9.8 KiB
9.8 KiB
RK3588 NPU SRAM使用说明
- RK3588 SOC内部含有1MB的SRAM,其中有956KB可供给SOC上各个IP所使用,已支持为RKNPU指定分配使用
- SRAM可以帮助RKNPU应用减轻DDR带宽压力,目前支持为Internal和Weight两种类型内存指定分配SRAM
一、板端环境要求
1、内核环境要求
- RKNPU驱动版本>=0.8.0
- 内核config需要开启CONFIG_ROCKCHIP_RKNPU_SRAM=y
- Android系统config路径如下:
<path-to-your-kernel>/arch/arm64/configs/rockchip_defconfig
- Linux系统config路径如下:
<path-to-your-kernel>/arch/arm64/configs/rockchip_linux_defconfig
- 内核相应DTS需要从系统SRAM中分配给RKNPU使用
- 从系统分配需求大小的SRAM给RKNPU,最大可分配956KB,且大小需要4K对齐
- 注意:默认系统中可能已为其他IP分配SRAM,比如编解码模块,各IP分配的SRAM区域不能重叠,否则会存在同时读写出现数据错乱现象
- 如下为956KB全部分配给RKNPU的例子:
syssram: sram@ff001000 { compatible = "mmio-sram"; reg = <0x0 0xff001000 0x0 0xef000>; #address-cells = <1>; #size-cells = <1>; ranges = <0x0 0x0 0xff001000 0xef000>; /* 分配RKNPU SRAM */ /* start address and size should be 4k algin */ rknpu_sram: rknpu_sram@0 { reg = <0x0 0xef000>; // 956KB }; };
- 把分配的SRAM挂到RKNPU节点,修改如下所示的dtsi文件:
<path-to-your-kernel>/arch/arm64/boot/dts/rockchip/rk3588s.dtsi
rknpu: npu@fdab0000 { compatible = "rockchip,rk3588-rknpu"; /* ... */ /* 增加RKNPU sram的引用 */ rockchip,sram = <&rknpu_sram>; status = "disabled"; };
2、RKNN SDK版本要求
- RKNPU Runtime库(librknnrt.so)版本>=1.3.4b14
二、使用方法
1、指定Internal使用SRAM:
- 自动大小方式,将尝试从系统分配剩余足够的SRAM给Internal使用
- export RKNN_INTERNAL_MEM_TYPE=sram
- 指定大小方式,将尝试从系统分配指定256KB大小的SRAM给Internal使用
- export RKNN_INTERNAL_MEM_TYPE=sram#256
2、指定Weight使用SRAM:
- 自动大小方式,将尝试从系统分配剩余足够的SRAM给Weight使用
- export RKNN_SEPARATE_WEIGHT_MEM=1
- export RKNN_WEIGHT_MEM_TYPE=sram
- 指定大小方式,将尝试从系统分配指定128KB大小的SRAM给Weight使用
- export RKNN_SEPARATE_WEIGHT_MEM=1
- export RKNN_WEIGHT_MEM_TYPE=sram#128
3、混合指定
- RKNPU驱动支持对SRAM内存管理,支持同时指定SRAM给Internal和Weight同时使用,如下:
- export RKNN_INTERNAL_MEM_TYPE=sram#256
- export RKNN_SEPARATE_WEIGHT_MEM=1
- export RKNN_WEIGHT_MEM_TYPE=sram#128
三、调试方法
1、SRAM是否启用查询
- 通过开机串口日志查看SRAM是否启用,包含为RKNPU指定SRAM的地址范围和大小信息,如下所示:
rk3588_s:/ # dmesg | grep rknpu -i
RKNPU fdab0000.npu: RKNPU: sram region: [0x00000000ff001000, 0x00000000ff0f0000), sram size: 0xef000
2、SRAM使用情况查询
- 可通过节点查询SRAM的使用情况
- 如下为未使用SRAM的位图表,每个点表示4K大小
rk3588_s:/ # cat /sys/kernel/debug/rknpu/mm
SRAM bitmap: "*" - used, "." - free (1bit = 4KB)
[000] [................................]
[001] [................................]
[002] [................................]
[003] [................................]
[004] [................................]
[005] [................................]
[006] [................................]
[007] [...............]
SRAM total size: 978944, used: 0, free: 978944
- 如下为分配使用512KB后的SRAM位图表
rk3588_s:/ # cat /sys/kernel/debug/rknpu/mm
SRAM bitmap: "*" - used, "." - free (1bit = 4KB)
[000] [********************************]
[001] [********************************]
[002] [********************************]
[003] [********************************]
[004] [................................]
[005] [................................]
[006] [................................]
[007] [...............]
