* m)
: value_(v), loc_manager_(m), is_artificial_(false)
{}
/// Get the location manager to use to decode the value of this
/// location.
///
/// @return the location manager for the current location value.
location_manager*
get_location_manager() const
{return loc_manager_;}
public:
/// Test if the location is artificial.
///
/// Being artificial means that the location wasn't generated by the
/// original emitter of the metadata (i.e, the compiler if the
/// metadata is debug info). For instance, the implicit location
/// derived from the position of a given XML element in the abixml
/// file is represented as artificial locations. The same XML
/// element might carry a non-artificial (natural?) location that was
/// originally emitted by the compiler that generated the original
/// debug info the abixml file is derived from.
///
/// @return true iff the location is artificial.
bool
get_is_artificial() const
{return is_artificial_;}
/// Set the artificial-ness of the location.
///
/// Being artificial means that the location wasn't generated by the
/// original emitter of the metadata (i.e, the compiler if the
/// metadata is debug info). For instance, the implicit location
/// derived from the position of a given XML element in the abixml
/// file is represented as artificial locations. The same XML
/// element might carry a non-artificial (natural?) location that
/// was originally emitted by the compiler that generated the
/// original debug info the abixml file is derived from.
///
/// @param f the new artificial-ness state.
void
set_is_artificial(bool f)
{is_artificial_ = f;}
/// Copy constructor of the location.
///
/// @param l the location to copy from.
location(const location& l)
: value_(l.value_),
loc_manager_(l.loc_manager_),
is_artificial_(l.is_artificial_)
{}
/// Assignment operator of the location.
///
/// @param l the location to assign to the current one.
location&
operator=(const location& l)
{
value_ = l.value_;
loc_manager_ = l.loc_manager_;
is_artificial_ = l.is_artificial_;
return *this;
}
/// Default constructor for the @ref location type.
location()
: value_(), loc_manager_(), is_artificial_()
{}
/// Get the value of the location.
unsigned
get_value() const
{return value_;}
/// Convert the location into a boolean.
///
/// @return true iff the value of the location is different from
/// zero.
operator bool() const
{return !!value_;}
/// Equality operator of the @ref location type.
///
/// @param other the other location to compare against.
///
/// @return true iff both locations are equal.
bool
operator==(const location &other) const
{return value_ == other.value_;}
/// "Less than" operator of the @ref location type.
///
/// @parm other the other location type to compare against.
///
/// @return true iff the current instance is less than the @p other
/// one.
bool
operator<(const location &other) const
{return value_ < other.value_;}
/// Expand the current location into a tripplet file path, line and
/// column number.
///
/// @param path the output parameter this function sets the expanded
/// path to.
///
/// @param line the output parameter this function sets the expanded
/// line number to.
///
/// @param column the output parameter this function sets the
/// expanded column number to.
void
expand(std::string& path, unsigned& line, unsigned& column) const;
string
expand(void) const;
friend class location_manager;
}; // end class location
/// @brief The entry point to manage locations.
///
/// This type keeps a table of all the locations for tokens of a
/// given translation unit.
class location_manager
{
struct priv;
std::unique_ptr<priv> priv_;
public:
location_manager();
~location_manager();
location
create_new_location(const std::string& fle, size_t lne, size_t col);
void
expand_location(const location& location, std::string& path,
unsigned& line, unsigned& column) const;
};
/// The base of an entity of the intermediate representation that is
/// to be traversed.
struct ir_traversable_base : public traversable_base
{
/// Traverse a given IR node and its children, calling an visitor on
/// each node.
///
/// @param v the visitor to call on each traversed node.
///
/// @return true if the all the IR node tree was traversed.
virtual bool
traverse(ir_node_visitor& v);
}; // end class ir_traversable_base
/// The hashing functor for using instances of @ref type_or_decl_base
/// as values in a hash map or set.
struct type_or_decl_hash
{
/// Function-call Operator to hash the string representation of an
/// ABI artifact.
///
/// @param artifact the ABI artifact to hash.
///
/// @return the hash value of the string representation of @p
/// artifact.
size_t
operator()(const type_or_decl_base *artifact) const
{
string repr = get_pretty_representation(artifact);
std::hash<string> do_hash;
return do_hash(repr);
}
/// Function-call Operator to hash the string representation of an
/// ABI artifact.
///
/// @param artifact the ABI artifact to hash.
///
/// @return the hash value of the string representation of @p
/// artifact.
size_t
operator()(const type_or_decl_base_sptr& artifact) const
{return operator()(artifact.get());}
}; // end struct type_or_decl_hash
/// The comparison functor for using instances of @ref
/// type_or_decl_base as values in a hash map or set.
struct type_or_decl_equal
{
/// The function-call operator to compare the string representations
/// of two ABI artifacts.
///
/// @param l the left hand side ABI artifact operand of the
/// comparison.
///
/// @param r the right hand side ABI artifact operand of the
/// comparison.
///
/// @return true iff the string representation of @p l equals the one
/// of @p r.
bool
operator()(const type_or_decl_base *l, const type_or_decl_base *r) const
{
string repr1 = get_pretty_representation(l);
string repr2 = get_pretty_representation(r);
return repr1 == repr2;
}
/// The function-call operator to compare the string representations
/// of two ABI artifacts.
///
/// @param l the left hand side ABI artifact operand of the
/// comparison.
///
/// @param r the right hand side ABI artifact operand of the
/// comparison.
///
/// @return true iff the string representation of @p l equals the one
/// of @p r.
bool
operator()(const type_or_decl_base_sptr &l,
const type_or_decl_base_sptr &r) const
{return operator()(l.get(), r.get());}
}; // end type_or_decl_equal
/// A convenience typedef for a hash set of type_or_decl_base_sptr
typedef unordered_set<type_or_decl_base_sptr,
type_or_decl_hash,
type_or_decl_equal> artifact_sptr_set_type;
/// A convenience typedef for a hash set of const type_or_decl_base*
typedef unordered_set<const type_or_decl_base*,
type_or_decl_hash,
type_or_decl_equal> artifact_ptr_set_type;
/// A convenience typedef for a map which key is a string and which
/// value is a @ref type_base_wptr.
typedef unordered_map<string, type_base_wptr> string_type_base_wptr_map_type;
/// A convenience typedef for a map which key is an @ref
/// interned_string and which value is a @ref type_base_wptr.
typedef unordered_map<interned_string, type_base_wptr, hash_interned_string>
istring_type_base_wptr_map_type;
/// A convenience typedef for a map which key is an @ref
/// interned_string and which value is a @ref type_base_wptr.
typedef unordered_map<interned_string,
type_or_decl_base_sptr,
hash_interned_string>
istring_type_or_decl_base_sptr_map_type;
/// This is a type that aggregates maps of all the kinds of types that
/// are supported by libabigail.
///
/// For instance, the type_maps contains a map of string to basic
/// type, a map of string to class type, a map of string to union
/// types, etc. The key of a map entry is the pretty representation
/// of the type, and the value of the map entry is the type.
class type_maps
{
struct priv;
std::unique_ptr<priv> priv_;
public:
type_maps();
~type_maps();
bool
empty() const;
const istring_type_base_wptrs_map_type&
basic_types() const;
istring_type_base_wptrs_map_type&
basic_types();
const istring_type_base_wptrs_map_type&
class_types() const;
istring_type_base_wptrs_map_type&
class_types();
istring_type_base_wptrs_map_type&
union_types();
const istring_type_base_wptrs_map_type&
union_types() const;
istring_type_base_wptrs_map_type&
enum_types();
const istring_type_base_wptrs_map_type&
enum_types() const;
istring_type_base_wptrs_map_type&
typedef_types();
const istring_type_base_wptrs_map_type&
typedef_types() const;
istring_type_base_wptrs_map_type&
qualified_types();
const istring_type_base_wptrs_map_type&
qualified_types() const;
istring_type_base_wptrs_map_type&
pointer_types();
const istring_type_base_wptrs_map_type&
pointer_types() const;
istring_type_base_wptrs_map_type&
reference_types();
const istring_type_base_wptrs_map_type&
reference_types() const;
istring_type_base_wptrs_map_type&
array_types();
const istring_type_base_wptrs_map_type&
array_types() const;
const istring_type_base_wptrs_map_type&
subrange_types() const;
istring_type_base_wptrs_map_type&
subrange_types();
istring_type_base_wptrs_map_type&
function_types();
const istring_type_base_wptrs_map_type&
function_types() const;
const vector<type_base_wptr>&
get_types_sorted_by_name() const;
}; // end class type_maps;
/// This is the abstraction of the set of relevant artefacts (types,
/// variable declarations, functions, templates, etc) bundled together
/// into a translation unit.
class translation_unit : public traversable_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden
translation_unit() = delete;
public:
/// Convenience typedef for a shared pointer on a @ref global_scope.
typedef shared_ptr<scope_decl> global_scope_sptr;
/// The language of the translation unit.
enum language
{
LANG_UNKNOWN = 0,
LANG_Cobol74,
LANG_Cobol85,
LANG_C89,
LANG_C99,
LANG_C11,
LANG_C,
LANG_C_plus_plus_03,
LANG_C_plus_plus_11,
LANG_C_plus_plus_14,
LANG_C_plus_plus,
LANG_ObjC,
LANG_ObjC_plus_plus,
LANG_Fortran77,
LANG_Fortran90,
LANG_Fortran95,
LANG_Ada83,
LANG_Ada95,
LANG_Pascal83,
LANG_Modula2,
LANG_Java,
LANG_PLI,
LANG_UPC,
LANG_D,
LANG_Python,
LANG_Go,
LANG_Rust,
LANG_Mips_Assembler
};
public:
translation_unit(const ir::environment* env,
const std::string& path,
char address_size = 0);
virtual ~translation_unit();
const environment*
get_environment() const;
environment*
get_environment();
void
set_environment(const environment*);
language
get_language() const;
void
set_language(language l);
const std::string&
get_path() const;
void
set_path(const string&);
const std::string&
get_compilation_dir_path() const;
void
set_compilation_dir_path(const std::string&);
const std::string&
get_absolute_path() const;
void
set_corpus(corpus*);
const corpus*
get_corpus() const;
corpus*
get_corpus();
const scope_decl_sptr&
get_global_scope() const;
scope_decl_sptr&
get_global_scope();
const type_maps&
get_types() const;
type_maps&
get_types();
const vector<function_type_sptr>&
get_live_fn_types() const;
location_manager&
get_loc_mgr();
const location_manager&
get_loc_mgr() const;
bool
is_empty() const;
char
get_address_size() const;
void
set_address_size(char);
bool
is_constructed() const;
void
set_is_constructed(bool);
bool
operator==(const translation_unit&) const;
bool
operator!=(const translation_unit&) const;
void
bind_function_type_life_time(function_type_sptr) const;
virtual bool
traverse(ir_node_visitor& v);
friend function_type_sptr
lookup_function_type_in_translation_unit(const function_type& t,
const translation_unit& tu);
friend function_type_sptr
synthesize_function_type_from_translation_unit(const function_type& fn_type,
translation_unit& tu);
friend type_base_sptr
synthesize_type_from_translation_unit(const type_base_sptr& type,
translation_unit& tu);
};//end class translation_unit
/// A comparison functor to compare translation units based on their
/// absolute paths.
struct shared_translation_unit_comp
{
/// Compare two translations units based on their absolute paths.
