1433 lines
37 KiB
C
1433 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2021 Google LLC
|
|
* Author: Fuad Tabba <tabba@google.com>
|
|
*/
|
|
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_host.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/memory.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <kvm/arm_hypercalls.h>
|
|
#include <kvm/arm_psci.h>
|
|
|
|
#include <nvhe/mem_protect.h>
|
|
#include <nvhe/mm.h>
|
|
#include <nvhe/pkvm.h>
|
|
#include <nvhe/trap_handler.h>
|
|
|
|
/* Used by icache_is_vpipt(). */
|
|
unsigned long __icache_flags;
|
|
|
|
/*
|
|
* Set trap register values based on features in ID_AA64PFR0.
|
|
*/
|
|
static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1);
|
|
u64 hcr_set = HCR_RW;
|
|
u64 hcr_clear = 0;
|
|
u64 cptr_set = 0;
|
|
|
|
/* Protected KVM does not support AArch32 guests. */
|
|
BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL0),
|
|
PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_ELx_64BIT_ONLY);
|
|
BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1),
|
|
PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_ELx_64BIT_ONLY);
|
|
|
|
/*
|
|
* Linux guests assume support for floating-point and Advanced SIMD. Do
|
|
* not change the trapping behavior for these from the KVM default.
|
|
*/
|
|
BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_FP),
|
|
PVM_ID_AA64PFR0_ALLOW));
|
|
BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_ASIMD),
|
|
PVM_ID_AA64PFR0_ALLOW));
|
|
|
|
/* Trap RAS unless all current versions are supported */
|
|
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_RAS), feature_ids) <
|
|
ID_AA64PFR0_RAS_V1P1) {
|
|
hcr_set |= HCR_TERR | HCR_TEA;
|
|
hcr_clear |= HCR_FIEN;
|
|
}
|
|
|
|
/* Trap AMU */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_AMU), feature_ids)) {
|
|
hcr_clear |= HCR_AMVOFFEN;
|
|
cptr_set |= CPTR_EL2_TAM;
|
|
}
|
|
|
|
/* Trap SVE */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_SVE), feature_ids))
|
|
cptr_set |= CPTR_EL2_TZ;
|
|
|
|
vcpu->arch.hcr_el2 |= hcr_set;
|
|
vcpu->arch.hcr_el2 &= ~hcr_clear;
|
|
vcpu->arch.cptr_el2 |= cptr_set;
|
|
}
|
|
|
|
/*
|
|
* Set trap register values based on features in ID_AA64PFR1.
|
|
*/
|
|
static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1);
|
|
u64 hcr_set = 0;
|
|
u64 hcr_clear = 0;
|
|
|
|
/* Memory Tagging: Trap and Treat as Untagged if not supported. */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_MTE), feature_ids)) {
|
|
hcr_set |= HCR_TID5;
|
|
hcr_clear |= HCR_DCT | HCR_ATA;
|
|
}
|
|
|
|
vcpu->arch.hcr_el2 |= hcr_set;
|
|
vcpu->arch.hcr_el2 &= ~hcr_clear;
|
|
}
|
|
|
|
/*
|
|
* Set trap register values based on features in ID_AA64DFR0.
|
|
*/
|
|
static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1);
|
|
u64 mdcr_set = 0;
|
|
u64 mdcr_clear = 0;
|
|
u64 cptr_set = 0;
|
|
|
|
/* Trap/constrain PMU */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMUVER), feature_ids)) {
|
|
mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
|
|
mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME |
|
|
MDCR_EL2_HPMN_MASK;
|
|
}
|
|
|
|
/* Trap Debug */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), feature_ids))
|
|
mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA;
|
|
|
|
/* Trap OS Double Lock */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DOUBLELOCK), feature_ids))
|
|
mdcr_set |= MDCR_EL2_TDOSA;
|
|
|
|
/* Trap SPE */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER), feature_ids)) {
|
|
mdcr_set |= MDCR_EL2_TPMS;
|
|
mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
|
|
}
|
|
|
|
/* Trap Trace Filter */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_TRACE_FILT), feature_ids))
|
|
mdcr_set |= MDCR_EL2_TTRF;
|
|
|
|
/* Trap Trace */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_TRACEVER), feature_ids))
|
|
cptr_set |= CPTR_EL2_TTA;
|
|
|
|
vcpu->arch.mdcr_el2 |= mdcr_set;
|
|
vcpu->arch.mdcr_el2 &= ~mdcr_clear;
|
|
vcpu->arch.cptr_el2 |= cptr_set;
|
|
}
|
|
|
|
/*
|
|
* Set trap register values based on features in ID_AA64MMFR0.
|
|
*/
|
|
static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1);
|
|
u64 mdcr_set = 0;
|
|
|
|
/* Trap Debug Communications Channel registers */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_FGT), feature_ids))
|
|
mdcr_set |= MDCR_EL2_TDCC;
|
|
|
|
vcpu->arch.mdcr_el2 |= mdcr_set;
|
|
}
|
|
|
|
/*
|
|
* Set trap register values based on features in ID_AA64MMFR1.
|
|
*/
|
|
static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu)
|
|
{
|
|
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1);
|
|
u64 hcr_set = 0;
|
|
|
|
/* Trap LOR */
|
|
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_LOR), feature_ids))
|
|
hcr_set |= HCR_TLOR;
|
|
|
|
vcpu->arch.hcr_el2 |= hcr_set;
|
|
}
|
|
|
|
/*
|
|
* Set baseline trap register values.
