683 lines
26 KiB
C++
683 lines
26 KiB
C++
/*
|
||
* Copyright 2013 The Android Open Source Project
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
// TODO(b/129481165): remove the #pragma below and fix conversion issues
|
||
#pragma clang diagnostic push
|
||
#pragma clang diagnostic ignored "-Wconversion"
|
||
|
||
// #define LOG_NDEBUG 0
|
||
|
||
#include <cinttypes>
|
||
|
||
#include <ftl/enum.h>
|
||
#include <ftl/flags.h>
|
||
#include <gui/BufferItem.h>
|
||
#include <gui/BufferQueue.h>
|
||
#include <gui/IProducerListener.h>
|
||
#include <system/window.h>
|
||
|
||
#include "HWComposer.h"
|
||
#include "SurfaceFlinger.h"
|
||
#include "VirtualDisplaySurface.h"
|
||
|
||
#define VDS_LOGE(msg, ...) ALOGE("[%s] " msg, \
|
||
mDisplayName.c_str(), ##__VA_ARGS__)
|
||
#define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] " msg, \
|
||
mDisplayName.c_str(), ##__VA_ARGS__)
|
||
#define VDS_LOGV(msg, ...) ALOGV("[%s] " msg, \
|
||
mDisplayName.c_str(), ##__VA_ARGS__)
|
||
|
||
#define UNSUPPORTED() \
|
||
VDS_LOGE("%s: Invalid operation on virtual display", __func__); \
|
||
return INVALID_OPERATION
|
||
|
||
namespace android {
|
||
|
||
#ifdef HWC_VIR_DISPLAY_USE_NO_AFBC
|
||
/* Gralloc 4.0 中, 表征 "调用 alloc() 的 client 要求分配的 buffer 不是 AFBC 格式".
|
||
*/
|
||
#define MALI_GRALLOC_USAGE_NO_AFBC (1ULL << 29)
|
||
#else
|
||
#define MALI_GRALLOC_USAGE_NO_AFBC (0)
|
||
#endif
|
||
|
||
VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, VirtualDisplayId displayId,
|
||
const sp<IGraphicBufferProducer>& sink,
|
||
const sp<IGraphicBufferProducer>& bqProducer,
|
||
const sp<IGraphicBufferConsumer>& bqConsumer,
|
||
const std::string& name)
|
||
: ConsumerBase(bqConsumer),
|
||
mHwc(hwc),
|
||
mDisplayId(displayId),
|
||
mDisplayName(name),
|
||
mSource{},
|
||
mDefaultOutputFormat(HAL_PIXEL_FORMAT_RGBA_8888),
|
||
mOutputFormat(HAL_PIXEL_FORMAT_RGBA_8888),
|
||
mOutputUsage(GRALLOC_USAGE_HW_COMPOSER | MALI_GRALLOC_USAGE_NO_AFBC),
|
||
mProducerSlotSource(0),
|
||
mProducerBuffers(),
|
||
mProducerSlotNeedReallocation(0),
|
||
mQueueBufferOutput(),
|
||
mSinkBufferWidth(0),
|
||
mSinkBufferHeight(0),
|
||
mFbFence(Fence::NO_FENCE),
|
||
mOutputFence(Fence::NO_FENCE),
|
||
mFbProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
|
||
mOutputProducerSlot(BufferQueue::INVALID_BUFFER_SLOT),
|
||
mForceHwcCopy(SurfaceFlinger::useHwcForRgbToYuv) {
|
||
mSource[SOURCE_SINK] = sink;
|
||
mSource[SOURCE_SCRATCH] = bqProducer;
|
||
|
||
resetPerFrameState();
|
||
|
||
int sinkWidth, sinkHeight;
|
||
sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
|
||
sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
|
||
mSinkBufferWidth = sinkWidth;
|
||
mSinkBufferHeight = sinkHeight;
|
||
|
||
// Pick the buffer format to request from the sink when not rendering to it
|
||
// with GPU. If the consumer needs CPU access, use the default format
|
||
// set by the consumer. Otherwise allow gralloc to decide the format based
|
||
// on usage bits.