///
/// @param lhs the first translation unit to consider for the
/// comparison.
///
/// @param rhs the second translatin unit to consider for the
/// comparison.
bool
operator()(const translation_unit_sptr& lhs,
const translation_unit_sptr& rhs) const
{return lhs->get_absolute_path() < rhs->get_absolute_path();}
}; // end struct shared_translation_unit_comp
/// Convenience typedef for an ordered set of @ref
/// translation_unit_sptr.
typedef std::set<translation_unit_sptr,
shared_translation_unit_comp> translation_units;
string
translation_unit_language_to_string(translation_unit::language);
translation_unit::language
string_to_translation_unit_language(const string&);
bool
is_c_language(translation_unit::language l);
bool
is_cplus_plus_language(translation_unit::language l);
bool
is_java_language(translation_unit::language l);
bool
is_ada_language(translation_unit::language l);
bool
operator==(const translation_unit_sptr&, const translation_unit_sptr&);
bool
operator!=(const translation_unit_sptr&, const translation_unit_sptr&);
/// Access specifier for class members.
enum access_specifier
{
no_access,
public_access,
protected_access,
private_access,
};
class elf_symbol;
/// A convenience typedef for a shared pointer to elf_symbol.
typedef shared_ptr<elf_symbol> elf_symbol_sptr;
/// A convenience typedef for a weak pointer to elf_symbol.
typedef weak_ptr<elf_symbol> elf_symbol_wptr;
/// Convenience typedef for a map which key is a string and which
/// value if the elf symbol of the same name.
typedef std::unordered_map<string, elf_symbol_sptr>
string_elf_symbol_sptr_map_type;
/// Convenience typedef for a shared pointer to an
/// string_elf_symbol_sptr_map_type.
typedef shared_ptr<string_elf_symbol_sptr_map_type>
string_elf_symbol_sptr_map_sptr;
/// Convenience typedef for a vector of elf_symbol
typedef std::vector<elf_symbol_sptr> elf_symbols;
/// Convenience typedef for a map which key is a string and which
/// value is a vector of elf_symbol.
typedef std::unordered_map<string, elf_symbols>
string_elf_symbols_map_type;
/// Convenience typedef for a shared pointer to
/// string_elf_symbols_map_type.
typedef shared_ptr<string_elf_symbols_map_type> string_elf_symbols_map_sptr;
/// Abstraction of an elf symbol.
///
/// This is useful when a given corpus has been read from an ELF file.
/// In that case, a given decl might be associated to its underlying
/// ELF symbol, if that decl is publicly exported in the ELF file. In
/// that case, comparing decls might involve comparing their
/// underlying symbols as well.
class elf_symbol
{
public:
/// The type of a symbol.
enum type
{
NOTYPE_TYPE = 0,
OBJECT_TYPE,
FUNC_TYPE,
SECTION_TYPE,
FILE_TYPE,
COMMON_TYPE,
TLS_TYPE,
GNU_IFUNC_TYPE
};
/// The binding of a symbol.
enum binding
{
LOCAL_BINDING = 0,
GLOBAL_BINDING,
WEAK_BINDING,
GNU_UNIQUE_BINDING
};
/// The visibility of the symbol.
enum visibility
{
DEFAULT_VISIBILITY,
PROTECTED_VISIBILITY,
HIDDEN_VISIBILITY,
INTERNAL_VISIBILITY,
};
/// Inject the elf_symbol::version here.
class version;
private:
struct priv;
std::unique_ptr<priv> priv_;
elf_symbol();
elf_symbol(const environment* e,
size_t i,
size_t s,
const string& n,
type t,
binding b,
bool d,
bool c,
const version& ve,
visibility vi,
bool is_in_ksymtab = false,
uint64_t crc = 0,
bool is_suppressed = false);
elf_symbol(const elf_symbol&);
elf_symbol&
operator=(const elf_symbol& s);
public:
static elf_symbol_sptr
create();
static elf_symbol_sptr
create(const environment* e,
size_t i,
size_t s,
const string& n,
type t,
binding b,
bool d,
bool c,
const version& ve,
visibility vi,
bool is_in_ksymtab = false,
uint64_t crc = 0,
bool is_suppressed = false);
const environment*
get_environment() const;
void
set_environment(const environment*) const;
size_t
get_index() const;
void
set_index(size_t);
const string&
get_name() const;
void
set_name(const string& n);
type
get_type() const;
void
set_type(type t);
size_t
get_size() const;
void
set_size(size_t);
binding
get_binding() const;
void
set_binding(binding b);
version&
get_version() const;
void
set_version(const version& v);
void
set_visibility(visibility v);
visibility
get_visibility() const;
bool
is_defined() const;
void
is_defined(bool d);
bool
is_public() const;
bool
is_function() const;
bool
is_variable() const;
bool
is_in_ksymtab() const;
void
set_is_in_ksymtab(bool is_in_ksymtab);
uint64_t
get_crc() const;
void
set_crc(uint64_t crc);
bool
is_suppressed() const;
void
set_is_suppressed(bool is_suppressed);
const elf_symbol_sptr
get_main_symbol() const;
elf_symbol_sptr
get_main_symbol();
bool
is_main_symbol() const;
elf_symbol_sptr
update_main_symbol(const std::string&);
elf_symbol_sptr
get_next_alias() const;
bool
has_aliases() const;
int
get_number_of_aliases() const;
void
add_alias(const elf_symbol_sptr&);
bool
is_common_symbol() const;
bool
has_other_common_instances() const;
elf_symbol_sptr
get_next_common_instance() const;
void
add_common_instance(const elf_symbol_sptr&);
const string&
get_id_string() const;
elf_symbol_sptr
get_alias_from_name(const string& name) const;
elf_symbol_sptr
get_alias_which_equals(const elf_symbol& other) const;
string
get_aliases_id_string(const string_elf_symbols_map_type& symtab,
bool include_symbol_itself = true) const;
string
get_aliases_id_string(bool include_symbol_itself = true) const;
static bool
get_name_and_version_from_id(const string& id,
string& name,
string& ver);
bool
operator==(const elf_symbol&) const;
bool
does_alias(const elf_symbol&) const;
}; // end class elf_symbol.
std::ostream&
operator<<(std::ostream& o, elf_symbol::type t);
std::ostream&
operator<<(std::ostream& o, elf_symbol::binding t);
std::ostream&
operator<<(std::ostream& o, elf_symbol::visibility t);
bool
string_to_elf_symbol_type(const string&, elf_symbol::type&);
bool
string_to_elf_symbol_binding(const string&, elf_symbol::binding&);
bool
string_to_elf_symbol_visibility(const string&, elf_symbol::visibility&);
bool
elf_symbol_is_function(elf_symbol::type);
bool
elf_symbol_is_variable(elf_symbol::type);
bool
operator==(const elf_symbol_sptr& lhs, const elf_symbol_sptr& rhs);
bool
operator!=(const elf_symbol_sptr& lhs, const elf_symbol_sptr& rhs);
bool
elf_symbols_alias(const elf_symbol& s1, const elf_symbol& s2);
void
compute_aliases_for_elf_symbol(const elf_symbol& symbol,
const string_elf_symbols_map_type& symtab,
vector<elf_symbol_sptr>& alias_set);
/// The abstraction of the version of an ELF symbol.
class elf_symbol::version
{
struct priv;
std::unique_ptr<priv> priv_;
public:
version();
version(const string& v,
bool is_default);
version(const version& v);
~version();
operator const string&() const;
const string&
str() const;
void
str(const string& s);
bool
is_default() const;
void
is_default(bool f);
bool
is_empty() const;
bool
operator==(const version& o) const;
bool
operator!=(const version& o) const;
version&
operator=(const version& o);
};// end class elf_symbol::version
class context_rel;
/// A convenience typedef for shared pointers to @ref context_rel
typedef shared_ptr<context_rel> context_rel_sptr;
/// The abstraction of the relationship between an entity and its
/// containing scope (its context). That relationship can carry
/// properties like access rights (if the parent is a class_decl),
/// etc.
///
/// But importantly, this relationship carries a pointer to the
/// actualy parent.
class context_rel
{
protected:
scope_decl* scope_;
enum access_specifier access_;
bool is_static_;
public:
context_rel()
: scope_(0),
access_(no_access),
is_static_(false)
{}
context_rel(scope_decl* s)
: scope_(s),
access_(no_access),
is_static_(false)
{}
context_rel(scope_decl* s,
access_specifier a,
bool f)
: scope_(s),
access_(a),
is_static_(f)
{}
scope_decl*
get_scope() const
{return scope_;}
access_specifier
get_access_specifier() const
{return access_;}
void
set_access_specifier(access_specifier a)
{access_ = a;}
bool
get_is_static() const
{return is_static_;}
void
set_is_static(bool s)
{is_static_ = s;}
void
set_scope(scope_decl* s)
{scope_ = s;}
bool
operator==(const context_rel& o)const
{
return (access_ == o.access_
&& is_static_ == o.is_static_);
}
/// Inequality operator.
///
/// @param o the other instance of @ref context_rel to compare the
/// current instance against.
///
/// @return true iff the current instance of @ref context_rel is
/// different from @p o.
bool
operator!=(const context_rel& o) const
{return !operator==(o);}
virtual ~context_rel();
};// end class context_rel
/// A bitfield that gives callers of abigail::ir::equals() some
/// insight about how different two internal representation artifacts
/// are.
enum change_kind
{
NO_CHANGE_KIND = 0,
/// This means that a given IR artifact has a local type change.
LOCAL_TYPE_CHANGE_KIND = 1 << 0,
/// This means that a given IR artifact has a local non-type change.
/// That is a change that is carried by the artifact itself, not by
/// its type.
LOCAL_NON_TYPE_CHANGE_KIND = 1 << 1,
/// Testing (anding) against this mask means that a given IR artifact has
/// local differences, with respect to the other artifact it was compared
/// against. A local change is a change that is carried by the artifact
/// itself (or its type), rather than by one off its sub-types.
ALL_LOCAL_CHANGES_MASK = LOCAL_TYPE_CHANGE_KIND | LOCAL_NON_TYPE_CHANGE_KIND,
/// This means that a given IR artifact has changes in some of its
/// sub-types, with respect to the other artifact it was compared
/// against.