|
|
*/
|
|
static void pvm_init_trap_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
|
|
vcpu->arch.mdcr_el2 = 0;
|
|
|
|
/*
|
|
* Always trap:
|
|
* - Feature id registers: to control features exposed to guests
|
|
* - Implementation-defined features
|
|
*/
|
|
vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS |
|
|
HCR_TID3 | HCR_TACR | HCR_TIDCP | HCR_TID1;
|
|
|
|
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) {
|
|
/* route synchronous external abort exceptions to EL2 */
|
|
vcpu->arch.hcr_el2 |= HCR_TEA;
|
|
/* trap error record accesses */
|
|
vcpu->arch.hcr_el2 |= HCR_TERR;
|
|
}
|
|
|
|
if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
|
|
vcpu->arch.hcr_el2 |= HCR_FWB;
|
|
|
|
if (cpus_have_const_cap(ARM64_MISMATCHED_CACHE_TYPE))
|
|
vcpu->arch.hcr_el2 |= HCR_TID2;
|
|
}
|
|
|
|
/*
|
|
* Initialize trap register values for protected VMs.
|
|
*/
|
|
static void pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu)
|
|
{
|
|
pvm_init_trap_regs(vcpu);
|
|
pvm_init_traps_aa64pfr0(vcpu);
|
|
pvm_init_traps_aa64pfr1(vcpu);
|
|
pvm_init_traps_aa64dfr0(vcpu);
|
|
pvm_init_traps_aa64mmfr0(vcpu);
|
|
pvm_init_traps_aa64mmfr1(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Start the shadow table handle at the offset defined instead of at 0.
|
|
* Mainly for sanity checking and debugging.
|
|
*/
|
|
#define HANDLE_OFFSET 0x1000
|
|
|
|
static int shadow_handle_to_index(int shadow_handle)
|
|
{
|
|
return shadow_handle - HANDLE_OFFSET;
|
|
}
|
|
|
|
static int index_to_shadow_handle(int index)
|
|
{
|
|
return index + HANDLE_OFFSET;
|
|
}
|
|
|
|
extern unsigned long hyp_nr_cpus;
|
|
|
|
/*
|
|
* Track the vcpu most recently loaded on each physical CPU.
|
|
*/
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, last_loaded_vcpu);
|
|
|
|
/*
|
|
* Spinlock for protecting the shadow table related state.
|
|
* Protects writes to shadow_table, num_shadow_entries, and next_shadow_alloc,
|
|
* as well as reads and writes to last_shadow_vcpu_lookup.
|
|
*/
|
|
static DEFINE_HYP_SPINLOCK(shadow_lock);
|
|
|
|
/*
|
|
* The table of shadow entries for protected VMs in hyp.
|
|
* Allocated at hyp initialization and setup.
|
|
*/
|
|
static struct kvm_shadow_vm **shadow_table;
|
|
|
|
/* Current number of vms in the shadow table. */
|
|
static int num_shadow_entries;
|
|
|
|
/* The next entry index to try to allocate from. */
|
|
static int next_shadow_alloc;
|
|
|
|
void hyp_shadow_table_init(void *tbl)
|
|
{
|
|
WARN_ON(shadow_table);
|
|
shadow_table = tbl;
|
|
}
|
|
|
|
/*
|
|
* Return the shadow vm corresponding to the handle.
|
|
*/
|
|
static struct kvm_shadow_vm *find_shadow_by_handle(int shadow_handle)
|
|
{
|
|
int shadow_index = shadow_handle_to_index(shadow_handle);
|
|
|
|
if (unlikely(shadow_index < 0 || shadow_index >= KVM_MAX_PVMS))
|
|
return NULL;
|
|
|
|
return shadow_table[shadow_index];
|
|
}
|
|
|
|
struct kvm_vcpu *get_shadow_vcpu(int shadow_handle, unsigned int vcpu_idx)
|
|
{
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
struct kvm_shadow_vm *vm;
|
|
bool flush_context = false;
|
|
|
|
hyp_spin_lock(&shadow_lock);
|
|
vm = find_shadow_by_handle(shadow_handle);
|
|
if (!vm || vm->nr_vcpus <= vcpu_idx)
|
|
goto unlock;
|
|
vcpu = &vm->shadow_vcpus[vcpu_idx]->vcpu;
|
|
|
|
/* Ensure vcpu isn't loaded on more than one cpu simultaneously. */
|
|
if (unlikely(vcpu->arch.pkvm.loaded_on_cpu)) {
|
|
vcpu = NULL;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Guarantee that both TLBs and I-cache are private to each vcpu.
|
|
* The check below is conservative and could lead to over-invalidation,
|
|
* because there is no need to nuke the contexts if the vcpu belongs to
|
|
* a different vm.
