android13/external/vulkan-validation-layers/layers/sparse_containers.h

405 lines
17 KiB
C++

/* Copyright (c) 2019 The Khronos Group Inc.
* Copyright (c) 2019 Valve Corporation
* Copyright (c) 2019 LunarG, Inc.
* Copyright (C) 2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#ifndef SPARSE_CONTAINERS_H_
#define SPARSE_CONTAINERS_H_
#define NOMINMAX
#include <cassert>
#include <memory>
#include <unordered_map>
#include <vector>
namespace sparse_container {
// SparseVector:
//
// Defines a sparse single-dimensional container which is targeted for three distinct use cases
// 1) Large range of indices sparsely populated ("Sparse access" below)
// 2) Large range of indices where all values are the same ("Sparse access" below)
// 3) Large range of values densely populated (more that 1/4 full) ("Dense access" below)
// 4) Small range of values where direct access is most efficient ("Dense access" below)
//
// To update semantics are supported bases on kSetReplaces:
// true -- updates to already set (valid) indices replace current value
// false -- updates to already set (valid) indicies are ignored.
//
// Theory of operation:
//
// When created, a sparse vector is created (based on size relative to
// the kSparseThreshold) in either Sparse or Dense access mode.
//
// In "Sparse access" mode individual values are stored in a map keyed
// by the index. A "full range" value (if set) defines the value of all
// entries not present in the map. Setting a full range value via
//
// SetRange(range_min, range_max, full_range_value )
//
// either clears the map (kSetReplaces==true) or prevents further
// updates to the vector (kSetReplaces==false). If the map becomes
// more than // 1/kConversionThreshold (4) full, the SparseVector is
// converted into "Dense access" mode. Entries are copied from map,
// with non-present indices set to the default value (kDefaultValue)
// or the full range value (if present).
//
// In "Dense access" mode, values are stored in a vector the size of
// the valid range indexed by the incoming index value minus range_min_.
// The same upate semantic applies bases on kSetReplaces.
//
// Note that when kSparseThreshold
//
// Access:
//
// NOTE all "end" indices (in construction or access) are *exclusive*.
//
// Given the variable semantics and effective compression of Sparse
// access mode, all access is through Get, Set, and SetRange functions
// and a constant iterator. Get return either the value found (using
// the current access mode) or the kDefaultValue. Set and SetRange
// return whether or not state was updated, in order to support dirty
// bit updates for any dependent state.
//
// The iterator ConstIterator provides basic, "by value" access. The
// "by value" nature of the access reflect the compressed nature
// operators *, ++, ==, and != are provided, with the latter two only
// suitable for comparisons vs. cend. The iterator skips all
// kDefaultValue entries in either access mode, returning a std::pair
// containing {IndexType, ValueType}. The multiple access modes give
// the iterator a bit more complexity than is optimal, but hides the
// underlying complexity from the callers.
//
// TODO: Update iterator to use a reference (likely using
// reference_wrapper...)
template <typename IndexType_, typename T, bool kSetReplaces, T kDefaultValue = T(), size_t kSparseThreshold = 16>
class SparseVector {
public:
typedef IndexType_ IndexType;
typedef T value_type;
typedef value_type ValueType;
typedef std::unordered_map<IndexType, ValueType> SparseType;
typedef std::vector<ValueType> DenseType;
SparseVector(IndexType start, IndexType end)
: range_min_(start), range_max_(end), threshold_((end - start) / kConversionThreshold) {
assert(end > start);
Reset();
}
// Initial access mode is set based on range size vs. kSparseThreshold. Either sparse_ or dense_ is always set, but only
// ever one at a time
void Reset() {
has_full_range_value_ = false;
full_range_value_ = kDefaultValue;
size_t count = range_max_ - range_min_;
if (kSparseThreshold && (count > kSparseThreshold)) {
sparse_.reset(new SparseType());
dense_.reset();
} else {
sparse_.reset();
dense_.reset(new DenseType(count, kDefaultValue));
}
}
const ValueType &Get(const IndexType index) const {
// Note that here (and similarly below, the 'IsSparse' clause is
// eliminated as dead code in release builds if kSparseThreshold==0
if (IsSparse()) {
if (!sparse_->empty()) { // Don't attempt lookup in empty map
auto it = sparse_->find(index);
if (it != sparse_->cend()) {
return it->second;
}
}
// If there is a full_range_value, return it, but there isn't a full_range_value_, it's set to kDefaultValue
// so it's still the correct this to return
return full_range_value_;
} else {
// Direct access
assert(dense_.get());
const ValueType &value = (*dense_)[index - range_min_];
return value;
}
}
// Set a indexes value, based on the access mode, update semantics are enforced within the access mode specific function
bool Set(const IndexType index, const ValueType &value) {
bool updated = false;
if (IsSparse()) {
updated = SetSparse(index, value);