SUBTYPE_CHANGE_KIND = 1 << 2,
};// end enum change_kind
change_kind
operator|(change_kind, change_kind);
change_kind
operator&(change_kind, change_kind);
change_kind&
operator|=(change_kind&, change_kind);
change_kind&
operator&=(change_kind&, change_kind);
bool
maybe_compare_as_member_decls(const decl_base& l,
const decl_base& r,
change_kind* k);
bool
equals(const decl_base&, const decl_base&, change_kind*);
/// The base class of both types and declarations.
class type_or_decl_base : public ir_traversable_base
{
struct priv;
mutable std::unique_ptr<priv> priv_;
type_or_decl_base();
protected:
/// This is a bitmap type which instance is meant to contain the
/// runtime type of a given ABI artifact. Bits of the identifiers
/// of the type of a given artifact as well as the types it inherits
/// from are to be set to 1.
enum type_or_decl_kind
{
ABSTRACT_TYPE_OR_DECL,
ABSTRACT_DECL_BASE = 1,
ABSTRACT_SCOPE_DECL = 1 << 1,
GLOBAL_SCOPE_DECL = 1 << 2,
NAMESPACE_DECL = 1 << 3,
VAR_DECL = 1 << 4,
FUNCTION_DECL = 1 << 5,
FUNCTION_PARAMETER_DECL = 1 << 6,
METHOD_DECL = 1 << 7,
TEMPLATE_DECL = 1 << 8,
ABSTRACT_TYPE_BASE = 1 << 9,
ABSTRACT_SCOPE_TYPE_DECL = 1 << 10,
BASIC_TYPE = 1 << 11,
QUALIFIED_TYPE = 1 << 12,
POINTER_TYPE = 1 << 13,
REFERENCE_TYPE = 1 << 14,
ARRAY_TYPE = 1 << 15,
ENUM_TYPE = 1 << 16,
TYPEDEF_TYPE = 1 << 17,
CLASS_TYPE = 1 << 18,
UNION_TYPE = 1 << 19,
FUNCTION_TYPE = 1 << 20,
METHOD_TYPE = 1 << 21,
}; // end enum type_or_decl_kind
enum type_or_decl_kind
kind() const;
void
kind(enum type_or_decl_kind);
const void*
runtime_type_instance() const;
void*
runtime_type_instance();
void
runtime_type_instance(void*);
const void*
type_or_decl_base_pointer() const;
void*
type_or_decl_base_pointer();
bool hashing_started() const;
void hashing_started(bool) const;
public:
type_or_decl_base(const environment*,
enum type_or_decl_kind k = ABSTRACT_TYPE_OR_DECL);
type_or_decl_base(const type_or_decl_base&);
virtual ~type_or_decl_base();
bool
get_is_artificial() const;
void
set_is_artificial(bool);
const environment*
get_environment() const;
environment*
get_environment();
void
set_environment(const environment*);
void
set_artificial_location(const location &);
location&
get_artificial_location() const;
bool
has_artificial_location() const;
const corpus*
get_corpus() const;
corpus*
get_corpus();
void
set_translation_unit(translation_unit*);
const translation_unit*
get_translation_unit() const;
translation_unit*
get_translation_unit();
type_or_decl_base&
operator=(const type_or_decl_base&);
virtual bool
traverse(ir_node_visitor&);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const = 0;
friend type_or_decl_base::type_or_decl_kind
operator|(type_or_decl_base::type_or_decl_kind,
type_or_decl_base::type_or_decl_kind);
friend type_or_decl_base::type_or_decl_kind&
operator|=(type_or_decl_base::type_or_decl_kind&,
type_or_decl_base::type_or_decl_kind);
friend type_or_decl_base::type_or_decl_kind
operator&(type_or_decl_base::type_or_decl_kind,
type_or_decl_base::type_or_decl_kind);
friend type_or_decl_base::type_or_decl_kind&
operator&=(type_or_decl_base::type_or_decl_kind&,
type_or_decl_base::type_or_decl_kind);
friend class_decl*
is_class_type(const type_or_decl_base*);
friend pointer_type_def*
is_pointer_type(type_or_decl_base*);
friend type_base*
is_type(const type_or_decl_base*);
friend decl_base*
is_decl(const type_or_decl_base* d);
}; // end class type_or_decl_base
type_or_decl_base::type_or_decl_kind
operator|(type_or_decl_base::type_or_decl_kind,
type_or_decl_base::type_or_decl_kind);
type_or_decl_base::type_or_decl_kind&
operator|=(type_or_decl_base::type_or_decl_kind&,
type_or_decl_base::type_or_decl_kind);
type_or_decl_base::type_or_decl_kind
operator&(type_or_decl_base::type_or_decl_kind,
type_or_decl_base::type_or_decl_kind);
type_or_decl_base::type_or_decl_kind&
operator&=(type_or_decl_base::type_or_decl_kind&,
type_or_decl_base::type_or_decl_kind);
bool
operator==(const type_or_decl_base&, const type_or_decl_base&);
bool
operator==(const type_or_decl_base_sptr&, const type_or_decl_base_sptr&);
bool
operator!=(const type_or_decl_base_sptr&, const type_or_decl_base_sptr&);
void
set_environment_for_artifact(type_or_decl_base* artifact,
const environment* env);
void
set_environment_for_artifact(type_or_decl_base_sptr artifact,
const environment* env);
/// The base type of all declarations.
class decl_base : public virtual type_or_decl_base
{
// Forbidden
decl_base();
struct priv;
protected:
const interned_string&
peek_qualified_name() const;
void
clear_qualified_name();
void
set_qualified_name(const interned_string&) const;
const interned_string&
peek_temporary_qualified_name() const;
void
set_temporary_qualified_name(const interned_string&) const;
public:
// This is public because some internals of the library need to
// update it. But it's opaque to client code anyway, so no big
// deal. Also, it's not handled by a shared_ptr because accessing
// the data members of the priv struct for this decl_base shows up
// on performance profiles when dealing with big binaries with a lot
// of types; dereferencing the shared_ptr involves locking of some
// sort and that is slower than just dereferencing a pointer likere
// here. There are other types for which the priv pointer is
// managed using shared_ptr just fine, because those didn't show up
// during our performance profiling.
priv* priv_;
/// Facility to hash instances of decl_base.
struct hash;
/// ELF visibility
enum visibility
{
VISIBILITY_NONE,
VISIBILITY_DEFAULT,
VISIBILITY_PROTECTED,
VISIBILITY_HIDDEN,
VISIBILITY_INTERNAL
};
/// ELF binding
enum binding
{
BINDING_NONE,
BINDING_LOCAL,
BINDING_GLOBAL,
BINDING_WEAK
};
virtual void
set_scope(scope_decl*);
protected:
const context_rel*
get_context_rel() const;
context_rel*
get_context_rel();
void
set_context_rel(context_rel *c);
public:
decl_base(const environment* e,
const string& name,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
decl_base(const environment* e,
const interned_string& name,
const location& locus,
const interned_string& mangled_name = interned_string(),
visibility vis = VISIBILITY_DEFAULT);
decl_base(const environment*, const location&);
decl_base(const decl_base&);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator!=(const decl_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~decl_base();
virtual size_t
get_hash() const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual const interned_string&
get_scoped_name() const;
bool
get_is_in_public_symbol_table() const;
void
set_is_in_public_symbol_table(bool);
const location&
get_location() const;
void
set_location(const location& l);
const interned_string&
get_name() const;
const interned_string&
get_qualified_parent_name() const;
void
set_name(const string& n);
bool
get_is_anonymous() const;
void
set_is_anonymous(bool);
bool
get_has_anonymous_parent() const;
bool
get_is_anonymous_or_has_anonymous_parent() const;
typedef_decl_sptr
get_naming_typedef() const;
void
set_naming_typedef(const typedef_decl_sptr&);
const interned_string&
get_linkage_name() const;
virtual void
set_linkage_name(const string& m);
scope_decl*
get_scope() const;
visibility
get_visibility() const;
void
set_visibility(visibility v);
const decl_base_sptr
get_earlier_declaration() const;
void
set_earlier_declaration(const decl_base_sptr&);
const decl_base_sptr
get_definition_of_declaration() const;
void
set_definition_of_declaration(const decl_base_sptr&);
const decl_base*
get_naked_definition_of_declaration() const;
bool
get_is_declaration_only() const;
void
set_is_declaration_only(bool f);
friend type_base_sptr
canonicalize(type_base_sptr);
friend bool
equals(const decl_base&, const decl_base&, change_kind*);
friend bool
equals(const var_decl&, const var_decl&, change_kind*);
friend bool
maybe_compare_as_member_decls(const decl_base& l,
const decl_base& r,
change_kind* k);
friend decl_base_sptr
add_decl_to_scope(decl_base_sptr decl, scope_decl* scpe);
friend void
remove_decl_from_scope(decl_base_sptr);
friend decl_base_sptr
insert_decl_into_scope(decl_base_sptr,
vector<shared_ptr<decl_base> >::iterator,
scope_decl*);
friend enum access_specifier
get_member_access_specifier(const decl_base& d);
friend enum access_specifier
get_member_access_specifier(const decl_base_sptr& d);
friend void
set_member_access_specifier(decl_base& d,
access_specifier a);
friend bool
get_member_is_static(const decl_base& d);
friend bool
get_member_is_static(const decl_base_sptr& d);
friend void
set_member_is_static(const decl_base_sptr& d, bool s);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
get_member_function_is_virtual(const function_decl& f);
friend void
set_member_function_is_virtual(function_decl&, bool);
friend class class_or_union;
friend class class_decl;
friend class scope_decl;
};// end class decl_base
bool
operator==(const decl_base_sptr&, const decl_base_sptr&);
bool
operator!=(const decl_base_sptr&, const decl_base_sptr&);
bool
operator==(const type_base_sptr&, const type_base_sptr&);
bool
operator!=(const type_base_sptr&, const type_base_sptr&);
std::ostream&
operator<<(std::ostream&, decl_base::visibility);
std::ostream&
operator<<(std::ostream&, decl_base::binding);
bool
equals(const scope_decl&, const scope_decl&, change_kind*);
/// A declaration that introduces a scope.
class scope_decl : public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
public:
/// Convenience typedef for a vector of @ref decl_base_sptr.
typedef std::vector<decl_base_sptr > declarations;
/// Convenience typedef for a vector of @ref function_type_sptr.
typedef std::vector<function_type_sptr > function_types;
/// Convenience typedef for a vector of @ref scope_decl_sptr.
typedef std::vector<scope_decl_sptr> scopes;
scope_decl();
protected:
virtual decl_base_sptr
add_member_decl(const decl_base_sptr& member);
virtual decl_base_sptr
insert_member_decl(decl_base_sptr member, declarations::iterator before);
virtual void
remove_member_decl(decl_base_sptr member);
public:
struct hash;
scope_decl(const environment* env,
const string& name, const location& locus,
visibility vis = VISIBILITY_DEFAULT);
scope_decl(const environment* env, location& l);
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
const canonical_type_sptr_set_type&
get_canonical_types() const;
canonical_type_sptr_set_type&
get_canonical_types();
const type_base_sptrs_type&
get_sorted_canonical_types() const;
const declarations&
get_member_decls() const;
declarations&
get_member_decls();
const declarations&
get_sorted_member_decls() const;
virtual size_t
get_num_anonymous_member_classes() const;
virtual size_t
get_num_anonymous_member_unions() const;
virtual size_t
get_num_anonymous_member_enums() const;
scopes&
get_member_scopes();
const scopes&
get_member_scopes() const;
bool
is_empty() const;
bool
find_iterator_for_member(const decl_base*, declarations::iterator&);
bool
find_iterator_for_member(const decl_base_sptr, declarations::iterator&);
virtual bool
traverse(ir_node_visitor&);
virtual ~scope_decl();
friend decl_base_sptr
add_decl_to_scope(decl_base_sptr decl, scope_decl* scope);
friend decl_base_sptr
insert_decl_into_scope(decl_base_sptr decl,
scope_decl::declarations::iterator before,
scope_decl* scope);
friend void
remove_decl_from_scope(decl_base_sptr decl);
friend type_base_sptr
canonicalize(type_base_sptr);
};//end class scope_decl
bool
operator==(const scope_decl_sptr&, const scope_decl_sptr&);
bool
operator!=(const scope_decl_sptr&, const scope_decl_sptr&);
/// Hasher for the @ref scope_decl type.
struct scope_decl::hash
{
size_t
operator()(const scope_decl& d) const;
size_t
operator()(const scope_decl* d) const;
};
/// This abstracts the global scope of a given translation unit.