|
||
int sinkUsage;
|
||
sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
|
||
if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
|
||
int sinkFormat;
|
||
sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
|
||
mDefaultOutputFormat = sinkFormat;
|
||
} else {
|
||
mDefaultOutputFormat = HAL_PIXEL_FORMAT_RGBA_8888;
|
||
}
|
||
// 由于编码端强制设置输入格式位 RGBA,故此处暂时设置为对应格式
|
||
// 待编码端适配代码实现后再考虑去掉该限制
|
||
mDefaultOutputFormat = HAL_PIXEL_FORMAT_RGBA_8888;
|
||
mOutputFormat = mDefaultOutputFormat;
|
||
|
||
ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.c_str());
|
||
mConsumer->setConsumerName(ConsumerBase::mName);
|
||
mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER | MALI_GRALLOC_USAGE_NO_AFBC);
|
||
mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
|
||
sink->setAsyncMode(true);
|
||
IGraphicBufferProducer::QueueBufferOutput output;
|
||
mSource[SOURCE_SCRATCH]->connect(nullptr, NATIVE_WINDOW_API_EGL, false, &output);
|
||
}
|
||
|
||
VirtualDisplaySurface::~VirtualDisplaySurface() {
|
||
mSource[SOURCE_SCRATCH]->disconnect(NATIVE_WINDOW_API_EGL);
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::beginFrame(bool mustRecompose) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return NO_ERROR;
|
||
}
|
||
|
||
mMustRecompose = mustRecompose;
|
||
// HW虚拟屏建议强制使能 mMustRecompose
|
||
mMustRecompose = true;
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Idle, "Unexpected %s in %s state", __func__,
|
||
ftl::enum_string(mDebugState).c_str());
|
||
mDebugState = DebugState::Begun;
|
||
|
||
return refreshOutputBuffer();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return NO_ERROR;
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Begun, "Unexpected %s in %s state", __func__,
|
||
ftl::enum_string(mDebugState).c_str());
|
||
mDebugState = DebugState::Prepared;
|
||
|
||
mCompositionType = compositionType;
|
||
if (mForceHwcCopy && mCompositionType == CompositionType::Gpu) {
|
||
// Some hardware can do RGB->YUV conversion more efficiently in hardware
|
||
// controlled by HWC than in hardware controlled by the video encoder.
|
||
// Forcing GPU-composed frames to go through an extra copy by the HWC
|
||
// allows the format conversion to happen there, rather than passing RGB
|
||
// directly to the consumer.
|
||
//
|
||
// On the other hand, when the consumer prefers RGB or can consume RGB
|
||
// inexpensively, this forces an unnecessary copy.
|
||
mCompositionType = CompositionType::Mixed;
|
||
}
|
||
|
||
if (mCompositionType != mDebugLastCompositionType) {
|
||
VDS_LOGV("%s: composition type changed to %s", __func__,
|
||
toString(mCompositionType).c_str());
|
||
mDebugLastCompositionType = mCompositionType;
|
||
}
|
||
|
||
if (mCompositionType != CompositionType::Gpu &&
|
||
(mOutputFormat != mDefaultOutputFormat ||
|
||
(mOutputUsage != (GRALLOC_USAGE_HW_COMPOSER | MALI_GRALLOC_USAGE_NO_AFBC)))) {
|
||
// We must have just switched from GPU-only to MIXED or HWC
|
||
// composition. Stop using the format and usage requested by the GPU
|
||
// driver; they may be suboptimal when HWC is writing to the output
|
||
// buffer. For example, if the output is going to a video encoder, and
|
||
// HWC can write directly to YUV, some hardware can skip a
|
||
// memory-to-memory RGB-to-YUV conversion step.
|
||
//
|
||
// If we just switched *to* GPU-only mode, we'll change the
|
||
// format/usage and get a new buffer when the GPU driver calls
|
||
// dequeueBuffer().