} else {
assert(dense_.get());
updated = SetDense(index, value);
}
return updated;
}
// Set a range of values based on access mode, with some update semantics applied a the range level
bool SetRange(const IndexType start, IndexType end, ValueType value) {
bool updated = false;
if (IsSparse()) {
if (!kSetReplaces && HasFullRange()) return false; // We have full coverage, we can change this no more
bool is_full_range = IsFullRange(start, end);
if (kSetReplaces && is_full_range) {
updated = value != full_range_value_;
full_range_value_ = value;
if (HasSparseSubranges()) {
updated = true;
sparse_->clear(); // full range replaces all subranges
}
// has_full_range_value_ state of the full_range_value_ to avoid ValueType comparisons
has_full_range_value_ = value != kDefaultValue;
} else if (!kSetReplaces && (value != kDefaultValue) && is_full_range && !HasFullRange()) {
// With the update only invalid semantics, the value becomes the fallback, and will prevent other updates
full_range_value_ = value;
has_full_range_value_ = true;
updated = true;
// Clean up the sparse map a bit
for (auto it = sparse_->begin(); it != sparse_->end();) { // no increment clause because of erase below
if (it->second == value) {
it = sparse_->erase(it); // remove redundant entries
} else {
++it;
}
}
} else {
for (IndexType index = start; index < end; ++index) {
// NOTE: We can't use SetSparse here, because this may be converted to dense access mid update
updated |= Set(index, value);
}
}
} else {
// Note that "Dense Access" does away with the full_range_value_ logic, storing empty entries using kDefaultValue
assert(dense_);
for (IndexType index = start; index < end; ++index) {
updated = SetDense(index, value);
}
}
return updated;
}
// Set only the non-default values from another sparse vector
bool Merge(const SparseVector &from) {
// Must not set from Sparse arracy with larger bounds...
assert((range_min_ <= from.range_min_) && (range_max_ >= from.range_max_));
bool updated = false;
if (from.IsSparse()) {
if (from.HasFullRange() && !from.HasSparseSubranges()) {
// Short cut to copy a full range if that's all we have
updated |= SetRange(from.range_min_, from.range_max_, from.full_range_value_);
} else {
// Have to do it the complete (potentially) slow way
// TODO add sorted keys to iterator to reduce hash lookups
for (auto it = from.cbegin(); it != from.cend(); ++it) {
const IndexType index = (*it).first;
const ValueType &value = (*it).second;
Set(index, value);
}
}
} else {
assert(from.dense_);
DenseType &ray = *from.dense_;
for (IndexType entry = from.range_min_; entry < from.range_max_; ++entry) {
IndexType index = entry - from.range_min_;
if (ray[index] != kDefaultValue) {
updated |= Set(entry, ray[index]);
}
}
}
return updated;
}
friend class ConstIterator;
class ConstIterator {
public:
using SparseType = typename SparseVector::SparseType;
using SparseIterator = typename SparseType::const_iterator;
using IndexType = typename SparseVector::IndexType;
using ValueType = typename SparseVector::ValueType;
using IteratorValueType = std::pair<IndexType, ValueType>;
const IteratorValueType &operator*() const { return current_value_; }
ConstIterator &operator++() {
if (delegated_) { // implies sparse
++it_sparse_;
if (it_sparse_ == vec_->sparse_->cend()) {
the_end_ = true;
current_value_.first = vec_->range_max_;
current_value_.second = SparseVector::DefaultValue();
} else {
current_value_.first = it_sparse_->first;
current_value_.second = it_sparse_->second;
}
} else {
index_++;
SetCurrentValue();
}
return *this;
}
bool operator!=(const ConstIterator &rhs) const {
return (the_end_ != rhs.the_end_); // Just good enough for cend checks
}
bool operator==(const ConstIterator &rhs) const {
return (the_end_ == rhs.the_end_); // Just good enough for cend checks
}
// The iterator has two modes:
// delegated:
// where we are in sparse access mode and have no full_range_value
// and thus can delegate our iteration to underlying map
// non-delegated:
// either dense mode or we have a full range value and thus
// must iterate over the whole range
ConstIterator(const SparseVector &vec) : vec_(&vec) {
if (!vec_->IsSparse() || vec_->HasFullRange()) {
// Must iterated over entire ranges skipping (in the case of dense access), invalid entries
delegated_ = false;
index_ = vec_->range_min_;
SetCurrentValue(); // Skips invalid and sets the_end_
} else if (vec_->HasSparseSubranges()) {
// The subranges store the non-default values... and their is no full range value
delegated_ = true;
it_sparse_ = vec_->sparse_->cbegin();
current_value_.first = it_sparse_->first;
current_value_.second = it_sparse_->second;
the_end_ = false; // the sparse map is non-empty (per HasSparseSubranges() above)
} else {
// Sparse, but with no subranges
the_end_ = true;
}
}
ConstIterator() : vec_(nullptr), the_end_(true) {}
protected:
const SparseVector *vec_;
bool the_end_;
SparseIterator it_sparse_;
bool delegated_;
IndexType index_;
ValueType value_;
IteratorValueType current_value_;
// in the non-delegated case we use normal accessors and skip default values.