///
/// Only one instance of this class must be present in a given
/// translation_unit. That instance is implicitely created the first
/// time translatin_unit::get_global_scope is invoked.
class global_scope : public scope_decl
{
translation_unit* translation_unit_;
global_scope(translation_unit *tu);
public:
friend class translation_unit;
translation_unit*
get_translation_unit() const
{return translation_unit_;}
virtual ~global_scope();
};
bool
equals(const type_base&, const type_base&, change_kind*);
/// An abstraction helper for type declarations
class type_base : public virtual type_or_decl_base
{
struct priv;
public:
// This priv pointer is not handled by a shared_ptr because
// accessing the data members of the priv struct for this type_base
// shows up on performance profiles when dealing with big binaries
// with a lot of types; dereferencing the shared_ptr involves
// locking of some sort and that is slower than just dereferencing a
// pointer likere here. There are other types for which the priv
// pointer is managed using shared_ptr just fine, because those
// didn't show up during our performance profiling.
priv* priv_;
private:
// Forbid this.
type_base();
static type_base_sptr
get_canonical_type_for(type_base_sptr);
protected:
virtual void
on_canonical_type_set();
public:
/// A hasher for type_base types.
struct hash;
/// A hasher for types. It gets the dynamic type of the current
/// instance of type and hashes it accordingly. Note that the hashing
/// function of this hasher must be updated each time a new kind of
/// type is added to the IR.
struct dynamic_hash;
/// A hasher for shared_ptr<type_base> that will hash it based on the
/// runtime type of the type pointed to.
struct shared_ptr_hash;
type_base(const environment* e, size_t s, size_t a);
friend type_base_sptr canonicalize(type_base_sptr);
type_base_sptr
get_canonical_type() const;
type_base*
get_naked_canonical_type() const;
const interned_string&
get_cached_pretty_representation(bool internal = false) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator!=(const type_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~type_base();
virtual void
set_size_in_bits(size_t);
virtual size_t
get_size_in_bits() const;
virtual void
set_alignment_in_bits(size_t);
virtual size_t
get_alignment_in_bits() const;
};//end class type_base
/// Hash functor for instances of @ref type_base.
struct type_base::hash
{
size_t
operator()(const type_base& t) const;
size_t
operator()(const type_base* t) const;
size_t
operator()(const type_base_sptr t) const;
}; // end struct type_base::hash
/// A predicate for deep equality of instances of
/// type_base*
struct type_ptr_equal
{
bool
operator()(const type_base* l, const type_base* r) const
{
if (!!l != !!r)
return false;
if (l == r)
return true;
if (l)
return *l == *r;
return true;
}
};
/// A predicate for deep equality of instances of
/// shared_ptr<type_base>
struct type_shared_ptr_equal
{
bool
operator()(const type_base_sptr l, const type_base_sptr r) const
{
if (!!l != !!r)
return false;
if (l.get() == r.get())
return true;
if (l)
return *l == *r;
return true;
}
};
bool
equals(const type_decl&, const type_decl&, change_kind*);
/// A basic type declaration that introduces no scope.
class type_decl : public virtual decl_base, public virtual type_base
{
// Forbidden.
type_decl();
public:
/// Facility to hash instance of type_decl
struct hash;
type_decl(const environment* env,
const string& name,
size_t size_in_bits,
size_t alignment_in_bits,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_decl&) const;
bool operator!=(const type_decl&)const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~type_decl();
};// end class type_decl.
bool
equals(const scope_type_decl&, const scope_type_decl&, change_kind*);
bool
operator==(const type_decl_sptr&, const type_decl_sptr&);
bool
operator!=(const type_decl_sptr&, const type_decl_sptr&);
/// A type that introduces a scope.
class scope_type_decl : public scope_decl, public virtual type_base
{
scope_type_decl();
public:
/// Hasher for instances of scope_type_decl
struct hash;
scope_type_decl(const environment* env, const string& name,
size_t size_in_bits, size_t alignment_in_bits,
const location& locus, visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~scope_type_decl();
};
/// The abstraction of a namespace declaration
class namespace_decl : public scope_decl
{
public:
namespace_decl(const environment* env, const string& name,
const location& locus, visibility vis = VISIBILITY_DEFAULT);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~namespace_decl();
bool is_empty_or_has_empty_sub_namespaces() const;
};// end class namespace_decl
bool
equals(const qualified_type_def&, const qualified_type_def&, change_kind*);
/// The abstraction of a qualified type.
class qualified_type_def : public virtual type_base, public virtual decl_base
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden.
qualified_type_def();
protected:
string build_name(bool, bool internal = false) const;
virtual void on_canonical_type_set();
public:
/// A Hasher for instances of qualified_type_def
struct hash;
/// Bit field values representing the cv qualifiers of the
/// underlying type.
enum CV
{
CV_NONE = 0,
CV_CONST = 1,
CV_VOLATILE = 1 << 1,
CV_RESTRICT = 1 << 2
};
qualified_type_def(type_base_sptr type, CV quals, const location& locus);
qualified_type_def(environment* env, CV quals, const location& locus);
virtual size_t
get_size_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const qualified_type_def&) const;
CV
get_cv_quals() const;
void
set_cv_quals(CV cv_quals);
string
get_cv_quals_string_prefix() const;
type_base_sptr
get_underlying_type() const;
void
set_underlying_type(const type_base_sptr&);
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~qualified_type_def();
}; // end class qualified_type_def.
bool
operator==(const qualified_type_def_sptr&, const qualified_type_def_sptr&);
bool
operator!=(const qualified_type_def_sptr&, const qualified_type_def_sptr&);
qualified_type_def::CV
operator|(qualified_type_def::CV, qualified_type_def::CV);
qualified_type_def::CV&
operator|=(qualified_type_def::CV&, qualified_type_def::CV);
qualified_type_def::CV
operator&(qualified_type_def::CV, qualified_type_def::CV);
qualified_type_def::CV
operator~(qualified_type_def::CV);
std::ostream&
operator<<(std::ostream&, qualified_type_def::CV);
string
get_string_representation_of_cv_quals(const qualified_type_def::CV);
interned_string
get_name_of_qualified_type(const type_base_sptr& underlying_type,
qualified_type_def::CV quals,
bool qualified = true, bool internal = false);
qualified_type_def_sptr
lookup_qualified_type(const type_base_sptr&,
qualified_type_def::CV,
const translation_unit&);
bool
equals(const pointer_type_def&, const pointer_type_def&, change_kind*);
/// The abstraction of a pointer type.
class pointer_type_def : public virtual type_base, public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden.
pointer_type_def();
protected:
virtual void on_canonical_type_set();
public:
/// A hasher for instances of pointer_type_def
struct hash;
pointer_type_def(const type_base_sptr& pointed_to_type, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
pointer_type_def(environment* env, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
void
set_pointed_to_type(const type_base_sptr&);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const pointer_type_def&) const;
const type_base_sptr
get_pointed_to_type() const;
type_base*
get_naked_pointed_to_type() const;
virtual void
get_qualified_name(interned_string&, bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~pointer_type_def();
}; // end class pointer_type_def
bool
operator==(const pointer_type_def_sptr&, const pointer_type_def_sptr&);
bool
operator!=(const pointer_type_def_sptr&, const pointer_type_def_sptr&);
bool
equals(const reference_type_def&, const reference_type_def&, change_kind*);
/// Abstracts a reference type.
class reference_type_def : public virtual type_base, public virtual decl_base
{
type_base_wptr pointed_to_type_;
bool is_lvalue_;
// Forbidden.
reference_type_def();
protected:
virtual void on_canonical_type_set();
public:
/// Hasher for intances of reference_type_def.
struct hash;
reference_type_def(const type_base_sptr pointed_to_type,
bool lvalue, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
reference_type_def(const environment* env, bool lvalue, size_t size_in_bits,
size_t alignment_in_bits, const location& locus);
void
set_pointed_to_type(type_base_sptr& pointed_to_type);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const reference_type_def&) const;
type_base_sptr
get_pointed_to_type() const;
bool
is_lvalue() const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~reference_type_def();
}; // end class reference_type_def
bool
operator==(const reference_type_def_sptr&, const reference_type_def_sptr&);
bool
operator!=(const reference_type_def_sptr&, const reference_type_def_sptr&);
bool
equals(const array_type_def&, const array_type_def&, change_kind*);
/// The abstraction of an array type.
class array_type_def : public virtual type_base, public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden.
array_type_def();
void update_size();
public:
/// Hasher for intances of array_type_def.
struct hash;
class subrange_type;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::subrange
typedef shared_ptr<subrange_type> subrange_sptr;
/// Convenience typedef for a vector of @ref subrange_sptr
typedef std::vector<subrange_sptr> subranges_type;
/// Abstraction for an array range type, like in Ada, or just for an
/// array dimension like in C or C++.
class subrange_type : public virtual type_base, public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden.
subrange_type();
public:
virtual ~subrange_type();
/// This class is to hold the value of the bound of a subrange.
/// The value can be either signed or unsigned, at least when it
/// comes from DWARF. The class keeps the sign information, but
/// allows users to access the value as signed or unsigned as they
/// see fit.
class bound_value
{
public:
enum signedness
{
UNSIGNED_SIGNEDNESS,
SIGNED_SIGNEDNESS
};
private:
signedness s_;
public:
union
{
uint64_t unsigned_;
int64_t signed_;
} v_;
bound_value();
bound_value(uint64_t);
bound_value(int64_t);
enum signedness get_signedness() const;
void set_signedness(enum signedness s);
int64_t get_signed_value() const;
uint64_t get_unsigned_value();
void set_unsigned(uint64_t v);
void set_signed(int64_t v);
bool operator==(const bound_value&) const;
}; //end class bound_value
/// Hasher for an instance of array::subrange
struct hash;
subrange_type(const environment* env,
const string& name,
bound_value lower_bound,
bound_value upper_bound,
const type_base_sptr& underlying_type,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
subrange_type(const environment* env,
const string& name,
bound_value lower_bound,
bound_value upper_bound,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
subrange_type(const environment* env,
const string& name,
bound_value upper_bound,
const location& loc,
translation_unit::language l = translation_unit::LANG_C11);
type_base_sptr
get_underlying_type() const;
void
set_underlying_type(const type_base_sptr &);
int64_t
get_upper_bound() const;
int64_t
get_lower_bound() const;
void
set_upper_bound(int64_t ub);
void
set_lower_bound(int64_t lb);
uint64_t
get_length() const;
bool
is_infinite() const;
void
is_infinite(bool);
translation_unit::language
get_language() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
bool
operator==(const subrange_type& o) const;
bool
operator!=(const subrange_type& o) const;
string
as_string() const;
static string
vector_as_string(const vector<subrange_sptr>&);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
traverse(ir_node_visitor&);
}; // end class subrange_type
array_type_def(const type_base_sptr type,
const std::vector<subrange_sptr>& subs,
const location& locus);
array_type_def(environment* env,
const std::vector<subrange_sptr>& subs,
const location& locus);
translation_unit::language
get_language() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
const type_base_sptr
get_element_type() const;
void
set_element_type(const type_base_sptr& element_type);
virtual void
append_subranges(const std::vector<subrange_sptr>& subs);
virtual int
get_dimension_count() const;
virtual bool
is_infinite() const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual string
get_subrange_representation() const;
virtual bool
traverse(ir_node_visitor& v);
const location&
get_location() const;
const std::vector<subrange_sptr>&
get_subranges() const;
virtual ~array_type_def();
}; // end class array_type_def
array_type_def::subrange_type*
is_subrange_type(const type_or_decl_base *type);
array_type_def::subrange_sptr
is_subrange_type(const type_or_decl_base_sptr &type);
bool
equals(const enum_type_decl&, const enum_type_decl&, change_kind*);
/// Abstracts a declaration for an enum type.
class enum_type_decl : public virtual type_base, public virtual decl_base
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
enum_type_decl();
public:
/// A hasher for an enum_type_decl.
struct hash;
/// Enumerator Datum.
class enumerator;
/// Convenience typedef for a list of @ref enumerator.
typedef std::vector<enumerator> enumerators;
/// Constructor of an enum type declaration.
