229 lines
5.0 KiB
C++
229 lines
5.0 KiB
C++
//===-- list.h --------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SCUDO_LIST_H_
|
|
#define SCUDO_LIST_H_
|
|
|
|
#include "internal_defs.h"
|
|
|
|
namespace scudo {
|
|
|
|
// Intrusive POD singly and doubly linked list.
|
|
// An object with all zero fields should represent a valid empty list. clear()
|
|
// should be called on all non-zero-initialized objects before using.
|
|
|
|
template <class T> class IteratorBase {
|
|
public:
|
|
explicit IteratorBase(T *CurrentT) : Current(CurrentT) {}
|
|
IteratorBase &operator++() {
|
|
Current = Current->Next;
|
|
return *this;
|
|
}
|
|
bool operator!=(IteratorBase Other) const { return Current != Other.Current; }
|
|
T &operator*() { return *Current; }
|
|
|
|
private:
|
|
T *Current;
|
|
};
|
|
|
|
template <class T> struct IntrusiveList {
|
|
bool empty() const { return Size == 0; }
|
|
uptr size() const { return Size; }
|
|
|
|
T *front() { return First; }
|
|
const T *front() const { return First; }
|
|
T *back() { return Last; }
|
|
const T *back() const { return Last; }
|
|
|
|
void clear() {
|
|
First = Last = nullptr;
|
|
Size = 0;
|
|
}
|
|
|
|
typedef IteratorBase<T> Iterator;
|
|
typedef IteratorBase<const T> ConstIterator;
|
|
|
|
Iterator begin() { return Iterator(First); }
|
|
Iterator end() { return Iterator(nullptr); }
|
|
|
|
ConstIterator begin() const { return ConstIterator(First); }
|
|
ConstIterator end() const { return ConstIterator(nullptr); }
|
|
|
|
void checkConsistency() const;
|
|
|
|
protected:
|
|
uptr Size = 0;
|
|
T *First = nullptr;
|
|
T *Last = nullptr;
|
|
};
|
|
|
|
template <class T> void IntrusiveList<T>::checkConsistency() const {
|
|
if (Size == 0) {
|
|
CHECK_EQ(First, nullptr);
|
|
CHECK_EQ(Last, nullptr);
|
|
} else {
|
|
uptr Count = 0;
|
|
for (T *I = First;; I = I->Next) {
|
|
Count++;
|
|
if (I == Last)
|
|
break;
|
|
}
|
|
CHECK_EQ(this->size(), Count);
|
|
CHECK_EQ(Last->Next, nullptr);
|
|
}
|
|
}
|
|
|
|
template <class T> struct SinglyLinkedList : public IntrusiveList<T> {
|
|
using IntrusiveList<T>::First;
|
|
using IntrusiveList<T>::Last;
|
|
using IntrusiveList<T>::Size;
|
|
using IntrusiveList<T>::empty;
|
|
|
|
void push_back(T *X) {
|
|
X->Next = nullptr;
|
|
if (empty())
|
|
First = X;
|
|
else
|
|
Last->Next = X;
|
|
Last = X;
|
|
Size++;
|
|
}
|
|
|
|
void push_front(T *X) {
|
|
if (empty())
|
|
Last = X;
|
|
X->Next = First;
|
|
First = X;
|
|
Size++;
|
|
}
|
|
|
|
void pop_front() {
|
|
DCHECK(!empty());
|
|
First = First->Next;
|
|
if (!First)
|
|
Last = nullptr;
|
|
Size--;
|
|
}
|
|
|
|
void extract(T *Prev, T *X) {
|
|
DCHECK(!empty());
|
|
DCHECK_NE(Prev, nullptr);
|
|
DCHECK_NE(X, nullptr);
|
|
DCHECK_EQ(Prev->Next, X);
|
|
Prev->Next = X->Next;
|
|
if (Last == X)
|
|
Last = Prev;
|
|
Size--;
|
|
}
|
|
|
|
void append_back(SinglyLinkedList<T> *L) {
|
|
DCHECK_NE(this, L);
|
|
if (L->empty())
|
|
return;
|
|
if (empty()) {
|
|
*this = *L;
|
|
} else {
|
|
Last->Next = L->First;
|
|
Last = L->Last;
|
|
Size += L->size();
|
|
}
|
|
L->clear();
|
|
}
|
|
};
|
|
|
|
template <class T> struct DoublyLinkedList : IntrusiveList<T> {
|
|
using IntrusiveList<T>::First;
|
|
using IntrusiveList<T>::Last;
|
|
using IntrusiveList<T>::Size;
|
|
using IntrusiveList<T>::empty;
|
|
|
|
void push_front(T *X) {
|
|
X->Prev = nullptr;
|
|
if (empty()) {
|
|
Last = X;
|
|
} else {
|
|
DCHECK_EQ(First->Prev, nullptr);
|
|
First->Prev = X;
|
|
}
|
|
X->Next = First;
|
|
First = X;
|
|
Size++;
|
|
}
|
|
|
|
// Inserts X before Y.
|
|
void insert(T *X, T *Y) {
|
|
if (Y == First)
|
|
return push_front(X);
|
|
T *Prev = Y->Prev;
|
|
// This is a hard CHECK to ensure consistency in the event of an intentional
|
|
// corruption of Y->Prev, to prevent a potential write-{4,8}.
|
|
CHECK_EQ(Prev->Next, Y);
|
|
Prev->Next = X;
|
|
X->Prev = Prev;
|
|
X->Next = Y;
|
|
Y->Prev = X;
|
|
Size++;
|
|
}
|
|
|
|
void push_back(T *X) {
|
|
X->Next = nullptr;
|
|
if (empty()) {
|
|
First = X;
|
|
} else {
|
|
DCHECK_EQ(Last->Next, nullptr);
|
|
Last->Next = X;
|
|
}
|
|
X->Prev = Last;
|
|
Last = X;
|
|
Size++;
|
|
}
|
|
|
|
void pop_front() {
|
|
DCHECK(!empty());
|
|
First = First->Next;
|
|
if (!First)
|
|
Last = nullptr;
|
|
else
|
|
First->Prev = nullptr;
|
|
Size--;
|
|
}
|
|
|
|
// The consistency of the adjacent links is aggressively checked in order to
|
|
// catch potential corruption attempts, that could yield a mirrored
|
|
// write-{4,8} primitive. nullptr checks are deemed less vital.
|
|
void remove(T *X) {
|
|
T *Prev = X->Prev;
|
|
T *Next = X->Next;
|
|
if (Prev) {
|
|
CHECK_EQ(Prev->Next, X);
|
|
Prev->Next = Next;
|
|
}
|
|
if (Next) {
|
|
CHECK_EQ(Next->Prev, X);
|
|
Next->Prev = Prev;
|
|
}
|
|
if (First == X) {
|
|
DCHECK_EQ(Prev, nullptr);
|
|
First = Next;
|
|
} else {
|
|
DCHECK_NE(Prev, nullptr);
|
|
}
|
|
if (Last == X) {
|
|
DCHECK_EQ(Next, nullptr);
|
|
Last = Prev;
|
|
} else {
|
|
DCHECK_NE(Next, nullptr);
|
|
}
|
|
Size--;
|
|
}
|
|
};
|
|
|
|
} // namespace scudo
|
|
|
|
#endif // SCUDO_LIST_H_
|