|
||
mOutputFormat = mDefaultOutputFormat;
|
||
mOutputUsage = (GRALLOC_USAGE_HW_COMPOSER | MALI_GRALLOC_USAGE_NO_AFBC);
|
||
refreshOutputBuffer();
|
||
}
|
||
|
||
return NO_ERROR;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::advanceFrame() {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return NO_ERROR;
|
||
}
|
||
|
||
if (mCompositionType == CompositionType::Hwc) {
|
||
VDS_LOGW_IF(mDebugState != DebugState::Prepared, "Unexpected %s in %s state on HWC frame",
|
||
__func__, ftl::enum_string(mDebugState).c_str());
|
||
} else {
|
||
VDS_LOGW_IF(mDebugState != DebugState::GpuDone,
|
||
"Unexpected %s in %s state on GPU/MIXED frame", __func__,
|
||
ftl::enum_string(mDebugState).c_str());
|
||
}
|
||
mDebugState = DebugState::Hwc;
|
||
|
||
if (mOutputProducerSlot < 0 ||
|
||
(mCompositionType != CompositionType::Hwc && mFbProducerSlot < 0)) {
|
||
// Last chance bailout if something bad happened earlier. For example,
|
||
// in a graphics API configuration, if the sink disappears then dequeueBuffer
|
||
// will fail, the GPU driver won't queue a buffer, but SurfaceFlinger
|
||
// will soldier on. So we end up here without a buffer. There should
|
||
// be lots of scary messages in the log just before this.
|
||
VDS_LOGE("%s: no buffer, bailing out", __func__);
|
||
return NO_MEMORY;
|
||
}
|
||
|
||
sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
|
||
mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(nullptr);
|
||
sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
|
||
VDS_LOGV("%s: fb=%d(%p) out=%d(%p)", __func__, mFbProducerSlot, fbBuffer.get(),
|
||
mOutputProducerSlot, outBuffer.get());
|
||
|
||
const auto halDisplayId = HalVirtualDisplayId::tryCast(mDisplayId);
|
||
LOG_FATAL_IF(!halDisplayId);
|
||
// At this point we know the output buffer acquire fence,
|
||
// so update HWC state with it.
|
||
mHwc.setOutputBuffer(*halDisplayId, mOutputFence, outBuffer);
|
||
|
||
status_t result = NO_ERROR;
|
||
if (fbBuffer != nullptr) {
|
||
uint32_t hwcSlot = 0;
|
||
sp<GraphicBuffer> hwcBuffer;
|
||
mHwcBufferCache.getHwcBuffer(mFbProducerSlot, fbBuffer, &hwcSlot, &hwcBuffer);
|
||
|
||
// TODO: Correctly propagate the dataspace from GL composition
|
||
result = mHwc.setClientTarget(*halDisplayId, hwcSlot, mFbFence, hwcBuffer,
|
||
ui::Dataspace::UNKNOWN);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void VirtualDisplaySurface::onFrameCommitted() {
|
||
const auto halDisplayId = HalVirtualDisplayId::tryCast(mDisplayId);
|
||
if (!halDisplayId) {
|
||
return;
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Hwc, "Unexpected %s in %s state", __func__,
|
||
ftl::enum_string(mDebugState).c_str());
|
||
mDebugState = DebugState::Idle;
|
||
|
||
sp<Fence> retireFence = mHwc.getPresentFence(*halDisplayId);
|
||
if (mCompositionType == CompositionType::Mixed && mFbProducerSlot >= 0) {
|
||
// release the scratch buffer back to the pool
|
||
Mutex::Autolock lock(mMutex);
|
||
int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
|
||
VDS_LOGV("%s: release scratch sslot=%d", __func__, sslot);
|
||
addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot],
|
||
retireFence);
|
||
releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot]);
|
||
}
|
||
|
||
if (mOutputProducerSlot >= 0) {
|
||
int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
|
||
QueueBufferOutput qbo;
|
||
VDS_LOGV("%s: queue sink sslot=%d", __func__, sslot);
|
||
if (mMustRecompose) {
|
||
status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
|
||
QueueBufferInput(
|
||
systemTime(), false /* isAutoTimestamp */,
|
||
HAL_DATASPACE_UNKNOWN,
|
||
Rect(mSinkBufferWidth, mSinkBufferHeight),
|
||
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
|
||
retireFence),
|
||
&qbo);
|
||
if (result == NO_ERROR) {
|
||
updateQueueBufferOutput(std::move(qbo));
|
||
}
|
||
} else {
|
||
// If the surface hadn't actually been updated, then we only went
|
||
// through the motions of updating the display to keep our state
|
||
// machine happy. We cancel the buffer to avoid triggering another
|
||
// re-composition and causing an infinite loop.
