777 lines
31 KiB
C++
777 lines
31 KiB
C++
/*
|
|
* Copyright (C) 2021 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "AidlSensorHalWrapper.h"
|
|
#include "ISensorsWrapper.h"
|
|
#include "SensorDeviceUtils.h"
|
|
#include "android/hardware/sensors/2.0/types.h"
|
|
|
|
#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
|
|
#include <aidlcommonsupport/NativeHandle.h>
|
|
#include <android-base/logging.h>
|
|
#include <android/binder_manager.h>
|
|
|
|
using ::aidl::android::hardware::sensors::AdditionalInfo;
|
|
using ::aidl::android::hardware::sensors::DynamicSensorInfo;
|
|
using ::aidl::android::hardware::sensors::Event;
|
|
using ::aidl::android::hardware::sensors::ISensors;
|
|
using ::aidl::android::hardware::sensors::SensorInfo;
|
|
using ::aidl::android::hardware::sensors::SensorStatus;
|
|
using ::aidl::android::hardware::sensors::SensorType;
|
|
using ::android::AidlMessageQueue;
|
|
using ::android::hardware::EventFlag;
|
|
using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
|
|
|
|
namespace android {
|
|
|
|
namespace {
|
|
|
|
status_t convertToStatus(ndk::ScopedAStatus status) {
|
|
if (status.isOk()) {
|
|
return OK;
|
|
} else {
|
|
switch (status.getExceptionCode()) {
|
|
case EX_ILLEGAL_ARGUMENT: {
|
|
return BAD_VALUE;
|
|
}
|
|
case EX_SECURITY: {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
case EX_UNSUPPORTED_OPERATION: {
|
|
return INVALID_OPERATION;
|
|
}
|
|
case EX_SERVICE_SPECIFIC: {
|
|
switch (status.getServiceSpecificError()) {
|
|
case ISensors::ERROR_BAD_VALUE: {
|
|
return BAD_VALUE;
|
|
}
|
|
case ISensors::ERROR_NO_MEMORY: {
|
|
return NO_MEMORY;
|
|
}
|
|
default: {
|
|
return UNKNOWN_ERROR;
|
|
}
|
|
}
|
|
}
|
|
default: {
|
|
return UNKNOWN_ERROR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void convertToSensor(const SensorInfo &src, sensor_t *dst) {
|
|
dst->name = strdup(src.name.c_str());
|
|
dst->vendor = strdup(src.vendor.c_str());
|
|
dst->version = src.version;
|
|
dst->handle = src.sensorHandle;
|
|
dst->type = (int)src.type;
|
|
dst->maxRange = src.maxRange;
|
|
dst->resolution = src.resolution;
|
|
dst->power = src.power;
|
|
dst->minDelay = src.minDelayUs;
|
|
dst->fifoReservedEventCount = src.fifoReservedEventCount;
|
|
dst->fifoMaxEventCount = src.fifoMaxEventCount;
|
|
dst->stringType = strdup(src.typeAsString.c_str());
|
|
dst->requiredPermission = strdup(src.requiredPermission.c_str());
|
|
dst->maxDelay = src.maxDelayUs;
|
|
dst->flags = src.flags;
|
|
dst->reserved[0] = dst->reserved[1] = 0;
|
|
}
|
|
|
|
void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
|
|
*dst = {.version = sizeof(sensors_event_t),
|
|
.sensor = src.sensorHandle,
|
|
.type = (int32_t)src.sensorType,
|
|
.reserved0 = 0,
|
|
.timestamp = src.timestamp};
|
|
|
|
switch (src.sensorType) {
|
|
case SensorType::META_DATA: {
|
|
// Legacy HALs expect the handle reference in the meta data field.
|
|
// Copy it over from the handle of the event.
|
|
dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
|
|
dst->meta_data.sensor = src.sensorHandle;
|
|
// Set the sensor handle to 0 to maintain compatibility.
