android13/hardware/rockchip/rknn-toolkit2/examples/functions/mmse/test.py

92 lines
2.6 KiB
Python

import numpy as np
import cv2
from rknn.api import RKNN
def show_outputs(outputs):
output = outputs[0][0]
output_sorted = sorted(output, reverse=True)
top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):
if (i + j) >= 5:
break
if value > 0:
topi = '{}: {}\n'.format(index[j], value)
else:
topi = '-1: 0.0\n'
top5_str += topi
print(top5_str)
if __name__ == '__main__':
# Create RKNN object
rknn = RKNN(verbose=True)
# Pre-process config
print('--> Config model')
rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128], target_platform='rk3566',
quantized_method='layer', quantized_algorithm='mmse')
print('done')
# Load model (from https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md)
print('--> Loading model')
ret = rknn.load_tensorflow(tf_pb='mobilenet_v1_1.0_224_frozen.pb',
inputs=['input'],
input_size_list=[[1, 224, 224, 3]],
outputs=['MobilenetV1/Logits/SpatialSqueeze'])
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Accuracy analysis
print('--> Accuracy analysis')
ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None)
if ret != 0:
print('Accuracy analysis failed!')
exit(ret)
print('done')
f = open('./snapshot/error_analysis.txt')
lines = f.readlines()
cos = lines[-1].split()[2]
if float(cos) >= 0.963:
print('cos = {}, mmse work!'.format(cos))
else:
print('cos = {} < 0.963, mmse abnormal!'.format(cos))
f.close()
# Set inputs
img = cv2.imread('./dog_224x224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.expand_dims(img, 0)
# Init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed!')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
np.save('./functions_mmse_0.npy', outputs[0])
show_outputs(outputs)
print('done')
rknn.release()