|
|
*/
|
|
if (vcpu != __this_cpu_read(last_loaded_vcpu)) {
|
|
flush_context = true;
|
|
__this_cpu_write(last_loaded_vcpu, vcpu);
|
|
}
|
|
|
|
vcpu->arch.pkvm.loaded_on_cpu = true;
|
|
|
|
hyp_page_ref_inc(hyp_virt_to_page(vm));
|
|
unlock:
|
|
hyp_spin_unlock(&shadow_lock);
|
|
|
|
/* No need for the lock while flushing the context. */
|
|
if (flush_context)
|
|
__kvm_flush_cpu_context(vcpu->arch.hw_mmu);
|
|
|
|
return vcpu;
|
|
}
|
|
|
|
void put_shadow_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
|
|
|
|
hyp_spin_lock(&shadow_lock);
|
|
vcpu->arch.pkvm.loaded_on_cpu = false;
|
|
hyp_page_ref_dec(hyp_virt_to_page(vm));
|
|
hyp_spin_unlock(&shadow_lock);
|
|
}
|
|
|
|
/* Check and copy the supported features for the vcpu from the host. */
|
|
static int copy_features(struct kvm_vcpu *shadow_vcpu, struct kvm_vcpu *host_vcpu)
|
|
{
|
|
DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/*
|
|
* Always allowed:
|
|
* - CPU starting in poweroff state
|
|
* - PSCI v0.2
|
|
*/
|
|
set_bit(KVM_ARM_VCPU_POWER_OFF, allowed_features);
|
|
set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features);
|
|
|
|
/*
|
|
* Check if remaining features are allowed:
|
|
* - Performance Monitoring
|
|
* - Scalable Vectors
|
|
* - Pointer Authentication
|
|
*/
|
|
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMUVER), PVM_ID_AA64DFR0_ALLOW))
|
|
set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features);
|
|
|
|
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_SVE), PVM_ID_AA64PFR0_ALLOW))
|
|
set_bit(KVM_ARM_VCPU_SVE, allowed_features);
|
|
|
|
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_API), PVM_ID_AA64ISAR1_ALLOW) &&
|
|
FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA), PVM_ID_AA64ISAR1_ALLOW))
|
|
set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features);
|
|
|
|
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI), PVM_ID_AA64ISAR1_ALLOW) &&
|
|
FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA), PVM_ID_AA64ISAR1_ALLOW))
|
|
set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features);
|
|
|
|
bitmap_and(shadow_vcpu->arch.features, host_vcpu->arch.features,
|
|
allowed_features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/*
|
|
* Check for system support for address/generic pointer authentication
|
|
* features if either are enabled.
|
|
*/
|
|
if ((test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, shadow_vcpu->arch.features) ||
|
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, shadow_vcpu->arch.features)) &&
|
|
!system_has_full_ptr_auth())
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void unpin_host_vcpu(struct shadow_vcpu_state *shadow_vcpu)
|
|
{
|
|
struct kvm_vcpu *host_vcpu = shadow_vcpu->vcpu.arch.pkvm.host_vcpu;
|
|
size_t sve_state_size;
|
|
void *sve_state = shadow_vcpu->vcpu.arch.sve_state;
|
|
|
|
hyp_unpin_shared_mem(host_vcpu, host_vcpu + 1);
|
|
|
|
if (!sve_state)
|
|
return;
|
|
|
|
sve_state = kern_hyp_va(sve_state);
|
|
sve_state_size = vcpu_sve_state_size(&shadow_vcpu->vcpu);
|
|
hyp_unpin_shared_mem(sve_state, sve_state + sve_state_size);
|
|
}
|
|
|
|
static void unpin_host_vcpus(struct shadow_vcpu_state *shadow_vcpus[], int nr_vcpus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_vcpus; i++)
|
|
unpin_host_vcpu(shadow_vcpus[i]);
|
|
}
|
|
|
|
static int init_ptrauth(struct kvm_vcpu *shadow_vcpu)
|
|
{
|
|
int ret = 0;
|
|
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, shadow_vcpu->arch.features) ||
|
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, shadow_vcpu->arch.features))
|
|
ret = kvm_vcpu_enable_ptrauth(shadow_vcpu);
|
|
return ret;
|
|
}
|
|
|
|
static void init_shadow_vm(struct kvm *kvm, struct kvm_shadow_vm *vm,
|
|
int nr_vcpus)
|
|
{
|
|
vm->host_kvm = kvm;
|
|
vm->created_vcpus = nr_vcpus;
|
|
vm->arch.pkvm.pvmfw_load_addr = kvm->arch.pkvm.pvmfw_load_addr;
|
|
vm->arch.pkvm.enabled = READ_ONCE(kvm->arch.pkvm.enabled);
|
|
}
|
|
|
|
static int init_shadow_vcpu(struct shadow_vcpu_state *shadow_state,
|
|
struct kvm_vcpu *host_vcpu,
|
|
struct kvm_shadow_vm *vm, int vcpu_idx)
|
|
{
|
|
struct kvm_vcpu *shadow_vcpu = &shadow_state->vcpu;
|
|
int ret;
|
|
|
|
host_vcpu = kern_hyp_va(host_vcpu);
|
|
if (hyp_pin_shared_mem(host_vcpu, host_vcpu + 1))
|
|
return -EBUSY;
|
|
|
|