|
|
dst->sensor = 0;
|
|
break;
|
|
}
|
|
|
|
case SensorType::ACCELEROMETER:
|
|
case SensorType::MAGNETIC_FIELD:
|
|
case SensorType::ORIENTATION:
|
|
case SensorType::GYROSCOPE:
|
|
case SensorType::GRAVITY:
|
|
case SensorType::LINEAR_ACCELERATION: {
|
|
dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
|
|
dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
|
|
dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
|
|
dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
|
|
break;
|
|
}
|
|
|
|
case SensorType::GAME_ROTATION_VECTOR: {
|
|
dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
|
|
dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
|
|
dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
|
|
dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
|
|
break;
|
|
}
|
|
|
|
case SensorType::ROTATION_VECTOR:
|
|
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
|
|
dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
|
|
dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
|
|
dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
|
|
dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
|
|
dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
|
|
break;
|
|
}
|
|
|
|
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
|
|
case SensorType::GYROSCOPE_UNCALIBRATED:
|
|
case SensorType::ACCELEROMETER_UNCALIBRATED: {
|
|
dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
|
|
dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
|
|
dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
|
|
dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
|
|
dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
|
|
dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
|
|
break;
|
|
}
|
|
|
|
case SensorType::HINGE_ANGLE:
|
|
case SensorType::DEVICE_ORIENTATION:
|
|
case SensorType::LIGHT:
|
|
case SensorType::PRESSURE:
|
|
case SensorType::PROXIMITY:
|
|
case SensorType::RELATIVE_HUMIDITY:
|
|
case SensorType::AMBIENT_TEMPERATURE:
|
|
case SensorType::SIGNIFICANT_MOTION:
|
|
case SensorType::STEP_DETECTOR:
|
|
case SensorType::TILT_DETECTOR:
|
|
case SensorType::WAKE_GESTURE:
|
|
case SensorType::GLANCE_GESTURE:
|
|
case SensorType::PICK_UP_GESTURE:
|
|
case SensorType::WRIST_TILT_GESTURE:
|
|
case SensorType::STATIONARY_DETECT:
|
|
case SensorType::MOTION_DETECT:
|
|
case SensorType::HEART_BEAT:
|
|
case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
|
|
dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
|
|
break;
|
|
}
|
|
|
|
case SensorType::STEP_COUNTER: {
|
|
dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
|
|
break;
|
|
}
|
|
|
|
case SensorType::HEART_RATE: {
|
|
dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
|
|
dst->heart_rate.status =
|
|
(int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
|
|
break;
|
|
}
|
|
|
|
case SensorType::POSE_6DOF: { // 15 floats
|
|
for (size_t i = 0; i < 15; ++i) {
|
|
dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SensorType::DYNAMIC_SENSOR_META: {
|
|
dst->dynamic_sensor_meta.connected =
|
|
src.payload.get<Event::EventPayload::dynamic>().connected;
|
|
dst->dynamic_sensor_meta.handle =
|
|
src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
|
|
dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
|
|
|
|
memcpy(dst->dynamic_sensor_meta.uuid,
|
|
src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
|
|
|
|
break;
|
|
}
|
|
|
|
case SensorType::ADDITIONAL_INFO: {
|
|
const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
|
|
|
|
additional_info_event_t *dstInfo = &dst->additional_info;
|
|
dstInfo->type = (int32_t)srcInfo.type;
|
|
dstInfo->serial = srcInfo.serial;
|
|
|
|
switch (srcInfo.payload.getTag()) {
|
|
case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
|
|
const auto &values =
|
|
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
|
|
.values;
|
|
CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
|
|
memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
|
|
break;
|
|
}
|
|
case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
|
|
const auto &values =
|
|
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
|
|
.values;
|
|
CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
|
|
memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
|
|
break;
|
|
}
|
|
default: {
|
|
ALOGE("Invalid sensor additional info tag: %d", (int)srcInfo.payload.getTag());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SensorType::HEAD_TRACKER: {
|
|
const auto &ht = src.payload.get<Event::EventPayload::headTracker>();