SRAM total size: 978944, used: 524288, free: 454656
3、通过RKNN API查询SRAM大小
- 通过rknn_query的RKNN_QUERY_MEM_SIZE接口查询SRAM大小信息
typedef struct _rknn_mem_size {
uint32_t total_weight_size;
uint32_t total_internal_size;
uint64_t total_dma_allocated_size;
uint32_t total_sram_size;
uint32_t free_sram_size;
uint32_t reserved[10];
} rknn_mem_size;
- 其中,total_sram_size表示:系统给RKNPU分配的SRAM总大小
- free_sram_size表示:剩余RKNPU能使用的SRAM大小
4、查看网络SRAM的占用情况
- 板端环境中,RKNN应用运行前设置如下环境变量,可打印SRAM使用预测情况:
export RKNN_LOG_LEVEL=3
- Internal分配SRAM的逐层占用情况,如下日志所示:
---------------------------------------------------------------------------
Total allocated Internal SRAM Size: 524288, Addr: [0xff3e0000, 0xff460000)
---------------------------------------------------------------------------
---------------------------------------------------------------------+----------------------------------+-----------
ID User Tensor DataType OrigShape NativeShape | [Start End) Size | SramHit
---------------------------------------------------------------------+----------------------------------+-----------
1 ConvRelu input0 INT8 (1,3,224,224) (1,1,224,224,3) | 0xff3b0000 0xff3d4c00 0x00024c00 | \
2 ConvRelu output2 INT8 (1,32,112,112) (1,2,112,112,16) | 0xff404c00 0xff466c00 0x00062000 | 0x0005b400
3 ConvRelu output4 INT8 (1,32,112,112) (1,4,112,112,16) | 0xff466c00 0xff52ac00 0x000c4000 | 0x00000000
4 ConvRelu output6 INT8 (1,64,112,112) (1,4,112,112,16) | 0xff52ac00*0xff5eec00 0x000c4000 | 0x00000000
5 ConvRelu output8 INT8 (1,64,56,56) (1,4,56,56,16) | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
6 ConvRelu output10 INT8 (1,128,56,56) (1,8,56,56,16) | 0xff411000 0xff473000 0x00062000 | 0x0004f000
7 ConvRelu output12 INT8 (1,128,56,56) (1,8,56,56,16) | 0xff473000 0xff4d5000 0x00062000 | 0x00000000
8 ConvRelu output14 INT8 (1,128,56,56) (1,8,56,56,16) | 0xff3e0000 0xff442000 0x00062000 | 0x00062000
9 ConvRelu output16 INT8 (1,128,28,28) (1,8,28,28,16) | 0xff442000 0xff45a800 0x00018800 | 0x00018800
10 ConvRelu output18 INT8 (1,256,28,28) (1,16,28,28,16) | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
11 ConvRelu output20 INT8 (1,256,28,28) (1,16,28,28,16) | 0xff411000 0xff442000 0x00031000 | 0x00031000
12 ConvRelu output22 INT8 (1,256,28,28) (1,16,28,28,16) | 0xff3e0000 0xff411000 0x00031000 | 0x00031000
13 ConvRelu output24 INT8 (1,256,14,14) (1,16,14,14,16) | 0xff411000 0xff41d400 0x0000c400 | 0x0000c400
14 ConvRelu output26 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
15 ConvRelu output28 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
16 ConvRelu output30 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
17 ConvRelu output32 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
18 ConvRelu output34 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
19 ConvRelu output36 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
20 ConvRelu output38 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
21 ConvRelu output40 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
22 ConvRelu output42 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
23 ConvRelu output44 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3f8800 0xff411000 0x00018800 | 0x00018800
24 ConvRelu output46 INT8 (1,512,14,14) (1,32,14,14,16) | 0xff3e0000 0xff3f8800 0x00018800 | 0x00018800
25 ConvRelu output48 INT8 (1,512,7,7) (1,33,7,7,16) | 0xff3f8800 0xff3ff000 0x00006800 | 0x00006800
26 ConvRelu output50 INT8 (1,1024,7,7) (1,67,7,7,16) | 0xff3e0000 0xff3ed000 0x0000d000 | 0x0000d000
27 ConvRelu output52 INT8 (1,1024,7,7) (1,67,7,7,16) | 0xff3ed000 0xff3fa000 0x0000d000 | 0x0000d000
28 AveragePool output54 INT8 (1,1024,7,7) (1,67,7,7,16) | 0xff3e0000 0xff3ed000 0x0000d000 | 0x0000d000
29 Conv output55 INT8 (1,1024,1,1) (1,64,1,1,16) | 0xff3ed000 0xff3ed400 0x00000400 | 0x00000400
30 Softmax output56 INT8 (1,1000,1,1) (1,64,1,1,16) | 0xff3e0000 0xff3e0400 0x00000400 | 0x00000400
31 OutputOperator output57 FLOAT (1,1000,1,1) (1,1000,1,1) | 0xff3ae000 0xff3aefa0 0x00000fa0 | \
---------------------------------------------------------------------+----------------------------------+-----------
----------------------------------------
Total Weight Memory Size: 4260864
Total Internal Memory Size: 2157568
Predict Internal Memory RW Amount: 11068320
Predict Weight Memory RW Amount: 4260832
Predict SRAM Hit RW Amount: 6688768
----------------------------------------
- 其中上面文本图表中的SramHit为当前层Tensor所占用的SRAM大小,一般情况下将会节省当前大小的读+写的带宽
- Predict SRAM Hit RW Amount表示整个网络SRAM的读写预测情况,可近似估计每帧节省的带宽
- 注意:Linux环境日志重定向到终端,Android环境日志重定向到logcat