///
/// @param name the name of the enum
///
/// @param locus the locus at which the enum appears in the source
/// code.
///
/// @param underlying_type the underlying type of the enum
///
/// @param enms a list of enumerators for this enum.
///
/// @param mangled_name the mangled name of the enum type.
///
/// @param vis the visibility of instances of this type.
enum_type_decl(const string& name,
const location& locus,
type_base_sptr underlying_type,
enumerators& enms,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
type_base_sptr
get_underlying_type() const;
const enumerators&
get_enumerators() const;
enumerators&
get_enumerators();
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~enum_type_decl();
friend bool
enum_has_non_name_change(const enum_type_decl& l,
const enum_type_decl& r,
change_kind* k);
}; // end class enum_type_decl
bool
operator==(const enum_type_decl_sptr& l, const enum_type_decl_sptr& r);
bool
operator!=(const enum_type_decl_sptr& l, const enum_type_decl_sptr& r);
bool
enum_has_non_name_change(const enum_type_decl& l,
const enum_type_decl& r,
change_kind* k);
/// The abstraction of an enumerator
class enum_type_decl::enumerator
{
class priv;
std::unique_ptr<priv> priv_;
public:
enumerator();
~enumerator();
enumerator(const environment* env, const string& name, int64_t value);
enumerator(const enumerator&);
enumerator&
operator=(const enumerator&);
bool
operator==(const enumerator& other) const;
bool
operator!=(const enumerator& other) const;
const environment*
get_environment() const;
const interned_string&
get_name() const;
const interned_string&
get_qualified_name(bool internal = false) const;
void
set_name(const string& n);
int64_t
get_value() const;
void
set_value(int64_t v);
enum_type_decl*
get_enum_type() const;
void
set_enum_type(enum_type_decl*);
}; // end class enum_type_def::enumerator
bool
equals(const typedef_decl&, const typedef_decl&, change_kind*);
/// The abstraction of a typedef declaration.
class typedef_decl : public virtual type_base, public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden
typedef_decl();
public:
/// Hasher for the typedef_decl type.
struct hash;
typedef_decl(const string& name,
const type_base_sptr underlying_type,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
typedef_decl(const string& name,
environment* env,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT);
virtual size_t
get_size_in_bits() const;
virtual size_t
get_alignment_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
type_base_sptr
get_underlying_type() const;
void
set_underlying_type(const type_base_sptr&);
virtual bool
traverse(ir_node_visitor&);
virtual ~typedef_decl();
};// end class typedef_decl
/// The abstraction for a data member context relationship. This
/// relates a data member to its parent class.
///
/// The relationship carries properties like the offset of the data
/// member, if applicable.
class dm_context_rel : public context_rel
{
protected:
struct priv;
std::unique_ptr<priv> priv_;
public:
dm_context_rel();
dm_context_rel(scope_decl* s,
bool is_laid_out,
size_t offset_in_bits,
access_specifier a,
bool is_static);
dm_context_rel(scope_decl* s);
bool
get_is_laid_out() const;
void
set_is_laid_out(bool f);
size_t
get_offset_in_bits() const;
void
set_offset_in_bits(size_t o);
const var_decl*
get_anonymous_data_member() const;
void
set_anonymous_data_member(var_decl *);
bool
operator==(const dm_context_rel& o) const;
bool
operator!=(const dm_context_rel& o) const;
virtual ~dm_context_rel();
};// end class class_decl::dm_context_rel
bool
equals(const var_decl&, const var_decl&, change_kind*);
bool
equals_modulo_cv_qualifier(const array_type_def*, const array_type_def*);
/// Abstracts a variable declaration.
class var_decl : public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden
var_decl();
virtual void
set_scope(scope_decl*);
public:
/// Hasher for a var_decl type.
struct hash;
/// Equality functor to compare pointers to variable_decl.
struct ptr_equal;
var_decl(const string& name,
type_base_sptr type,
const location& locus,
const string& mangled_name,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
virtual bool
operator==(const decl_base&) const;
const type_base_sptr
get_type() const;
const type_base*
get_naked_type() const;
binding
get_binding() const;
void
set_binding(binding b);
void
set_symbol(const elf_symbol_sptr& sym);
const elf_symbol_sptr&
get_symbol() const;
var_decl_sptr
clone() const;
interned_string
get_id() const;
virtual const interned_string&
get_qualified_name(bool internal = false) const;
virtual size_t
get_hash() const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
string
get_anon_dm_reliable_name(bool qualified = true) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~var_decl();
friend void
set_data_member_offset(var_decl_sptr m, uint64_t o);
friend uint64_t
get_data_member_offset(const var_decl_sptr m);
friend uint64_t
get_data_member_offset(const var_decl& m);
friend uint64_t
get_absolute_data_member_offset(const var_decl& m);
friend uint64_t
get_absolute_data_member_offset(const var_decl_sptr& m);
friend void
set_data_member_is_laid_out(var_decl_sptr m, bool l);
friend bool
get_data_member_is_laid_out(const var_decl& m);
friend bool
get_data_member_is_laid_out(const var_decl_sptr m);
}; // end class var_decl
bool
equals(const function_decl&, const function_decl&, change_kind*);
/// Abstraction for a function declaration.
class function_decl : public virtual decl_base
{
struct priv;
// This priv pointer is not handled by a shared_ptr because
// accessing the data members of the priv struct for this
// function_decl shows up on performance profiles when dealing with
// big binaries with a lot of types; dereferencing the shared_ptr
// involves locking of some sort and that is slower than just
// dereferencing a pointer likere here. There are other types for
// which the priv pointer is managed using shared_ptr just fine,
// because those didn't show up during our performance profiling.
priv* priv_;
public:
/// Hasher for function_decl
struct hash;
/// Equality functor to compare pointers to function_decl
struct ptr_equal;
/// Abstraction for the parameter of a function.
class parameter;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::parameter
typedef shared_ptr<parameter> parameter_sptr;
/// Convenience typedef for a vector of @ref parameter_sptr
typedef std::vector<parameter_sptr> parameters;
function_decl(const string& name,
function_type_sptr function_type,
bool declared_inline,
const location& locus,
const string& mangled_name,
visibility vis,
binding bind);
function_decl(const string& name,
type_base_sptr fn_type,
bool declared_inline,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
string
get_pretty_representation_of_declarator (bool internal = false) const;
const std::vector<parameter_sptr >&
get_parameters() const;
void
append_parameter(parameter_sptr parm);
void
append_parameters(std::vector<parameter_sptr >& parms);
parameters::const_iterator
get_first_non_implicit_parm() const;
const function_type_sptr
get_type() const;
const function_type*
get_naked_type() const;
const type_base_sptr
get_return_type() const;
void
set_type(const function_type_sptr& fn_type);
void
set_symbol(const elf_symbol_sptr& sym);
const elf_symbol_sptr&
get_symbol() const;
bool
is_declared_inline() const;
binding
get_binding() const;
function_decl_sptr
clone() const;
virtual bool
operator==(const decl_base& o) const;
/// Return true iff the function takes a variable number of
/// parameters.
///
/// @return true if the function taks a variable number
/// of parameters.
bool
is_variadic() const;
virtual size_t
get_hash() const;
interned_string
get_id() const;
virtual bool
traverse(ir_node_visitor&);
virtual ~function_decl();
}; // end class function_decl
bool
operator==(const function_decl_sptr& l, const function_decl_sptr& r);
bool
operator!=(const function_decl_sptr& l, const function_decl_sptr& r);
bool
function_decls_alias(const function_decl& f1, const function_decl& f2);
bool
equals(const function_decl::parameter&,
const function_decl::parameter&,
change_kind*);
/// A comparison functor to compare pointer to instances of @ref
/// type_or_decl_base.
struct type_or_decl_base_comp
{
/// Comparison operator for ABI artifacts.
///
/// @param f the first ABI artifact to consider for the comparison.
///
/// @param s the second ABI artifact to consider for the comparison.
///
/// @return true iff @p f is lexicographically less than than @p s.
bool
operator()(const type_or_decl_base *f,
const type_or_decl_base *s)
{
function_decl *f_fn = is_function_decl(f), *s_fn = is_function_decl(s);
if (f_fn && s_fn)
return function_decl_is_less_than(*f_fn, *s_fn);
var_decl *f_var = is_var_decl(f), *s_var = is_var_decl(s);
if (f_var && s_var)
return get_name(f_var) < get_name(s_var);
string l_repr = get_pretty_representation(f),
r_repr = get_pretty_representation(s);
return l_repr < r_repr;
}
/// Comparison operator for ABI artifacts.
///
/// @param f the first ABI artifact to consider for the comparison.
///
/// @param s the second ABI artifact to consider for the comparison.