|
|
dst->head_tracker.rx = ht.rx;
|
|
dst->head_tracker.ry = ht.ry;
|
|
dst->head_tracker.rz = ht.rz;
|
|
dst->head_tracker.vx = ht.vx;
|
|
dst->head_tracker.vy = ht.vy;
|
|
dst->head_tracker.vz = ht.vz;
|
|
dst->head_tracker.discontinuity_count = ht.discontinuityCount;
|
|
break;
|
|
}
|
|
|
|
case SensorType::ACCELEROMETER_LIMITED_AXES:
|
|
case SensorType::GYROSCOPE_LIMITED_AXES:
|
|
dst->limited_axes_imu.x = src.payload.get<Event::EventPayload::limitedAxesImu>().x;
|
|
dst->limited_axes_imu.y = src.payload.get<Event::EventPayload::limitedAxesImu>().y;
|
|
dst->limited_axes_imu.z = src.payload.get<Event::EventPayload::limitedAxesImu>().z;
|
|
dst->limited_axes_imu.x_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImu>().xSupported;
|
|
dst->limited_axes_imu.y_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImu>().ySupported;
|
|
dst->limited_axes_imu.z_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImu>().zSupported;
|
|
break;
|
|
|
|
case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
|
|
case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
|
|
dst->limited_axes_imu_uncalibrated.x_uncalib =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().x;
|
|
dst->limited_axes_imu_uncalibrated.y_uncalib =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().y;
|
|
dst->limited_axes_imu_uncalibrated.z_uncalib =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().z;
|
|
dst->limited_axes_imu_uncalibrated.x_bias =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xBias;
|
|
dst->limited_axes_imu_uncalibrated.y_bias =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().yBias;
|
|
dst->limited_axes_imu_uncalibrated.z_bias =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zBias;
|
|
dst->limited_axes_imu_uncalibrated.x_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xSupported;
|
|
dst->limited_axes_imu_uncalibrated.y_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().ySupported;
|
|
dst->limited_axes_imu_uncalibrated.z_supported =
|
|
src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zSupported;
|
|
break;
|
|
|
|
case SensorType::HEADING:
|
|
dst->heading.heading = src.payload.get<Event::EventPayload::heading>().heading;
|
|
dst->heading.accuracy = src.payload.get<Event::EventPayload::heading>().accuracy;
|
|
break;
|
|
|
|
default: {
|
|
CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
|
|
|
|
memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
|
|
16 * sizeof(float));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
|
|
*dst = {
|
|
.timestamp = src.timestamp,
|
|
.sensorHandle = src.sensor,
|
|
.sensorType = (SensorType)src.type,
|
|
};
|
|
|
|
switch (dst->sensorType) {
|
|
case SensorType::META_DATA: {
|
|
Event::EventPayload::MetaData meta;
|
|
meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
|
|
// Legacy HALs contain the handle reference in the meta data field.
|
|
// Copy that over to the handle of the event. In legacy HALs this
|
|
// field was expected to be 0.
|
|
dst->sensorHandle = src.meta_data.sensor;
|
|
dst->payload.set<Event::EventPayload::Tag::meta>(meta);
|
|
break;
|
|
}
|
|
|
|
case SensorType::ACCELEROMETER:
|
|
case SensorType::MAGNETIC_FIELD:
|
|
case SensorType::ORIENTATION:
|
|
case SensorType::GYROSCOPE:
|
|
case SensorType::GRAVITY:
|
|
case SensorType::LINEAR_ACCELERATION: {
|
|
Event::EventPayload::Vec3 vec3;
|
|
vec3.x = src.acceleration.x;
|
|
vec3.y = src.acceleration.y;
|
|
vec3.z = src.acceleration.z;
|
|
vec3.status = (SensorStatus)src.acceleration.status;
|
|
dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
|
|
break;
|
|
}
|
|
|
|
case SensorType::GAME_ROTATION_VECTOR: {
|
|
Event::EventPayload::Vec4 vec4;
|
|
vec4.x = src.data[0];
|
|
vec4.y = src.data[1];
|
|
vec4.z = src.data[2];
|
|
vec4.w = src.data[3];
|
|
dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
|
|
break;
|
|
}
|
|
|
|
case SensorType::ROTATION_VECTOR:
|
|
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
|
|
Event::EventPayload::Data data;
|
|
memcpy(data.values.data(), src.data, 5 * sizeof(float));
|
|
dst->payload.set<Event::EventPayload::Tag::data>(data);
|
|
break;
|
|
}
|
|
|
|
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
|
|
case SensorType::GYROSCOPE_UNCALIBRATED:
|
|
case SensorType::ACCELEROMETER_UNCALIBRATED: {
|
|
Event::EventPayload::Uncal uncal;
|
|
uncal.x = src.uncalibrated_gyro.x_uncalib;
|
|
uncal.y = src.uncalibrated_gyro.y_uncalib;
|
|
uncal.z = src.uncalibrated_gyro.z_uncalib;
|
|
uncal.xBias = src.uncalibrated_gyro.x_bias;