if (host_vcpu->vcpu_idx != vcpu_idx) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
shadow_vcpu->arch.pkvm.host_vcpu = host_vcpu;
|
|
shadow_vcpu->kvm = vm->host_kvm;
|
|
shadow_vcpu->vcpu_id = host_vcpu->vcpu_id;
|
|
shadow_vcpu->vcpu_idx = vcpu_idx;
|
|
|
|
ret = copy_features(shadow_vcpu, host_vcpu);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = init_ptrauth(shadow_vcpu);
|
|
if (ret)
|
|
goto done;
|
|
|
|
if (test_bit(KVM_ARM_VCPU_SVE, shadow_vcpu->arch.features)) {
|
|
size_t sve_state_size;
|
|
void *sve_state;
|
|
|
|
shadow_vcpu->arch.sve_state =
|
|
READ_ONCE(host_vcpu->arch.sve_state);
|
|
shadow_vcpu->arch.sve_max_vl =
|
|
READ_ONCE(host_vcpu->arch.sve_max_vl);
|
|
|
|
sve_state = kern_hyp_va(shadow_vcpu->arch.sve_state);
|
|
sve_state_size = vcpu_sve_state_size(shadow_vcpu);
|
|
|
|
if (!shadow_vcpu->arch.sve_state || !sve_state_size ||
|
|
hyp_pin_shared_mem(sve_state, sve_state + sve_state_size)) {
|
|
clear_bit(KVM_ARM_VCPU_SVE, shadow_vcpu->arch.features);
|
|
shadow_vcpu->arch.sve_state = NULL;
|
|
shadow_vcpu->arch.sve_max_vl = 0;
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (vm->arch.pkvm.enabled)
|
|
pkvm_vcpu_init_traps(shadow_vcpu);
|
|
kvm_reset_pvm_sys_regs(shadow_vcpu);
|
|
|
|
vm->vcpus[vcpu_idx] = shadow_vcpu;
|
|
shadow_state->vm = vm;
|
|
|
|
shadow_vcpu->arch.hw_mmu = &vm->arch.mmu;
|
|
shadow_vcpu->arch.pkvm.shadow_vm = vm;
|
|
shadow_vcpu->arch.power_off = true;
|
|
|
|
if (test_bit(KVM_ARM_VCPU_POWER_OFF, shadow_vcpu->arch.features)) {
|
|
shadow_vcpu->arch.pkvm.power_state =
|
|
PSCI_0_2_AFFINITY_LEVEL_OFF;
|
|
} else if (pvm_has_pvmfw(vm)) {
|
|
if (vm->pvmfw_entry_vcpu) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
vm->pvmfw_entry_vcpu = shadow_vcpu;
|
|
shadow_vcpu->arch.reset_state.reset = true;
|
|
shadow_vcpu->arch.pkvm.power_state =
|
|
PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
|
|
} else {
|
|
struct vcpu_reset_state *reset_state =
|
|
&shadow_vcpu->arch.reset_state;
|
|
|
|
reset_state->pc = *vcpu_pc(host_vcpu);
|
|
reset_state->r0 = vcpu_get_reg(host_vcpu, 0);
|
|
reset_state->reset = true;
|
|
shadow_vcpu->arch.pkvm.power_state =
|
|
PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
|
|
}
|
|
|
|
done:
|
|
if (ret)
|
|
unpin_host_vcpu(shadow_state);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool __exists_shadow(struct kvm *host_kvm)
|
|
{
|
|
int i;
|
|
int num_checked = 0;
|
|
|
|
for (i = 0; i < KVM_MAX_PVMS && num_checked < num_shadow_entries; i++) {
|
|
if (!shadow_table[i])
|
|
continue;
|
|
|
|
if (unlikely(shadow_table[i]->host_kvm == host_kvm))
|
|
return true;
|
|
|
|
num_checked++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Allocate a shadow table entry and insert a pointer to the shadow vm.
|
|
*
|
|
* Return a unique handle to the protected VM on success,
|
|
* negative error code on failure.
|
|
*/
|
|
static int insert_shadow_table(struct kvm *kvm, struct kvm_shadow_vm *vm,
|
|
size_t shadow_size)
|
|
{
|
|
struct kvm_s2_mmu *mmu = &vm->arch.mmu;
|
|
int shadow_handle;
|
|
int vmid;
|
|
|
|
hyp_assert_lock_held(&shadow_lock);
|
|
|
|
if (unlikely(num_shadow_entries >= KVM_MAX_PVMS))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Initializing protected state might have failed, yet a malicious host
|
|
* could trigger this function. Thus, ensure that shadow_table exists.
|
|
*/
|
|
if (unlikely(!shadow_table))
|
|
return -EINVAL;
|
|
|
|
/* Check that a shadow hasn't been created before for this host KVM. */
|
|
if (unlikely(__exists_shadow(kvm)))
|
|
return -EEXIST;
|
|
|
|
/* Find the next free entry in the shadow table. */
|
|
while (shadow_table[next_shadow_alloc])
|
|
next_shadow_alloc = (next_shadow_alloc + 1) % KVM_MAX_PVMS;
|
|
shadow_handle = index_to_shadow_handle(next_shadow_alloc);
|
|
|
|
vm->shadow_handle = shadow_handle;
|
|
vm->shadow_area_size = shadow_size;
|
|
|
|
/* VMID 0 is reserved for the host */
|
|
vmid = next_shadow_alloc + 1;
|
|
if (vmid > 0xff)
|
|
return -ENOMEM;
|
|
|
|
mmu->vmid.vmid = vmid;
|
|
mmu->vmid.vmid_gen = 0;
|
|
mmu->arch = &vm->arch;
|
|
mmu->pgt = &vm->pgt;
|
|
|
|
shadow_table[next_shadow_alloc] = vm;
|
|
next_shadow_alloc = (next_shadow_alloc + 1) % KVM_MAX_PVMS;
|
|
num_shadow_entries++;
|
|
|
|
return shadow_handle;
|
|
}
|
|
|
|
/*
|
|
* Deallocate and remove the shadow table entry corresponding to the handle.