///
/// @return true iff @p f is lexicographically less than than @p s.
bool
operator()(const type_or_decl_base_sptr& f,
const type_or_decl_base_sptr& s)
{return operator()(f.get(), s.get());}
}; // end struct type_or_decl_base_comp
/// Abstraction of a function parameter.
class function_decl::parameter : public decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
public:
/// Hasher for an instance of function::parameter
struct hash;
parameter(const type_base_sptr type,
unsigned index,
const string& name,
const location& loc,
bool variadic_marker = false);
parameter(const type_base_sptr type,
unsigned index,
const string& name,
const location& loc,
bool variadic_marker,
bool is_artificial);
parameter(const type_base_sptr type,
const string& name,
const location& loc,
bool variadic_marker = false,
bool is_artificial = false);
parameter(const type_base_sptr type,
unsigned index = 0,
bool variadic_marker = false);
virtual ~parameter();
const type_base_sptr
get_type()const;
interned_string
get_type_name() const;
const string
get_type_pretty_representation() const;
interned_string
get_name_id() const;
unsigned
get_index() const;
void
set_index(unsigned i);
bool
get_variadic_marker() const;
bool
operator==(const parameter& o) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual size_t
get_hash() const;
virtual void
get_qualified_name(interned_string& qualified_name,
bool internal = false) const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
}; // end class function_decl::parameter
bool
operator==(const function_decl::parameter_sptr&,
const function_decl::parameter_sptr&);
/// A hashing functor for a function_decl::parameter.
struct function_decl::parameter::hash
{
size_t
operator()(const function_decl::parameter&) const;
size_t
operator()(const function_decl::parameter*) const;
size_t
operator()(const function_decl::parameter_sptr) const;
}; // end struct function_decl::parameter::hash
function_decl::parameter*
is_function_parameter(const type_or_decl_base*);
function_decl::parameter_sptr
is_function_parameter(const type_or_decl_base_sptr tod);
bool
equals(const function_type&, const function_type&, change_kind*);
/// Abstraction of a function type.
class function_type : public virtual type_base
{
protected:
virtual void on_canonical_type_set();
public:
/// Hasher for an instance of function_type
struct hash;
/// Convenience typedef for a shared pointer on a @ref
/// function_decl::parameter
typedef shared_ptr<function_decl::parameter> parameter_sptr;
/// Convenience typedef for a vector of @ref parameter_sptr
typedef std::vector<parameter_sptr> parameters;
struct priv;
std::unique_ptr<priv> priv_;
private:
function_type();
public:
function_type(type_base_sptr return_type,
const parameters& parms,
size_t size_in_bits,
size_t alignment_in_bits);
function_type(type_base_sptr return_type,
size_t size_in_bits,
size_t alignment_in_bits);
function_type(const environment* env,
size_t size_in_bits,
size_t alignment_in_bits);
type_base_sptr
get_return_type() const;
void
set_return_type(type_base_sptr t);
const parameters&
get_parameters() const;
const parameter_sptr
get_parm_at_index_from_first_non_implicit_parm(size_t) const;
void
set_parameters(const parameters &p);
void
append_parameter(parameter_sptr parm);
bool
is_variadic() const;
parameters::const_iterator
get_first_non_implicit_parm() const;
parameters::const_iterator
get_first_parm() const;
const interned_string&
get_cached_name(bool internal = false) const;
virtual bool
operator==(const type_base&) const;
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
traverse(ir_node_visitor&);
virtual ~function_type();
friend bool
equals(const function_type&, const function_type&, change_kind*);
};//end class function_type
/// The hashing functor for @ref function_type.
struct function_type::hash
{
size_t
operator()(const function_type& t) const;
size_t
operator()(const function_type* t) const;
size_t
operator()(const function_type_sptr t) const;
};// end struct function_type::hash
/// Abstracts the type of a class member function.
class method_type : public function_type
{
struct priv;
std::unique_ptr<priv> priv_;
method_type();
public:
/// Hasher for intances of method_type
struct hash;
method_type(type_base_sptr return_type,
class_or_union_sptr class_type,
const std::vector<function_decl::parameter_sptr>& parms,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(type_base_sptr return_type,
type_base_sptr class_type,
const std::vector<function_decl::parameter_sptr>& parms,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(class_or_union_sptr class_type,
bool is_const,
size_t size_in_bits,
size_t alignment_in_bits);
method_type(const environment* env,
size_t size_in_bits,
size_t alignment_in_bits);
class_or_union_sptr
get_class_type() const;
void
set_class_type(const class_or_union_sptr& t);
void set_is_const(bool);
bool get_is_const() const;
virtual ~method_type();
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
friend interned_string
get_method_type_name(const method_type& fn_type, bool internal);
};// end class method_type.
/// The base class of templates.
class template_decl : public virtual decl_base
{
class priv;
std::unique_ptr<priv> priv_;
template_decl();
public:
/// Hasher.
struct hash;
template_decl(const environment* env,
const string& name,
const location& locus,
visibility vis = VISIBILITY_DEFAULT);
void
add_template_parameter(const template_parameter_sptr p);
const std::list<template_parameter_sptr>&
get_template_parameters() const;
virtual bool
operator==(const template_decl& o) const;
virtual ~template_decl();
};//end class template_decl
/// Base class for a template parameter. Client code should use the
/// more specialized type_template_parameter,
/// non_type_template_parameter and template_template_parameter below.
class template_parameter
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
template_parameter();
public:
/// Hashers.
struct hash;
struct dynamic_hash;
struct shared_ptr_hash;
template_parameter(unsigned index,
template_decl_sptr enclosing_tdecl);
virtual bool
operator==(const template_parameter&) const;
bool
operator!=(const template_parameter&) const;
unsigned
get_index() const;
const template_decl_sptr
get_enclosing_template_decl() const;
bool
get_hashing_has_started() const;
void
set_hashing_has_started(bool f) const;
virtual ~template_parameter();
};//end class template_parameter
struct template_decl::hash
{
size_t
operator()(const template_decl& t) const;
};// end struct template_decl::hash
/// Abstracts a type template parameter.
class type_tparameter : public template_parameter, public virtual type_decl
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
type_tparameter();
public:
/// Hasher.
struct hash;
type_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
const location& locus);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const template_parameter&) const;
virtual bool
operator==(const type_tparameter&) const;
virtual ~type_tparameter();
};// end class type_tparameter.
/// Abstracts non type template parameters.
class non_type_tparameter : public template_parameter, public virtual decl_base
{
class priv;
std::unique_ptr<priv> priv_;
type_base_wptr type_;
// Forbidden
non_type_tparameter();
public:
/// Hasher.
struct hash;
non_type_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
type_base_sptr type,
const location& locus);
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_parameter&) const;
const type_base_sptr
get_type() const;
virtual ~non_type_tparameter();
};// end class non_type_tparameter
/// Hasher for the @ref non_type_tparameter type.
struct non_type_tparameter::hash
{
size_t
operator()(const non_type_tparameter& t) const;
size_t
operator()(const non_type_tparameter* t) const;
};
class template_tparameter;
/// Abstracts a template template parameter.
class template_tparameter : public type_tparameter, public template_decl
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
template_tparameter();
public:
/// A hasher for instances of template_tparameter
struct hash;
template_tparameter(unsigned index,
template_decl_sptr enclosing_tdecl,
const string& name,
const location& locus);
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const template_parameter&) const;
virtual bool
operator==(const template_decl&) const;
virtual ~template_tparameter();
};
/// This abstracts a composition of types based on template type
/// parameters. The result of the composition is a type that can be
/// referred to by a template non-type parameter. Instances of this
/// type can appear at the same level as template parameters, in the
/// scope of a template_decl.
class type_composition : public template_parameter, public virtual decl_base
{
class priv;
std::unique_ptr<priv> priv_;
type_composition();
public:
struct hash;
type_composition(unsigned index,
template_decl_sptr tdecl,
type_base_sptr composed_type);
const type_base_sptr
get_composed_type() const;
void
set_composed_type(type_base_sptr t);
virtual size_t
get_hash() const;
virtual ~type_composition();
};
/// Hasher for the @ref type_composition type.
struct type_composition::hash
{
size_t
operator()(const type_composition& t) const;
size_t
operator()(const type_composition* t) const;
}; //struct type_composition::hash
/// Abstract a function template declaration.
class function_tdecl : public template_decl, public scope_decl
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
function_tdecl();
public:
/// Hash functor for function templates.
struct hash;
struct shared_ptr_hash;
function_tdecl(const environment* env,
const location& locus,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
function_tdecl(function_decl_sptr pattern,
const location& locus,
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_NONE);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_decl&) const;
virtual bool
operator==(const function_tdecl&) const;
void
set_pattern(shared_ptr<function_decl> p);
shared_ptr<function_decl>
get_pattern() const;
binding
get_binding() const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~function_tdecl();
}; // end class function_tdecl.
/// Abstract a class template.
class class_tdecl : public template_decl, public scope_decl
{
class priv;
std::unique_ptr<priv> priv_;
// Forbidden
class_tdecl();
public:
/// Hashers.
struct hash;
struct shared_ptr_hash;
class_tdecl(const environment* env, const location& locus,
visibility vis = VISIBILITY_DEFAULT);
class_tdecl(class_decl_sptr pattern,
const location& locus,
visibility vis = VISIBILITY_DEFAULT);
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const template_decl&) const;
virtual bool
operator==(const class_tdecl&) const;
void
set_pattern(class_decl_sptr p);
shared_ptr<class_decl>
get_pattern() const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_tdecl();
};// end class class_tdecl
/// The base class for member types, data members and member
/// functions. Its purpose is mainly to carry the access specifier
/// (and possibly other properties that might be shared by all class
/// members) for the member.
class member_base
{
protected:
enum access_specifier access_;
bool is_static_;
private:
// Forbidden
member_base();
public:
/// Hasher.
struct hash;
member_base(access_specifier a, bool is_static = false)
: access_(a), is_static_(is_static)
{}
/// Getter for the access specifier of this member.
///
/// @return the access specifier for this member.
access_specifier
get_access_specifier() const
{return access_;}
/// Setter for the access specifier of this member.
///
/// @param a the new access specifier.
void
set_access_specifier(access_specifier a)
{access_ = a;}
/// @return true if the member is static, false otherwise.
bool
get_is_static() const
{return is_static_;}
/// Set a flag saying if the parameter is static or not.
///
/// @param f set to true if the member is static, false otherwise.
void
set_is_static(bool f)
{is_static_ = f;}
virtual bool
operator==(const member_base& o) const;
};// end class member_base
/// Abstraction of the declaration of a method.
class method_decl : public function_decl
{
method_decl();
virtual void
set_scope(scope_decl*);
public:
method_decl(const string& name, method_type_sptr type,
bool declared_inline, const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
method_decl(const string& name,
function_type_sptr type,
bool declared_inline,
const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
method_decl(const string& name, type_base_sptr type,
bool declared_inline, const location& locus,
const string& mangled_name = "",
visibility vis = VISIBILITY_DEFAULT,
binding bind = BINDING_GLOBAL);
virtual void
set_linkage_name(const string&);
/// @return the type of the current instance of the
/// method_decl.
const method_type_sptr
get_type() const;
void
set_type(const method_type_sptr fn_type)
{function_decl::set_type(fn_type);}
friend bool
get_member_function_is_ctor(const function_decl&);
friend void
set_member_function_is_ctor(function_decl&, bool);
friend void
set_member_function_is_ctor(const function_decl_sptr&, bool);
friend bool
get_member_function_is_dtor(const function_decl&);
friend void
set_member_function_is_dtor(function_decl&, bool);
friend void
set_member_function_is_dtor(const function_decl_sptr&, bool);
friend bool
get_member_function_is_static(const function_decl&);
friend void
set_member_function_is_static(const function_decl&, bool);
friend bool
get_member_function_is_const(const function_decl&);
friend void
set_member_function_is_const(function_decl&, bool);
friend void
set_member_function_is_const(const function_decl_sptr&, bool);
friend bool
member_function_has_vtable_offset(const function_decl&);
friend ssize_t
get_member_function_vtable_offset(const function_decl&);
friend void
set_member_function_vtable_offset(function_decl&, ssize_t);
friend void
set_member_function_vtable_offset(const function_decl_sptr&, ssize_t);
friend bool
get_member_function_is_virtual(const function_decl&);
friend void
set_member_function_is_virtual(function_decl&, bool);
virtual ~method_decl();
};// end class method_decl
bool
operator==(const method_decl_sptr& l, const method_decl_sptr& r);
bool
operator!=(const method_decl_sptr& l, const method_decl_sptr& r);
/// The base type of @ref class_decl and @ref union_decl
class class_or_union : public scope_type_decl
{
public:
struct priv;
priv *priv_;
private:
// Forbidden
class_or_union();
protected:
virtual decl_base_sptr
add_member_decl(const decl_base_sptr&);
virtual decl_base_sptr
insert_member_decl(decl_base_sptr member, declarations::iterator before);
virtual void
remove_member_decl(decl_base_sptr);
void
maybe_fixup_members_of_anon_data_member(var_decl_sptr& anon_dm);
public:
/// Hasher.