|
|
uncal.yBias = src.uncalibrated_gyro.y_bias;
|
|
uncal.zBias = src.uncalibrated_gyro.z_bias;
|
|
dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
|
|
break;
|
|
}
|
|
|
|
case SensorType::DEVICE_ORIENTATION:
|
|
case SensorType::LIGHT:
|
|
case SensorType::PRESSURE:
|
|
case SensorType::PROXIMITY:
|
|
case SensorType::RELATIVE_HUMIDITY:
|
|
case SensorType::AMBIENT_TEMPERATURE:
|
|
case SensorType::SIGNIFICANT_MOTION:
|
|
case SensorType::STEP_DETECTOR:
|
|
case SensorType::TILT_DETECTOR:
|
|
case SensorType::WAKE_GESTURE:
|
|
case SensorType::GLANCE_GESTURE:
|
|
case SensorType::PICK_UP_GESTURE:
|
|
case SensorType::WRIST_TILT_GESTURE:
|
|
case SensorType::STATIONARY_DETECT:
|
|
case SensorType::MOTION_DETECT:
|
|
case SensorType::HEART_BEAT:
|
|
case SensorType::LOW_LATENCY_OFFBODY_DETECT:
|
|
case SensorType::HINGE_ANGLE: {
|
|
dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
|
|
break;
|
|
}
|
|
|
|
case SensorType::STEP_COUNTER: {
|
|
dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
|
|
break;
|
|
}
|
|
|
|
case SensorType::HEART_RATE: {
|
|
Event::EventPayload::HeartRate heartRate;
|
|
heartRate.bpm = src.heart_rate.bpm;
|
|
heartRate.status = (SensorStatus)src.heart_rate.status;
|
|
dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
|
|
break;
|
|
}
|
|
|
|
case SensorType::POSE_6DOF: { // 15 floats
|
|
Event::EventPayload::Pose6Dof pose6DOF;
|
|
for (size_t i = 0; i < 15; ++i) {
|
|
pose6DOF.values[i] = src.data[i];
|
|
}
|
|
dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
|
|
break;
|
|
}
|
|
|
|
case SensorType::DYNAMIC_SENSOR_META: {
|
|
DynamicSensorInfo dynamic;
|
|
dynamic.connected = src.dynamic_sensor_meta.connected;
|
|
dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
|
|
|
|
memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
|
|
dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
|
|
break;
|
|
}
|
|
|
|
case SensorType::ADDITIONAL_INFO: {
|
|
AdditionalInfo info;
|
|
const additional_info_event_t &srcInfo = src.additional_info;
|
|
info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
|
|
info.serial = srcInfo.serial;
|
|
|
|
AdditionalInfo::AdditionalInfoPayload::Int32Values data;
|
|
CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
|
|
memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
|
|
info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
|
|
|
|
dst->payload.set<Event::EventPayload::Tag::additional>(info);
|
|
break;
|
|
}
|
|
|
|
case SensorType::HEAD_TRACKER: {
|
|
Event::EventPayload::HeadTracker headTracker;
|
|
headTracker.rx = src.head_tracker.rx;
|
|
headTracker.ry = src.head_tracker.ry;
|
|
headTracker.rz = src.head_tracker.rz;
|
|
headTracker.vx = src.head_tracker.vx;
|
|
headTracker.vy = src.head_tracker.vy;
|
|
headTracker.vz = src.head_tracker.vz;
|
|
headTracker.discontinuityCount = src.head_tracker.discontinuity_count;
|
|
|
|
dst->payload.set<Event::EventPayload::Tag::headTracker>(headTracker);
|
|
break;
|
|
}
|
|
|
|
case SensorType::ACCELEROMETER_LIMITED_AXES:
|
|
case SensorType::GYROSCOPE_LIMITED_AXES: {
|
|
Event::EventPayload::LimitedAxesImu limitedAxesImu;
|
|
limitedAxesImu.x = src.limited_axes_imu.x;
|
|
limitedAxesImu.y = src.limited_axes_imu.y;
|
|
limitedAxesImu.z = src.limited_axes_imu.z;
|
|
limitedAxesImu.xSupported = src.limited_axes_imu.x_supported;
|
|
limitedAxesImu.ySupported = src.limited_axes_imu.y_supported;
|
|
limitedAxesImu.zSupported = src.limited_axes_imu.z_supported;
|
|
dst->payload.set<Event::EventPayload::Tag::limitedAxesImu>(limitedAxesImu);
|
|
break;
|
|
}
|
|
|
|
case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
|
|
case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED: {
|
|
Event::EventPayload::LimitedAxesImuUncal limitedAxesImuUncal;
|
|
limitedAxesImuUncal.x = src.limited_axes_imu_uncalibrated.x_uncalib;
|
|
limitedAxesImuUncal.y = src.limited_axes_imu_uncalibrated.y_uncalib;
|
|
limitedAxesImuUncal.z = src.limited_axes_imu_uncalibrated.z_uncalib;
|
|
limitedAxesImuUncal.xBias = src.limited_axes_imu_uncalibrated.x_bias;
|
|
limitedAxesImuUncal.yBias = src.limited_axes_imu_uncalibrated.y_bias;
|
|
limitedAxesImuUncal.zBias = src.limited_axes_imu_uncalibrated.z_bias;
|
|
limitedAxesImuUncal.xSupported = src.limited_axes_imu_uncalibrated.x_supported;
|
|
limitedAxesImuUncal.ySupported = src.limited_axes_imu_uncalibrated.y_supported;
|
|
limitedAxesImuUncal.zSupported = src.limited_axes_imu_uncalibrated.z_supported;
|
|
dst->payload.set<Event::EventPayload::Tag::limitedAxesImuUncal>(limitedAxesImuUncal);