|
|
*/
|
|
static void remove_shadow_table(int shadow_handle)
|
|
{
|
|
hyp_assert_lock_held(&shadow_lock);
|
|
shadow_table[shadow_handle_to_index(shadow_handle)] = NULL;
|
|
num_shadow_entries--;
|
|
}
|
|
|
|
static size_t pkvm_get_shadow_size(int num_vcpus)
|
|
{
|
|
/* Shadow space for the vm struct and all of its vcpu states. */
|
|
return sizeof(struct kvm_shadow_vm) +
|
|
sizeof(struct shadow_vcpu_state *) * num_vcpus;
|
|
}
|
|
|
|
/*
|
|
* Check whether the size of the area donated by the host is sufficient for
|
|
* the shadow structues required for nr_vcpus as well as the shadow vm.
|
|
*/
|
|
static int check_shadow_size(int nr_vcpus, size_t shadow_size)
|
|
{
|
|
if (nr_vcpus < 1 || nr_vcpus > KVM_MAX_VCPUS)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Shadow size is rounded up when allocated and donated by the host,
|
|
* so it's likely to be larger than the sum of the struct sizes.
|
|
*/
|
|
if (shadow_size < pkvm_get_shadow_size(nr_vcpus))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void drain_shadow_vcpus(struct shadow_vcpu_state *shadow_vcpus[],
|
|
unsigned int nr_vcpus,
|
|
struct kvm_hyp_memcache *mc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_vcpus; i++) {
|
|
struct kvm_vcpu *shadow_vcpu = &shadow_vcpus[i]->vcpu;
|
|
struct kvm_hyp_memcache *vcpu_mc = &shadow_vcpu->arch.pkvm_memcache;
|
|
void *addr;
|
|
|
|
while (vcpu_mc->nr_pages) {
|
|
addr = pop_hyp_memcache(vcpu_mc, hyp_phys_to_virt);
|
|
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
|
|
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the shadow copy of the protected VM state using the memory
|
|
* donated by the host.
|
|
*
|
|
* Unmaps the donated memory from the host at stage 2.
|
|
*
|
|
* kvm: A pointer to the host's struct kvm (host va).
|
|
* shadow_va: The host va of the area being donated for the shadow state.
|
|
* Must be page aligned.
|
|
* shadow_size: The size of the area being donated for the shadow state.
|
|
* Must be a multiple of the page size.
|
|
* pgd: The host va of the area being donated for the stage-2 PGD for the VM.
|
|
* Must be page aligned. Its size is implied by the VM's VTCR.
|
|
*
|
|
* Return a unique handle to the protected VM on success,
|
|
* negative error code on failure.
|
|
*/
|
|
int __pkvm_init_shadow(struct kvm *kvm,
|
|
void *shadow_va,
|
|
size_t shadow_size,
|
|
void *pgd)
|
|
{
|
|
struct kvm_shadow_vm *vm = kern_hyp_va(shadow_va);
|
|
phys_addr_t shadow_pa = hyp_virt_to_phys(vm);
|
|
u64 pfn = hyp_phys_to_pfn(shadow_pa);
|
|
u64 nr_shadow_pages = shadow_size >> PAGE_SHIFT;
|
|
u64 nr_pgd_pages;
|
|
size_t pgd_size;
|
|
int nr_vcpus = 0;
|
|
int ret = 0;
|
|
|
|
/* Check that the donated memory is aligned to page boundaries. */
|
|
if (!PAGE_ALIGNED(shadow_va) ||
|
|
!PAGE_ALIGNED(shadow_size) ||
|
|
!PAGE_ALIGNED(pgd))
|
|
return -EINVAL;
|
|
|
|
kvm = kern_hyp_va(kvm);
|
|
pgd = kern_hyp_va(pgd);
|
|
|
|
ret = hyp_pin_shared_mem(kvm, kvm + 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Ensure the host has donated enough memory for the shadow structs. */
|
|
nr_vcpus = kvm->created_vcpus;
|
|
ret = check_shadow_size(nr_vcpus, shadow_size);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = __pkvm_host_donate_hyp(pfn, nr_shadow_pages);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* Ensure we're working with a clean slate. */
|
|
memset(vm, 0, shadow_size);
|
|
|
|
vm->arch.vtcr = host_kvm.arch.vtcr;
|
|
pgd_size = kvm_pgtable_stage2_pgd_size(host_kvm.arch.vtcr);
|
|
nr_pgd_pages = pgd_size >> PAGE_SHIFT;
|
|
ret = __pkvm_host_donate_hyp(hyp_virt_to_pfn(pgd), nr_pgd_pages);
|
|
if (ret)
|
|
goto err_remove_mappings;
|
|
|
|
init_shadow_vm(kvm, vm, nr_vcpus);
|
|
|
|
/* Add the entry to the shadow table. */
|
|
hyp_spin_lock(&shadow_lock);
|
|
ret = insert_shadow_table(kvm, vm, shadow_size);
|
|
if (ret < 0)
|
|
goto err_unlock;
|
|
|
|
ret = kvm_guest_prepare_stage2(vm, pgd);
|
|
if (ret)
|
|
goto err_remove_shadow_table;
|
|
|
|
hyp_spin_unlock(&shadow_lock);
|
|
return vm->shadow_handle;
|
|
|
|
err_remove_shadow_table:
|
|
remove_shadow_table(vm->shadow_handle);
|
|
err_unlock:
|
|
hyp_spin_unlock(&shadow_lock);
|
|
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(pgd), nr_pgd_pages));
|
|
err_remove_mappings:
|
|
/* Clear the donated shadow memory on failure to avoid data leaks. */
|
|
memset(vm, 0, shadow_size);
|
|
WARN_ON(__pkvm_hyp_donate_host(hyp_phys_to_pfn(shadow_pa),
|
|
shadow_size >> PAGE_SHIFT));
|
|
err:
|
|
hyp_unpin_shared_mem(kvm, kvm + 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize the protected vcpu state shadow copy in host-donated memory.