struct hash;
/// Convenience typedef
/// @{
typedef vector<type_base_sptr> member_types;
typedef vector<var_decl_sptr> data_members;
typedef vector<method_decl_sptr> member_functions;
typedef unordered_map<ssize_t, member_functions> virtual_mem_fn_map_type;
typedef unordered_map<string, method_decl*> string_mem_fn_ptr_map_type;
typedef unordered_map<string, method_decl_sptr> string_mem_fn_sptr_map_type;
/// @}
class_or_union(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
const location& locus, visibility vis,
member_types& mbrs, data_members& data_mbrs,
member_functions& member_fns);
class_or_union(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
const location& locus, visibility vis);
class_or_union(const environment* env, const string& name,
bool is_declaration_only = true);
virtual void
set_size_in_bits(size_t);
virtual size_t
get_size_in_bits() const;
virtual size_t
get_alignment_in_bits() const;
virtual void
set_alignment_in_bits(size_t);
void
insert_member_type(type_base_sptr t,
declarations::iterator before);
void
add_member_type(type_base_sptr t);
type_base_sptr
add_member_type(type_base_sptr t, access_specifier a);
void
remove_member_type(type_base_sptr t);
const member_types&
get_member_types() const;
virtual size_t
get_num_anonymous_member_classes() const;
virtual size_t
get_num_anonymous_member_unions() const;
virtual size_t
get_num_anonymous_member_enums() const;
type_base_sptr
find_member_type(const string& name) const;
void
add_data_member(var_decl_sptr v, access_specifier a,
bool is_laid_out, bool is_static,
size_t offset_in_bits);
const data_members&
get_data_members() const;
const var_decl_sptr
find_data_member(const string&) const;
const var_decl_sptr
find_data_member(const var_decl_sptr&) const;
const var_decl_sptr
find_anonymous_data_member(const var_decl_sptr&) const;
const data_members&
get_non_static_data_members() const;
void
add_member_function(method_decl_sptr f,
access_specifier a,
bool is_static, bool is_ctor,
bool is_dtor, bool is_const);
void
add_member_function(method_decl_sptr f,
access_specifier a,
bool is_virtual,
size_t vtable_offset,
bool is_static, bool is_ctor,
bool is_dtor, bool is_const);
const member_functions&
get_member_functions() const;
const method_decl*
find_member_function(const string& mangled_name) const;
method_decl*
find_member_function(const string& mangled_name);
method_decl_sptr
find_member_function_sptr(const string& mangled_name);
const method_decl*
find_member_function_from_signature(const string& s) const;
method_decl*
find_member_function_from_signature(const string& s);
void
add_member_function_template(member_function_template_sptr);
const member_function_templates&
get_member_function_templates() const;
void
add_member_class_template(member_class_template_sptr m);
const member_class_templates&
get_member_class_templates() const;
bool
has_no_member() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const class_or_union&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_or_union();
friend method_decl_sptr
copy_member_function(class_or_union_sptr& t,
const method_decl*m);
friend method_decl_sptr
copy_member_function(class_or_union_sptr& t,
const method_decl_sptr& m);
friend void
fixup_virtual_member_function(method_decl_sptr method);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
equals(const class_or_union&, const class_or_union&, change_kind*);
friend bool
equals(const class_decl&, const class_decl&, change_kind*);
friend class method_decl;
friend class class_decl;
}; // end class class_or_union
method_decl_sptr
copy_member_function(const class_or_union_sptr& clazz,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const class_or_union_sptr& clazz,
const method_decl* f);
bool
operator==(const class_or_union_sptr& l, const class_or_union_sptr& r);
bool
operator!=(const class_or_union_sptr& l, const class_or_union_sptr& r);
/// Hasher for the @ref class_or_union type
struct class_or_union::hash
{
size_t
operator()(const class_or_union& t) const;
size_t
operator()(const class_or_union* t) const;
}; // end struct class_decl::hash
/// Abstracts a class declaration.
class class_decl : public class_or_union
{
// Forbidden
class_decl();
protected:
virtual decl_base_sptr
insert_member_decl(decl_base_sptr member, declarations::iterator before);
public:
/// Hasher.
struct hash;
/// Forward declarations.
class base_spec;
/// Convenience typedef
/// @{
typedef shared_ptr<base_spec> base_spec_sptr;
typedef vector<base_spec_sptr> base_specs;
/// @}
protected:
virtual void
on_canonical_type_set();
private:
struct priv;
// This priv it's not handled by a shared_ptr because accessing the
// data members of the priv struct for this class_decl shows up on
// performance profiles when dealing with big binaries with a lot of
// types; dereferencing the shared_ptr involves locking of some sort
// and that is slower than just dereferencing a pointer likere here.
// There are other types for which the priv pointer is managed using
// shared_ptr just fine, because those didn't show up during our
// performance profiling.
priv * priv_;
public:
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus,
visibility vis, base_specs& bases,
member_types& mbrs, data_members& data_mbrs,
member_functions& member_fns);
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus,
visibility vis, base_specs& bases,
member_types& mbrs, data_members& data_mbrs,
member_functions& member_fns, bool is_anonymous);
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus, visibility vis);
class_decl(const environment* env, const string& name,
size_t size_in_bits, size_t align_in_bits,
bool is_struct, const location& locus,
visibility vis, bool is_anonymous);
class_decl(const environment* env, const string& name, bool is_struct,
bool is_declaration_only = true);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
void
is_struct(bool f);
bool
is_struct() const;
void
add_base_specifier(shared_ptr<base_spec> b);
const base_specs&
get_base_specifiers() const;
class_decl_sptr
find_base_class(const string&) const;
const member_functions&
get_virtual_mem_fns() const;
const virtual_mem_fn_map_type&
get_virtual_mem_fns_map() const;
void
sort_virtual_mem_fns();
bool
has_no_base_nor_member() const;
bool
has_virtual_member_functions() const;
bool
has_virtual_bases() const;
bool
has_vtable() const;
ssize_t
get_biggest_vtable_offset() const;
virtual size_t
get_hash() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const class_decl&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~class_decl();
friend void
fixup_virtual_member_function(method_decl_sptr method);
friend void
set_member_is_static(decl_base& d, bool s);
friend bool
equals(const class_decl&, const class_decl&, change_kind*);
friend class method_decl;
friend class class_or_union;
};// end class class_decl
bool
equals(const class_decl&, const class_decl&, change_kind*);
method_decl_sptr
copy_member_function(const class_decl_sptr& clazz,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const class_decl_sptr& clazz,
const method_decl* f);
void
fixup_virtual_member_function(method_decl_sptr method);
/// Hasher for the @ref class_decl type
struct class_decl::hash
{
size_t
operator()(const class_decl& t) const;
size_t
operator()(const class_decl* t) const;
}; // end struct class_decl::hash
enum access_specifier
get_member_access_specifier(const decl_base&);
enum access_specifier
get_member_access_specifier(const decl_base_sptr&);
void
set_member_access_specifier(decl_base&,
access_specifier);
void
set_member_access_specifier(const decl_base_sptr&,
access_specifier);
std::ostream&
operator<<(std::ostream&, access_specifier);
bool
operator==(const class_decl_sptr& l, const class_decl_sptr& r);
bool
operator!=(const class_decl_sptr& l, const class_decl_sptr& r);
bool
equals(const class_decl::base_spec&,
const class_decl::base_spec&,
change_kind*);
/// Abstraction of a base specifier in a class declaration.
class class_decl::base_spec : public member_base,
public virtual decl_base
{
struct priv;
std::unique_ptr<priv> priv_;
// Forbidden
base_spec();
public:
/// Hasher.
struct hash;
base_spec(const class_decl_sptr& base, access_specifier a,
long offset_in_bits = -1, bool is_virtual = false);
base_spec(const type_base_sptr& base, access_specifier a,
long offset_in_bits = -1, bool is_virtual = false);
virtual ~base_spec();
class_decl_sptr
get_base_class() const;
bool
get_is_virtual() const;
long
get_offset_in_bits() const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const member_base&) const;
virtual size_t
get_hash() const;
virtual bool
traverse(ir_node_visitor&);
};// end class class_decl::base_spec
bool
operator==(const class_decl::base_spec_sptr& l,
const class_decl::base_spec_sptr& r);
bool
operator!=(const class_decl::base_spec_sptr& l,
const class_decl::base_spec_sptr& r);
class_decl::base_spec*
is_class_base_spec(type_or_decl_base*);
class_decl::base_spec_sptr
is_class_base_spec(type_or_decl_base_sptr);
/// Abstracts a union type declaration.
class union_decl : public class_or_union
{
// Forbid
union_decl();
public:
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis, member_types& mbrs,
data_members& data_mbrs, member_functions& member_fns);
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis, member_types& mbrs,
data_members& data_mbrs, member_functions& member_fns,
bool is_anonymous);
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis);
union_decl(const environment* env, const string& name,
size_t size_in_bits, const location& locus,
visibility vis, bool is_anonymous);
union_decl(const environment* env, const string& name,
bool is_declaration_only = true);
virtual string
get_pretty_representation(bool internal = false,
bool qualified_name = true) const;
virtual bool
operator==(const decl_base&) const;
virtual bool
operator==(const type_base&) const;
virtual bool
operator==(const union_decl&) const;
virtual bool
traverse(ir_node_visitor& v);
virtual ~union_decl();
}; // union_decl
bool
equals(const union_decl&, const union_decl&, change_kind*);
method_decl_sptr
copy_member_function(const union_decl_sptr& union_type,
const method_decl_sptr& f);
method_decl_sptr
copy_member_function(const union_decl_sptr& union_type,
const method_decl* f);
bool
operator==(const union_decl_sptr& l, const union_decl_sptr& r);
bool
operator!=(const union_decl_sptr& l, const union_decl_sptr& r);
/// Abstraction of a member function context relationship. This
/// relates a member function to its parent class.
class mem_fn_context_rel : public context_rel
{
protected:
bool is_virtual_;
ssize_t vtable_offset_in_bits_;
bool is_constructor_;
bool is_destructor_;
bool is_const_;
public:
mem_fn_context_rel()
: context_rel(),
is_virtual_(false),
vtable_offset_in_bits_(-1),
is_constructor_(false),
is_destructor_(false),
is_const_(false)
{}
mem_fn_context_rel(scope_decl* s)
: context_rel(s),
is_virtual_(false),
vtable_offset_in_bits_(-1),
is_constructor_(false),
is_destructor_(false),
is_const_(false)
{}
mem_fn_context_rel(scope_decl* s,
bool is_constructor,
bool is_destructor,
bool is_const,
bool is_virtual,
size_t vtable_offset_in_bits,
access_specifier access,
bool is_static)
: context_rel(s, access, is_static),
is_virtual_(is_virtual),
vtable_offset_in_bits_(vtable_offset_in_bits),
is_constructor_(is_constructor),
is_destructor_(is_destructor),
is_const_(is_const)
{}
bool
is_virtual() const
{return is_virtual_;}
void
is_virtual(bool is_virtual)
{is_virtual_ = is_virtual;}
/// Getter for the vtable offset property.