|
|
break;
|
|
}
|
|
|
|
case SensorType::HEADING: {
|
|
Event::EventPayload::Heading heading;
|
|
heading.heading = src.heading.heading;
|
|
heading.accuracy = src.heading.accuracy;
|
|
dst->payload.set<Event::EventPayload::heading>(heading);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
|
|
|
|
Event::EventPayload::Data data;
|
|
memcpy(data.values.data(), src.data, 16 * sizeof(float));
|
|
dst->payload.set<Event::EventPayload::Tag::data>(data);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void serviceDied(void *cookie) {
|
|
ALOGW("Sensors HAL died, attempting to reconnect.");
|
|
((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
|
|
}
|
|
|
|
template <typename EnumType>
|
|
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
|
|
return static_cast<typename std::underlying_type<EnumType>::type>(value);
|
|
}
|
|
|
|
enum EventQueueFlagBitsInternal : uint32_t {
|
|
INTERNAL_WAKE = 1 << 16,
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
|
|
public:
|
|
AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
|
|
: mSensorDeviceCallback(sensorDeviceCallback) {}
|
|
|
|
::ndk::ScopedAStatus onDynamicSensorsConnected(
|
|
const std::vector<SensorInfo> &sensorInfos) override {
|
|
std::vector<sensor_t> sensors;
|
|
for (const SensorInfo &sensorInfo : sensorInfos) {
|
|
sensor_t sensor;
|
|
convertToSensor(sensorInfo, &sensor);
|
|
sensors.push_back(sensor);
|
|
}
|
|
|
|
mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
|
|
return ::ndk::ScopedAStatus::ok();
|
|
}
|
|
|
|
::ndk::ScopedAStatus onDynamicSensorsDisconnected(
|
|
const std::vector<int32_t> &sensorHandles) override {
|
|
mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
|
|
return ::ndk::ScopedAStatus::ok();
|
|
}
|
|
|
|
private:
|
|
ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
|
|
};
|
|
|
|
AidlSensorHalWrapper::AidlSensorHalWrapper()
|
|
: mEventQueueFlag(nullptr),
|
|
mWakeLockQueueFlag(nullptr),
|
|
mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
|
|
|
|
bool AidlSensorHalWrapper::supportsPolling() {
|
|
return false;
|
|
}
|
|
|
|
bool AidlSensorHalWrapper::supportsMessageQueues() {
|
|
return true;
|
|
}
|
|
|
|
bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
|
|
mSensorDeviceCallback = callback;
|
|
mSensors = nullptr;
|
|
|
|
auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
|
|
if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
|
|
if (mSensors != nullptr) {
|
|
AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
|
|
}
|
|
|
|
ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
|
|
if (binder.get() != nullptr) {
|
|
mSensors = ISensors::fromBinder(binder);
|
|
mEventQueue = std::make_unique<AidlMessageQueue<
|
|
Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
|
|
/*configureEventFlagWord=*/true);
|
|
|
|
mWakeLockQueue = std::make_unique<AidlMessageQueue<
|
|
int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
|
|
/*configureEventFlagWord=*/true);
|
|
if (mEventQueueFlag != nullptr) {
|
|
EventFlag::deleteEventFlag(&mEventQueueFlag);
|
|
}
|
|
EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
|
|
if (mWakeLockQueueFlag != nullptr) {
|
|
EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
|
|
}
|
|
EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
|
|
|
|
CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
|
|
mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
|
|
|
|
mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
|
|
mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
|
|
|
|
AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
|
|
} else {
|
|
ALOGE("Could not connect to declared sensors AIDL HAL");
|
|
}
|
|
}
|
|
|
|
return mSensors != nullptr;
|
|
}
|
|
|
|
void AidlSensorHalWrapper::prepareForReconnect() {
|
|
mReconnecting = true;
|
|
if (mEventQueueFlag != nullptr) {
|
|
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
|
|
}
|
|
}
|
|
|
|
ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
|
|
return 0;
|
|
}
|
|
|
|
ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
|
|
ssize_t eventsRead = 0;
|
|
size_t availableEvents = mEventQueue->availableToRead();
|
|
|
|
if (availableEvents == 0) {
|
|
uint32_t eventFlagState = 0;
|
|
|
|
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
|
|
// able to be called with the correct number of events to read. If the specified number of
|
|
// events is not available, then read() would return no events, possibly introducing
|
|
// additional latency in delivering events to applications.