|
|
*
|
|
* shadow_handle: The handle for the protected vm.
|
|
* host_vcpu: A pointer to the corresponding host vcpu (host va).
|
|
* shadow_vcpu_hva: The host va of the area being donated for the vcpu state.
|
|
* Must be page aligned. The size of the area must be equal to
|
|
* the paged-aligned size of kvm_shadow_vcpu_state.
|
|
*
|
|
* Return 0 on success, negative error code on failure.
|
|
*/
|
|
int __pkvm_init_shadow_vcpu(unsigned int shadow_handle,
|
|
struct kvm_vcpu *host_vcpu,
|
|
void *shadow_vcpu_hva)
|
|
{
|
|
struct kvm_shadow_vm *vm;
|
|
struct shadow_vcpu_state *shadow_state = kern_hyp_va(shadow_vcpu_hva);
|
|
size_t vcpu_state_sz = sizeof(*shadow_state);
|
|
u64 nr_pages = PAGE_ALIGN(vcpu_state_sz) >> PAGE_SHIFT;
|
|
unsigned int idx;
|
|
int ret;
|
|
|
|
if (!PAGE_ALIGNED(shadow_vcpu_hva))
|
|
return -EINVAL;
|
|
|
|
ret = __pkvm_host_donate_hyp(hyp_virt_to_pfn(shadow_state),
|
|
nr_pages);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memset(shadow_state, 0, vcpu_state_sz);
|
|
|
|
hyp_spin_lock(&shadow_lock);
|
|
|
|
vm = find_shadow_by_handle(shadow_handle);
|
|
if (!vm) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
|
|
idx = vm->nr_vcpus;
|
|
if (idx >= vm->created_vcpus) {
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = init_shadow_vcpu(shadow_state, host_vcpu, vm, idx);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
vm->shadow_vcpus[idx] = shadow_state;
|
|
vm->nr_vcpus++;
|
|
unlock:
|
|
hyp_spin_unlock(&shadow_lock);
|
|
|
|
if (ret) {
|
|
memset(shadow_state, 0, vcpu_state_sz);
|
|
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(shadow_state),
|
|
nr_pages));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void teardown_donated_memory(struct kvm_hyp_memcache *mc, void *addr,
|
|
size_t size)
|
|
{
|
|
u64 pfn = hyp_phys_to_pfn(__hyp_pa(addr));
|
|
u64 nr_pages = size >> PAGE_SHIFT;
|
|
void *start;
|
|
|
|
memset(addr, 0, size);
|
|
kvm_flush_dcache_to_poc(addr, size);
|
|
|
|
for (start = addr; start < addr + size; start += PAGE_SIZE)
|
|
push_hyp_memcache(mc, start, hyp_virt_to_phys);
|
|
|
|
WARN_ON(__pkvm_hyp_donate_host(pfn, nr_pages));
|
|
}
|
|
|
|
int __pkvm_teardown_shadow(int shadow_handle)
|
|
{
|
|
struct kvm_hyp_memcache *mc;
|
|
struct kvm_shadow_vm *vm;
|
|
struct kvm *host_kvm;
|
|
unsigned int nr_vcpus;
|
|
int err;
|
|
int i;
|
|
|
|
/* Lookup then remove entry from the shadow table. */
|
|
hyp_spin_lock(&shadow_lock);
|
|
vm = find_shadow_by_handle(shadow_handle);
|
|
if (!vm) {
|
|
err = -ENOENT;
|
|
goto err_unlock;
|
|
}
|
|
|
|
if (WARN_ON(hyp_page_count(vm))) {
|
|
err = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
|
|
host_kvm = vm->host_kvm;
|
|
nr_vcpus = vm->nr_vcpus;
|
|
|
|
/*
|
|
* Clear the tracking for last_loaded_vcpu for all cpus for this vm in
|
|
* case the same addresses for those vcpus are reused for future vms.