|
||
mSource[SOURCE_SINK]->cancelBuffer(sslot, retireFence);
|
||
}
|
||
}
|
||
|
||
resetPerFrameState();
|
||
}
|
||
|
||
void VirtualDisplaySurface::dumpAsString(String8& /* result */) const {
|
||
}
|
||
|
||
void VirtualDisplaySurface::resizeBuffers(const ui::Size& newSize) {
|
||
mQueueBufferOutput.width = newSize.width;
|
||
mQueueBufferOutput.height = newSize.height;
|
||
mSinkBufferWidth = newSize.width;
|
||
mSinkBufferHeight = newSize.height;
|
||
}
|
||
|
||
const sp<Fence>& VirtualDisplaySurface::getClientTargetAcquireFence() const {
|
||
return mFbFence;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::requestBuffer(int pslot,
|
||
sp<GraphicBuffer>* outBuf) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return mSource[SOURCE_SINK]->requestBuffer(pslot, outBuf);
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Gpu, "Unexpected %s pslot=%d in %s state", __func__,
|
||
pslot, ftl::enum_string(mDebugState).c_str());
|
||
|
||
*outBuf = mProducerBuffers[pslot];
|
||
return NO_ERROR;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setMaxDequeuedBufferCount(
|
||
int maxDequeuedBuffers) {
|
||
return mSource[SOURCE_SINK]->setMaxDequeuedBufferCount(maxDequeuedBuffers);
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setAsyncMode(bool async) {
|
||
return mSource[SOURCE_SINK]->setAsyncMode(async);
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::dequeueBuffer(Source source,
|
||
PixelFormat format, uint64_t usage, int* sslot, sp<Fence>* fence) {
|
||
LOG_ALWAYS_FATAL_IF(GpuVirtualDisplayId::tryCast(mDisplayId).has_value());
|
||
|
||
status_t result =
|
||
mSource[source]->dequeueBuffer(sslot, fence, mSinkBufferWidth, mSinkBufferHeight,
|
||
format, usage, nullptr, nullptr);
|
||
if (result < 0)
|
||
return result;
|
||
int pslot = mapSource2ProducerSlot(source, *sslot);
|
||
VDS_LOGV("%s(%s): sslot=%d pslot=%d result=%d", __func__, ftl::enum_string(source).c_str(),
|
||
*sslot, pslot, result);
|
||
uint64_t sourceBit = static_cast<uint64_t>(source) << pslot;
|
||
|
||
// reset producer slot reallocation flag
|
||
mProducerSlotNeedReallocation &= ~(1ULL << pslot);
|
||
|
||
if ((mProducerSlotSource & (1ULL << pslot)) != sourceBit) {
|
||
// This slot was previously dequeued from the other source; must
|
||
// re-request the buffer.