|
|
if (mEventQueueFlag != nullptr) {
|
|
mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
|
|
asBaseType(INTERNAL_WAKE),
|
|
&eventFlagState);
|
|
}
|
|
availableEvents = mEventQueue->availableToRead();
|
|
|
|
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
|
|
ALOGD("Event FMQ internal wake, returning from poll with no events");
|
|
return DEAD_OBJECT;
|
|
}
|
|
}
|
|
|
|
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
|
|
if (eventsToRead > 0) {
|
|
if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
|
|
// Notify the Sensors HAL that sensor events have been read. This is required to support
|
|
// the use of writeBlocking by the Sensors HAL.
|
|
if (mEventQueueFlag != nullptr) {
|
|
mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
|
|
}
|
|
|
|
for (size_t i = 0; i < eventsToRead; i++) {
|
|
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
|
|
}
|
|
eventsRead = eventsToRead;
|
|
} else {
|
|
ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
|
|
availableEvents);
|
|
}
|
|
}
|
|
|
|
return eventsRead;
|
|
}
|
|
|
|
std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
|
|
std::vector<sensor_t> sensorsFound;
|
|
|
|
if (mSensors != nullptr) {
|
|
std::vector<SensorInfo> list;
|
|
mSensors->getSensorsList(&list);
|
|
for (size_t i = 0; i < list.size(); i++) {
|
|
sensor_t sensor;
|
|
convertToSensor(list[i], &sensor);
|
|
sensorsFound.push_back(sensor);
|
|
}
|
|
}
|
|
|
|
return sensorsFound;
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
return convertToStatus(mSensors->activate(sensorHandle, enabled));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
|
|
int64_t maxReportLatencyNs) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
return convertToStatus(mSensors->flush(sensorHandle));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
|
|
Event ev;
|
|
convertFromSensorEvent(*event, &ev);
|
|
return convertToStatus(mSensors->injectSensorData(ev));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
|
|
int32_t *channelHandle) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
|
|
ISensors::SharedMemInfo::SharedMemType type;
|
|
switch (memory->type) {
|
|
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
|
|
type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
|
|
break;
|
|
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
|
|
type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
|
|
break;
|
|
default:
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
|
|
return BAD_VALUE;
|
|
}
|
|
ISensors::SharedMemInfo::SharedMemFormat format =
|
|
ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
|
|
|
|
ISensors::SharedMemInfo mem = {
|
|
.type = type,
|
|
.format = format,
|
|
.size = static_cast<int32_t>(memory->size),
|
|
.memoryHandle = dupToAidl(memory->handle),
|
|
};
|
|
|
|
return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
|
|
}
|
|
|
|
status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
|
|
const struct sensors_direct_cfg_t *config) {
|
|
if (mSensors == nullptr) return NO_INIT;
|
|
|
|
ISensors::RateLevel rate;
|
|
switch (config->rate_level) {
|
|
case SENSOR_DIRECT_RATE_STOP:
|
|
rate = ISensors::RateLevel::STOP;
|
|
break;
|
|
case SENSOR_DIRECT_RATE_NORMAL:
|
|
rate = ISensors::RateLevel::NORMAL;
|
|
break;
|
|
case SENSOR_DIRECT_RATE_FAST:
|
|
rate = ISensors::RateLevel::FAST;
|
|
break;
|
|
case SENSOR_DIRECT_RATE_VERY_FAST:
|
|
rate = ISensors::RateLevel::VERY_FAST;
|
|
break;
|
|
default:
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
int32_t token;
|
|
mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
|
|
return token;
|
|
}
|
|
|
|
void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
|
|
int signedCount = (int)count;
|
|
if (mWakeLockQueue->write(&signedCount)) {
|
|
mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
|
|
} else {
|
|
ALOGW("Failed to write wake lock handled");
|
|
}
|
|
}
|
|
|
|
} // namespace android
|