|
|
*/
|
|
for (i = 0; i < hyp_nr_cpus; i++) {
|
|
struct kvm_vcpu **last_loaded_vcpu_ptr =
|
|
per_cpu_ptr(&last_loaded_vcpu, i);
|
|
struct kvm_vcpu *vcpu = *last_loaded_vcpu_ptr;
|
|
|
|
if (vcpu && vcpu->arch.pkvm.shadow_vm == vm)
|
|
*last_loaded_vcpu_ptr = NULL;
|
|
}
|
|
|
|
/* Ensure the VMID is clean before it can be reallocated */
|
|
__kvm_tlb_flush_vmid(&vm->arch.mmu);
|
|
remove_shadow_table(shadow_handle);
|
|
hyp_spin_unlock(&shadow_lock);
|
|
|
|
/* Reclaim guest pages, and page-table pages */
|
|
mc = &host_kvm->arch.pkvm.teardown_mc;
|
|
reclaim_guest_pages(vm, mc);
|
|
drain_shadow_vcpus(vm->shadow_vcpus, nr_vcpus, mc);
|
|
unpin_host_vcpus(vm->shadow_vcpus, nr_vcpus);
|
|
|
|
for (i = 0; i < nr_vcpus; i++)
|
|
teardown_donated_memory(mc, vm->shadow_vcpus[i],
|
|
PAGE_ALIGN(sizeof(vm->shadow_vcpus[i])));
|
|
teardown_donated_memory(mc, vm, vm->shadow_area_size);
|
|
|
|
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
|
|
return 0;
|
|
|
|
err_unlock:
|
|
hyp_spin_unlock(&shadow_lock);
|
|
return err;
|
|
}
|
|
|
|
int pkvm_load_pvmfw_pages(struct kvm_shadow_vm *vm, u64 ipa, phys_addr_t phys,
|
|
u64 size)
|
|
{
|
|
struct kvm_protected_vm *pkvm = &vm->arch.pkvm;
|
|
u64 npages, offset = ipa - pkvm->pvmfw_load_addr;
|
|
void *src = hyp_phys_to_virt(pvmfw_base) + offset;
|
|
|
|
if (offset >= pvmfw_size)
|
|
return -EINVAL;
|
|
|
|
size = min(size, pvmfw_size - offset);
|
|
if (!PAGE_ALIGNED(size) || !PAGE_ALIGNED(src))
|
|
return -EINVAL;
|
|
|
|
npages = size >> PAGE_SHIFT;
|
|
while (npages--) {
|
|
void *dst;
|
|
|
|
dst = hyp_fixmap_map(phys);
|
|
if (!dst)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* No need for cache maintenance here, as the pgtable code will
|
|
* take care of this when installing the pte in the guest's
|
|
* stage-2 page table.
|
|
*/
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
|
|
hyp_fixmap_unmap();
|
|
src += PAGE_SIZE;
|
|
phys += PAGE_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pkvm_clear_pvmfw_pages(void)
|
|
{
|
|
void *addr = hyp_phys_to_virt(pvmfw_base);
|
|
|
|
memset(addr, 0, pvmfw_size);
|
|
kvm_flush_dcache_to_poc(addr, pvmfw_size);
|
|
}
|
|
|
|
/*
|
|
* This function sets the registers on the vcpu to their architecturally defined
|
|
* reset values.
|
|
*
|
|
* Note: Can only be called by the vcpu on itself, after it has been turned on.
|
|
*/
|
|
void pkvm_reset_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_reset_state *reset_state = &vcpu->arch.reset_state;
|
|
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
|
|
|
|
WARN_ON(!reset_state->reset);
|
|
|
|
init_ptrauth(vcpu);
|
|
|
|
/* Reset core registers */
|
|
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
|
|
memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
|
|
vcpu_gp_regs(vcpu)->pstate = VCPU_RESET_PSTATE_EL1;
|
|
|
|
/* Reset system registers */
|
|
kvm_reset_pvm_sys_regs(vcpu);
|
|
|
|
/* Propagate initiator's endianness, after kvm_reset_pvm_sys_regs. */
|
|
if (reset_state->be)
|
|
kvm_vcpu_set_be(vcpu);
|
|
|
|
if (vm->pvmfw_entry_vcpu == vcpu) {
|
|
struct kvm_vcpu *host_vcpu = vcpu->arch.pkvm.host_vcpu;
|
|
u64 entry = vm->arch.pkvm.pvmfw_load_addr;
|
|
int i;
|
|
|
|
/* X0 - X14 provided by the VMM (preserved) */
|
|
for (i = 0; i <= 14; ++i)
|
|
vcpu_set_reg(vcpu, i, vcpu_get_reg(host_vcpu, i));
|
|
|
|
/* X15: Boot protocol version */
|
|
vcpu_set_reg(vcpu, 15, 0);
|
|
|
|
/* PC: IPA of pvmfw base */
|
|
*vcpu_pc(vcpu) = entry;
|
|
|
|
vm->pvmfw_entry_vcpu = NULL;
|
|
|
|
/* Auto enroll MMIO guard */
|
|
set_bit(KVM_ARCH_FLAG_MMIO_GUARD,
|
|
&vcpu->arch.pkvm.shadow_vm->arch.flags);
|
|
} else {
|
|
*vcpu_pc(vcpu) = reset_state->pc;
|
|
vcpu_set_reg(vcpu, 0, reset_state->r0);
|
|
}
|
|
|
|
reset_state->reset = false;
|
|
|
|
vcpu->arch.pkvm.exit_code = 0;
|
|
|
|
WARN_ON(vcpu->arch.pkvm.power_state != PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
|
|
WRITE_ONCE(vcpu->arch.power_off, false);
|
|
WRITE_ONCE(vcpu->arch.pkvm.power_state, PSCI_0_2_AFFINITY_LEVEL_ON);
|
|
}
|
|
|
|
struct kvm_vcpu *pvm_mpidr_to_vcpu(struct kvm_shadow_vm *vm, unsigned long mpidr)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
|
|
for (i = 0; i < READ_ONCE(vm->nr_vcpus); i++) {
|
|
vcpu = vm->vcpus[i];
|
|
|
|
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
|
|
return vcpu;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Returns true if the hypervisor handled PSCI call, and control should go back
|
|
* to the guest, or false if the host needs to do some additional work (i.e.,
|
|
* wake up the vcpu).