|
||
mProducerSlotNeedReallocation |= 1ULL << pslot;
|
||
|
||
mProducerSlotSource &= ~(1ULL << pslot);
|
||
mProducerSlotSource |= sourceBit;
|
||
}
|
||
|
||
if (result & RELEASE_ALL_BUFFERS) {
|
||
for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
|
||
if ((mProducerSlotSource & (1ULL << i)) == sourceBit)
|
||
mProducerBuffers[i].clear();
|
||
}
|
||
}
|
||
if (result & BUFFER_NEEDS_REALLOCATION) {
|
||
result = mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
|
||
if (result < 0) {
|
||
mProducerBuffers[pslot].clear();
|
||
mSource[source]->cancelBuffer(*sslot, *fence);
|
||
return result;
|
||
}
|
||
VDS_LOGV("%s(%s): buffers[%d]=%p fmt=%d usage=%#" PRIx64, __func__,
|
||
ftl::enum_string(source).c_str(), pslot, mProducerBuffers[pslot].get(),
|
||
mProducerBuffers[pslot]->getPixelFormat(), mProducerBuffers[pslot]->getUsage());
|
||
|
||
// propagate reallocation to VDS consumer
|
||
mProducerSlotNeedReallocation |= 1ULL << pslot;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, uint32_t w, uint32_t h,
|
||
PixelFormat format, uint64_t usage,
|
||
uint64_t* outBufferAge,
|
||
FrameEventHistoryDelta* outTimestamps) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return mSource[SOURCE_SINK]->dequeueBuffer(pslot, fence, w, h, format, usage, outBufferAge,
|
||
outTimestamps);
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Prepared, "Unexpected %s in %s state", __func__,
|
||
ftl::enum_string(mDebugState).c_str());
|
||
mDebugState = DebugState::Gpu;
|
||
|
||
VDS_LOGV("%s %dx%d fmt=%d usage=%#" PRIx64, __func__, w, h, format, usage);
|
||
|
||
status_t result = NO_ERROR;
|
||
Source source = fbSourceForCompositionType(mCompositionType);
|
||
|
||
if (source == SOURCE_SINK) {
|
||
|
||
if (mOutputProducerSlot < 0) {
|
||
// Last chance bailout if something bad happened earlier. For example,
|
||
// in a graphics API configuration, if the sink disappears then dequeueBuffer
|
||
// will fail, the GPU driver won't queue a buffer, but SurfaceFlinger
|
||
// will soldier on. So we end up here without a buffer. There should
|
||
// be lots of scary messages in the log just before this.
|
||
VDS_LOGE("%s: no buffer, bailing out", __func__);
|
||
return NO_MEMORY;
|
||
}
|
||
|
||
// We already dequeued the output buffer. If the GPU driver wants
|
||
// something incompatible, we have to cancel and get a new one. This
|
||
// will mean that HWC will see a different output buffer between
|
||
// prepare and set, but since we're in GPU-only mode already it
|
||
// shouldn't matter.
|
||
|
||
usage |= GRALLOC_USAGE_HW_COMPOSER;
|
||
const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
|
||
if ((usage & ~buf->getUsage()) != 0 ||
|
||
(format != 0 && format != buf->getPixelFormat()) ||
|
||
(w != 0 && w != mSinkBufferWidth) ||
|
||
(h != 0 && h != mSinkBufferHeight)) {
|
||
VDS_LOGV("%s: dequeueing new output buffer: "
|
||
"want %dx%d fmt=%d use=%#" PRIx64 ", "
|
||
"have %dx%d fmt=%d use=%#" PRIx64,
|
||
__func__, w, h, format, usage, mSinkBufferWidth, mSinkBufferHeight,
|
||
buf->getPixelFormat(), buf->getUsage());
|
||
mOutputFormat = format;
|
||
mOutputUsage = usage;
|
||
result = refreshOutputBuffer();
|
||
if (result < 0)
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (source == SOURCE_SINK) {
|
||
*pslot = mOutputProducerSlot;
|
||
*fence = mOutputFence;
|
||
} else {
|
||
int sslot;
|
||
result = dequeueBuffer(source, format, usage, &sslot, fence);
|
||
if (result >= 0) {
|
||
*pslot = mapSource2ProducerSlot(source, sslot);
|
||
}
|
||
}
|
||
if (outBufferAge) {
|
||
*outBufferAge = 0;
|
||
}
|
||
|
||
if ((mProducerSlotNeedReallocation & (1ULL << *pslot)) != 0) {
|
||
result |= BUFFER_NEEDS_REALLOCATION;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::detachBuffer(int) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::detachNextBuffer(sp<GraphicBuffer>*, sp<Fence>*) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::attachBuffer(int*, const sp<GraphicBuffer>&) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::queueBuffer(int pslot,
|
||
const QueueBufferInput& input, QueueBufferOutput* output) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return mSource[SOURCE_SINK]->queueBuffer(pslot, input, output);
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Gpu, "Unexpected %s(pslot=%d) in %s state", __func__,
|
||
pslot, ftl::enum_string(mDebugState).c_str());
|
||
mDebugState = DebugState::GpuDone;
|
||
|
||
VDS_LOGV("%s pslot=%d", __func__, pslot);
|
||
|
||
status_t result;
|
||
if (mCompositionType == CompositionType::Mixed) {
|
||
// Queue the buffer back into the scratch pool
|
||
QueueBufferOutput scratchQBO;
|
||
int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
|
||
result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
|
||
if (result != NO_ERROR)
|
||
return result;
|
||
|
||
// Now acquire the buffer from the scratch pool -- should be the same
|
||
// slot and fence as we just queued.