void SetCurrentValue() {
the_end_ = true;
while (index_ < vec_->range_max_) {
value_ = vec_->Get(index_);
if (value_ != SparseVector::DefaultValue()) {
the_end_ = false;
current_value_ = IteratorValueType(index_, value_);
break;
}
index_++;
}
}
};
typedef ConstIterator const_iterator;
ConstIterator cbegin() const { return ConstIterator(*this); }
ConstIterator cend() const { return ConstIterator(); }
IndexType RangeMax() const { return range_max_; }
IndexType RangeMin() const { return range_min_; }
static const unsigned kConversionThreshold = 4;
const IndexType range_min_; // exclusive
const IndexType range_max_; // exclusive
const IndexType threshold_; // exclusive
// Data for sparse mode
// We have a short cut for full range values when in sparse mode
bool has_full_range_value_;
ValueType full_range_value_;
std::unique_ptr<SparseType> sparse_;
// Data for dense mode
std::unique_ptr<DenseType> dense_;
static const ValueType &DefaultValue() {
static ValueType value = kDefaultValue;
return value;
}
// Note that IsSparse is compile-time reducible if kSparseThreshold is zero...
inline bool IsSparse() const { return kSparseThreshold && sparse_.get(); }
bool IsFullRange(IndexType start, IndexType end) const { return (start == range_min_) && (end == range_max_); }
bool IsFullRangeValue(const ValueType &value) const { return has_full_range_value_ && (value == full_range_value_); }
bool HasFullRange() const { return IsSparse() && has_full_range_value_; }
bool HasSparseSubranges() const { return IsSparse() && !sparse_->empty(); }
// This is called unconditionally, to encapsulate the conversion criteria and logic here
void SparseToDenseConversion() {
// If we're using more threshold of the sparse range, convert to dense_
if (IsSparse() && (sparse_->size() > threshold_)) {
ValueType default_value = HasFullRange() ? full_range_value_ : kDefaultValue;
dense_.reset(new DenseType((range_max_ - range_min_), default_value));
DenseType &ray = *dense_;
for (auto const &item : *sparse_) {
ray[item.first - range_min_] = item.second;
}
sparse_.reset();
has_full_range_value_ = false;
}
}
// Dense access mode setter with update semantics implemented
bool SetDense(IndexType index, const ValueType &value) {
bool updated = false;
ValueType &current_value = (*dense_)[index - range_min_];
if ((kSetReplaces || current_value == kDefaultValue) && (value != current_value)) {
current_value = value;
updated = true;
}
return updated;
}
// Sparse access mode setter with update full range and update semantics implemented
bool SetSparse(IndexType index, const ValueType &value) {
if (!kSetReplaces && HasFullRange()) {
return false; // We have full coverage, we can change this no more
}
if (kSetReplaces && IsFullRangeValue(value) && HasSparseSubranges()) {
auto erasure = sparse_->erase(index); // Remove duplicate record from map
return erasure > 0;
}
// Use insert to reduce the number of hash lookups
auto map_pair = std::make_pair(index, value);
auto insert_pair = sparse_->insert(map_pair);
auto &it = insert_pair.first; // use references to avoid nested pair accesses
const bool inserted = insert_pair.second;
bool updated = false;
if (inserted) {
updated = true;
SparseToDenseConversion();
} else if (kSetReplaces && value != it->second) {
// Only replace value if semantics allow it and it has changed.
it->second = value;
updated = true;
}
return updated;
}
};
} // namespace sparse_container
#endif