///
/// This is the vtable offset of the member function of this
/// relation.
///
/// @return the vtable offset property of the relation.
size_t
vtable_offset() const
{return vtable_offset_in_bits_;}
/// Setter for the vtable offset property.
///
/// This is the vtable offset of the member function of this
/// relation.
///
/// @partam s the new vtable offset.
void
vtable_offset(size_t s)
{vtable_offset_in_bits_ = s;}
/// Getter for the 'is-constructor' property.
///
/// This tells if the member function of this relation is a
/// constructor.
///
/// @return the is-constructor property of the relation.
bool
is_constructor() const
{return is_constructor_;}
/// Setter for the 'is-constructor' property.
///
/// @param f the new value of the the property. Is true if this is
/// for a constructor, false otherwise.
void
is_constructor(bool f)
{is_constructor_ = f;}
/// Getter for the 'is-destructor' property.
///
/// Tells if the member function of this relation is a destructor.
///
/// @return the is-destructor property of the relation;
bool
is_destructor() const
{return is_destructor_;}
/// Setter for the 'is-destructor' property.
///
/// @param f the new value of the property. Is true if this is for
/// a destructor, false otherwise.
void
is_destructor(bool f)
{is_destructor_ = f;}
/// Getter for the 'is-const' property.
///
/// Tells if the member function of this relation is a const member
/// function.
///
/// @return the 'is-const' property of the relation.
bool
is_const() const
{return is_const_;}
/// Setter for the 'is-const' property.
///
/// @param f the new value of the property. Is true if this is for
/// a const entity, false otherwise.
void
is_const(bool f)
{is_const_ = f;}
virtual ~mem_fn_context_rel();
}; // end class mem_fn_context_rel
method_decl*
is_method_decl(const type_or_decl_base*);
method_decl*
is_method_decl(const type_or_decl_base&);
method_decl_sptr
is_method_decl(const type_or_decl_base_sptr&);
const var_decl*
lookup_data_member(const type_base* type,
const char* dm_name);
const function_decl::parameter*
get_function_parameter(const decl_base* fun,
unsigned parm_num);
/// Abstract a member function template.
class member_function_template : public member_base, public virtual decl_base
{
bool is_constructor_;
bool is_const_;
shared_ptr<function_tdecl> fn_tmpl_;
// Forbiden
member_function_template();
public:
/// Hasher.
struct hash;
member_function_template(function_tdecl_sptr f,
access_specifier access, bool is_static,
bool is_constructor, bool is_const)
: type_or_decl_base(f->get_environment()),
decl_base(f->get_environment(), f->get_name(), location()),
member_base(access, is_static), is_constructor_(is_constructor),
is_const_(is_const), fn_tmpl_(f)
{}
bool
is_constructor() const
{return is_constructor_;}
bool
is_const() const
{return is_const_;}
operator const function_tdecl& () const
{return *fn_tmpl_;}
function_tdecl_sptr
as_function_tdecl() const
{return fn_tmpl_;}
virtual bool
operator==(const member_base& o) const;
virtual bool
traverse(ir_node_visitor&);
};// end class member_function_template
bool
operator==(const member_function_template_sptr& l,
const member_function_template_sptr& r);
bool
operator!=(const member_function_template_sptr& l,
const member_function_template_sptr& r);
/// Abstracts a member class template template
class member_class_template
: public member_base,
public virtual decl_base
{
shared_ptr<class_tdecl> class_tmpl_;
// Forbidden
member_class_template();
public:
/// Hasher.
struct hash;
member_class_template(class_tdecl_sptr c,
access_specifier access, bool is_static)
: type_or_decl_base(c->get_environment()),
decl_base(c->get_environment(), c->get_name(), location()),
member_base(access, is_static),
class_tmpl_(c)
{}
operator const class_tdecl& () const
{ return *class_tmpl_; }
class_tdecl_sptr
as_class_tdecl() const
{return class_tmpl_;}
virtual bool
operator==(const member_base& o) const;
virtual bool
operator==(const member_class_template&) const;
virtual bool
traverse(ir_node_visitor& v);
};// end class member_class_template
bool
operator==(const member_class_template_sptr& l,
const member_class_template_sptr& r);
bool
operator!=(const member_class_template_sptr& l,
const member_class_template_sptr& r);
// Forward declarations for select nested hashers.
struct type_base::shared_ptr_hash
{
size_t
operator()(const shared_ptr<type_base> t) const;
};
struct type_base::dynamic_hash
{
size_t
operator()(const type_base* t) const;
};
/// A hashing functor for instances and pointers of @ref var_decl.
struct var_decl::hash
{
size_t
operator()(const var_decl& t) const;
size_t
operator()(const var_decl* t) const;
}; //end struct var_decl::hash
/// A comparison functor for pointers to @ref var_decl.
struct var_decl::ptr_equal
{
/// Return true if the two instances of @ref var_decl are equal.
///
/// @param l the first variable to compare.
///
/// @param r the second variable to compare.
///
/// @return true if @p l equals @p r.
bool
operator()(const var_decl* l, const var_decl* r) const
{
if (l == r)
return true;
if (!!l != !!r)
return false;
return (*l == *r);
}
};// end struct var_decl::ptr_equal
/// A hashing functor fo instances and pointers of @ref function_decl.
struct function_decl::hash
{
size_t
operator()(const function_decl& t) const;
size_t
operator()(const function_decl* t) const;
};//end struct function_decl::hash
/// Equality functor for instances of @ref function_decl
struct function_decl::ptr_equal
{
/// Tests if two pointers to @ref function_decl are equal.
///
/// @param l the first pointer to @ref function_decl to consider in
/// the comparison.
///
/// @param r the second pointer to @ref function_decl to consider in
/// the comparison.
///
/// @return true if the two functions @p l and @p r are equal, false
/// otherwise.
bool
operator()(const function_decl* l, const function_decl* r) const
{
if (l == r)
return true;
if (!!l != !!r)
return false;
return (*l == *r);
}
};// function_decl::ptr_equal
/// The hashing functor for class_decl::base_spec.
struct class_decl::base_spec::hash
{
size_t
operator()(const base_spec& t) const;
};
/// The hashing functor for member_base.
struct member_base::hash
{
size_t
operator()(const member_base& m) const;
};
/// The hashing functor for member_function_template.
struct member_function_template::hash
{
size_t
operator()(const member_function_template& t) const;
};
/// The hashing functor for member_class_template
struct member_class_template::hash
{
size_t
operator()(const member_class_template& t) const;
};
struct function_tdecl::hash
{
size_t
operator()(const function_tdecl& t) const;
};
struct function_tdecl::shared_ptr_hash
{
size_t
operator()(const shared_ptr<function_tdecl> f) const;
};
struct class_tdecl::hash
{
size_t
operator()(const class_tdecl& t) const;
};
struct class_tdecl::shared_ptr_hash
{
size_t
operator()(const shared_ptr<class_tdecl> t) const;
};
/// The base class for the visitor type hierarchy used for traversing
/// a translation unit.
///
/// Client code willing to get notified for a certain kind of node
/// during the IR traversal might want to define a visitor class that
/// inherit ir_node_visitor, overload the ir_node_visitor::visit_begin()
/// or ir_node_visitor::visit_end() method of its choice, and provide
/// and implementation for it. If either
/// ir_node_visitor::visit_begin() or ir_node_visitor::visit_end()
/// return false, it means the traversal has to stop immediately after
/// the methods' return. If the methods return true, it means the
/// traversal keeps going.
///
/// That new visitor class would then be passed to e.g,
/// translation_unit::traverse or to the traverse method of any type
/// where the traversal is supposed to start from.
class ir_node_visitor : public node_visitor_base
{
struct priv;
std::unique_ptr<priv> priv_;
public:
ir_node_visitor();
virtual ~ir_node_visitor();
void allow_visiting_already_visited_type_node(bool);
bool allow_visiting_already_visited_type_node() const;
void mark_type_node_as_visited(type_base *);
void forget_visited_type_nodes();
bool type_node_has_been_visited(type_base*) const;
virtual bool visit_begin(decl_base*);
virtual bool visit_end(decl_base*);
virtual bool visit_begin(scope_decl*);
virtual bool visit_end(scope_decl*);
virtual bool visit_begin(type_base*);
virtual bool visit_end(type_base*);
virtual bool visit_begin(scope_type_decl*);
virtual bool visit_end(scope_type_decl*);
virtual bool visit_begin(type_decl*);
virtual bool visit_end(type_decl*);
virtual bool visit_begin(namespace_decl*);
virtual bool visit_end(namespace_decl*);
virtual bool visit_begin(qualified_type_def*);
virtual bool visit_end(qualified_type_def*);
virtual bool visit_begin(pointer_type_def*);
virtual bool visit_end(pointer_type_def*);
virtual bool visit_begin(reference_type_def*);
virtual bool visit_end(reference_type_def*);
virtual bool visit_begin(array_type_def*);
virtual bool visit_end(array_type_def*);
virtual bool visit_begin(array_type_def::subrange_type*);
virtual bool visit_end(array_type_def::subrange_type*);
virtual bool visit_begin(enum_type_decl*);
virtual bool visit_end(enum_type_decl*);
virtual bool visit_begin(typedef_decl*);
virtual bool visit_end(typedef_decl*);
virtual bool visit_begin(function_type*);
virtual bool visit_end(function_type*);
virtual bool visit_begin(var_decl*);
virtual bool visit_end(var_decl*);
virtual bool visit_begin(function_decl*);
virtual bool visit_end(function_decl*);
virtual bool visit_begin(function_decl::parameter*);
virtual bool visit_end(function_decl::parameter*);
virtual bool visit_begin(function_tdecl*);
virtual bool visit_end(function_tdecl*);
virtual bool visit_begin(class_tdecl*);
virtual bool visit_end(class_tdecl*);
virtual bool visit_begin(class_or_union *);
virtual bool visit_end(class_or_union *);
virtual bool visit_begin(class_decl*);
virtual bool visit_end(class_decl*);
virtual bool visit_begin(union_decl*);
virtual bool visit_end(union_decl*);
virtual bool visit_begin(class_decl::base_spec*);
virtual bool visit_end(class_decl::base_spec*);
virtual bool visit_begin(member_function_template*);
virtual bool visit_end(member_function_template*);
virtual bool visit_begin(member_class_template*);
virtual bool visit_end(member_class_template*);
}; // end struct ir_node_visitor
// Debugging facility
void
fns_to_str(vector<function_decl*>::const_iterator a_begin,
vector<function_decl*>::const_iterator a_end,
vector<function_decl*>::const_iterator b_begin,
vector<function_decl*>::const_iterator b_end,
std::ostream& o);
}// end namespace ir
} // end namespace abigail
#endif // __ABG_IR_H__