|
||
Mutex::Autolock lock(mMutex);
|
||
BufferItem item;
|
||
result = acquireBufferLocked(&item, 0);
|
||
if (result != NO_ERROR)
|
||
return result;
|
||
VDS_LOGW_IF(item.mSlot != sslot,
|
||
"%s: acquired sslot %d from SCRATCH after queueing sslot %d", __func__,
|
||
item.mSlot, sslot);
|
||
mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mSlot);
|
||
mFbFence = mSlots[item.mSlot].mFence;
|
||
|
||
} else {
|
||
LOG_FATAL_IF(mCompositionType != CompositionType::Gpu,
|
||
"Unexpected %s in state %s for composition type %s", __func__,
|
||
ftl::enum_string(mDebugState).c_str(), toString(mCompositionType).c_str());
|
||
|
||
// Extract the GPU release fence for HWC to acquire
|
||
int64_t timestamp;
|
||
bool isAutoTimestamp;
|
||
android_dataspace dataSpace;
|
||
Rect crop;
|
||
int scalingMode;
|
||
uint32_t transform;
|
||
input.deflate(×tamp, &isAutoTimestamp, &dataSpace, &crop,
|
||
&scalingMode, &transform, &mFbFence);
|
||
|
||
mFbProducerSlot = pslot;
|
||
mOutputFence = mFbFence;
|
||
}
|
||
|
||
// This moves the frame timestamps and keeps a copy of all other fields.
|
||
*output = std::move(mQueueBufferOutput);
|
||
return NO_ERROR;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::cancelBuffer(int pslot,
|
||
const sp<Fence>& fence) {
|
||
if (GpuVirtualDisplayId::tryCast(mDisplayId)) {
|
||
return mSource[SOURCE_SINK]->cancelBuffer(mapProducer2SourceSlot(SOURCE_SINK, pslot), fence);
|
||
}
|
||
|
||
VDS_LOGW_IF(mDebugState != DebugState::Gpu, "Unexpected %s(pslot=%d) in %s state", __func__,
|
||
pslot, ftl::enum_string(mDebugState).c_str());
|
||
VDS_LOGV("%s pslot=%d", __func__, pslot);
|
||
Source source = fbSourceForCompositionType(mCompositionType);
|
||
return mSource[source]->cancelBuffer(
|
||
mapProducer2SourceSlot(source, pslot), fence);
|
||
}
|
||
|
||
int VirtualDisplaySurface::query(int what, int* value) {
|
||
switch (what) {
|
||
case NATIVE_WINDOW_WIDTH:
|
||
*value = mSinkBufferWidth;
|
||
break;
|
||
case NATIVE_WINDOW_HEIGHT:
|
||
*value = mSinkBufferHeight;
|
||
break;
|
||
default:
|
||
return mSource[SOURCE_SINK]->query(what, value);
|
||
}
|
||
return NO_ERROR;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::connect(const sp<IProducerListener>& listener,
|
||
int api, bool producerControlledByApp,
|
||
QueueBufferOutput* output) {
|
||
QueueBufferOutput qbo;
|
||
status_t result = mSource[SOURCE_SINK]->connect(listener, api,
|
||
producerControlledByApp, &qbo);
|
||
if (result == NO_ERROR) {
|
||
updateQueueBufferOutput(std::move(qbo));
|
||
// This moves the frame timestamps and keeps a copy of all other fields.
|
||
*output = std::move(mQueueBufferOutput);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::disconnect(int api, DisconnectMode mode) {
|
||
return mSource[SOURCE_SINK]->disconnect(api, mode);
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setSidebandStream(const sp<NativeHandle>&) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
void VirtualDisplaySurface::allocateBuffers(uint32_t /* width */,
|
||
uint32_t /* height */, PixelFormat /* format */, uint64_t /* usage */) {
|
||
// TODO: Should we actually allocate buffers for a virtual display?
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::allowAllocation(bool /* allow */) {
|
||
return INVALID_OPERATION;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setGenerationNumber(uint32_t) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
String8 VirtualDisplaySurface::getConsumerName() const {
|
||
return String8("VirtualDisplaySurface");
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setSharedBufferMode(bool) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setAutoRefresh(bool) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::setDequeueTimeout(nsecs_t) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::getLastQueuedBuffer(sp<GraphicBuffer>*, sp<Fence>*, float[16]) {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::getUniqueId(uint64_t*) const {
|
||
UNSUPPORTED();
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::getConsumerUsage(uint64_t* outUsage) const {
|
||
return mSource[SOURCE_SINK]->getConsumerUsage(outUsage);
|
||
}
|
||
|
||
void VirtualDisplaySurface::updateQueueBufferOutput(
|
||
QueueBufferOutput&& qbo) {
|
||
mQueueBufferOutput = std::move(qbo);
|
||
mQueueBufferOutput.transformHint = 0;
|
||
}
|
||
|
||
void VirtualDisplaySurface::resetPerFrameState() {
|
||
mCompositionType = CompositionType::Unknown;
|
||
mFbFence = Fence::NO_FENCE;
|
||
mOutputFence = Fence::NO_FENCE;
|
||
mOutputProducerSlot = -1;
|
||
mFbProducerSlot = -1;
|
||
}
|
||
|
||
status_t VirtualDisplaySurface::refreshOutputBuffer() {
|
||
LOG_ALWAYS_FATAL_IF(GpuVirtualDisplayId::tryCast(mDisplayId).has_value());
|
||
|
||
mOutputUsage = mOutputUsage | MALI_GRALLOC_USAGE_NO_AFBC;
|
||
|
||
if (mOutputProducerSlot >= 0) {
|
||
mSource[SOURCE_SINK]->cancelBuffer(
|
||
mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
|
||
mOutputFence);
|
||
}
|
||
|
||
int sslot;
|
||
status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
|
||
&sslot, &mOutputFence);
|
||
if (result < 0)
|
||
return result;
|
||
mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
|
||
|
||
// On GPU-only frames, we don't have the right output buffer acquire fence
|
||
// until after GPU calls queueBuffer(). So here we just set the buffer
|
||
// (for use in HWC prepare) but not the fence; we'll call this again with
|
||
// the proper fence once we have it.
|
||
const auto halDisplayId = HalVirtualDisplayId::tryCast(mDisplayId);
|
||
LOG_FATAL_IF(!halDisplayId);
|
||
result = mHwc.setOutputBuffer(*halDisplayId, Fence::NO_FENCE,
|
||
mProducerBuffers[mOutputProducerSlot]);
|
||
|
||
return result;
|
||
}
|
||
|
||
// This slot mapping function is its own inverse, so two copies are unnecessary.
|
||
// Both are kept to make the intent clear where the function is called, and for
|
||
// the (unlikely) chance that we switch to a different mapping function.
|
||
int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
|
||
if (source == SOURCE_SCRATCH) {
|
||
return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
|
||
} else {
|
||
return sslot;
|
||
}
|
||
}
|
||
int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
|
||
return mapSource2ProducerSlot(source, pslot);
|
||
}
|
||
|
||
auto VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) -> Source {
|
||
return type == CompositionType::Mixed ? SOURCE_SCRATCH : SOURCE_SINK;
|
||
}
|
||
|
||
std::string VirtualDisplaySurface::toString(CompositionType type) {
|
||
using namespace std::literals;
|
||
return type == CompositionType::Unknown ? "Unknown"s : ftl::Flags(type).string();
|
||
}
|
||
|
||
} // namespace android
|
||
|
||
// TODO(b/129481165): remove the #pragma below and fix conversion issues
|
||
#pragma clang diagnostic pop // ignored "-Wconversion"
|