|
|
*/
|
|
static bool pvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
|
|
{
|
|
struct kvm_shadow_vm *vm = source_vcpu->arch.pkvm.shadow_vm;
|
|
struct kvm_vcpu *vcpu;
|
|
struct vcpu_reset_state *reset_state;
|
|
unsigned long cpu_id;
|
|
unsigned long hvc_ret_val;
|
|
int power_state;
|
|
|
|
cpu_id = smccc_get_arg1(source_vcpu);
|
|
if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) {
|
|
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
|
|
goto error;
|
|
}
|
|
|
|
vcpu = pvm_mpidr_to_vcpu(vm, cpu_id);
|
|
|
|
/* Make sure the caller requested a valid vcpu. */
|
|
if (!vcpu) {
|
|
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Make sure the requested vcpu is not on to begin with.
|
|
* Atomic to avoid race between vcpus trying to power on the same vcpu.
|
|
*/
|
|
power_state = cmpxchg(&vcpu->arch.pkvm.power_state,
|
|
PSCI_0_2_AFFINITY_LEVEL_OFF,
|
|
PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
|
|
switch (power_state) {
|
|
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
|
|
hvc_ret_val = PSCI_RET_ON_PENDING;
|
|
goto error;
|
|
case PSCI_0_2_AFFINITY_LEVEL_ON:
|
|
hvc_ret_val = PSCI_RET_ALREADY_ON;
|
|
goto error;
|
|
case PSCI_0_2_AFFINITY_LEVEL_OFF:
|
|
break;
|
|
default:
|
|
hvc_ret_val = PSCI_RET_INTERNAL_FAILURE;
|
|
goto error;
|
|
}
|
|
|
|
reset_state = &vcpu->arch.reset_state;
|
|
|
|
reset_state->pc = smccc_get_arg2(source_vcpu);
|
|
reset_state->r0 = smccc_get_arg3(source_vcpu);
|
|
|
|
/* Propagate caller endianness */
|
|
reset_state->be = kvm_vcpu_is_be(source_vcpu);
|
|
|
|
reset_state->reset = true;
|
|
|
|
/*
|
|
* Return to the host, which should make the KVM_REQ_VCPU_RESET request
|
|
* as well as kvm_vcpu_wake_up() to schedule the vcpu.
|
|
*/
|
|
return false;
|
|
|
|
error:
|
|
/* If there's an error go back straight to the guest. */
|
|
smccc_set_retval(source_vcpu, hvc_ret_val, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool pvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i, matching_cpus = 0;
|
|
unsigned long mpidr;
|
|
unsigned long target_affinity;
|
|
unsigned long target_affinity_mask;
|
|
unsigned long lowest_affinity_level;
|
|
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
|
|
struct kvm_vcpu *tmp;
|
|
unsigned long hvc_ret_val;
|
|
|
|
target_affinity = smccc_get_arg1(vcpu);
|
|
lowest_affinity_level = smccc_get_arg2(vcpu);
|
|
|
|
if (!kvm_psci_valid_affinity(vcpu, target_affinity)) {
|
|
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
|
|
goto done;
|
|
}
|
|
|
|
/* Determine target affinity mask */
|
|
target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
|
|
if (!target_affinity_mask) {
|
|
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
|
|
goto done;
|
|
}
|
|
|
|
/* Ignore other bits of target affinity */
|
|
target_affinity &= target_affinity_mask;
|
|
|
|
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_OFF;
|
|
|
|
/*
|
|
* If at least one vcpu matching target affinity is ON then return ON,
|
|
* then if at least one is PENDING_ON then return PENDING_ON.
|
|
* Otherwise, return OFF.
|
|
*/
|
|
for (i = 0; i < READ_ONCE(vm->nr_vcpus); i++) {
|
|
tmp = vm->vcpus[i];
|
|
mpidr = kvm_vcpu_get_mpidr_aff(tmp);
|
|
|
|
if ((mpidr & target_affinity_mask) == target_affinity) {
|
|
int power_state;
|
|
|
|
matching_cpus++;
|
|
power_state = READ_ONCE(tmp->arch.pkvm.power_state);
|
|
switch (power_state) {
|
|
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
|
|
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
|
|
break;
|
|
case PSCI_0_2_AFFINITY_LEVEL_ON:
|
|
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_ON;
|
|
goto done;
|
|
case PSCI_0_2_AFFINITY_LEVEL_OFF:
|
|
break;
|
|
default:
|
|
hvc_ret_val = PSCI_RET_INTERNAL_FAILURE;
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!matching_cpus)
|
|
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
|
|
|
|
done:
|
|
/* Nothing to be handled by the host. Go back to the guest. */
|
|
smccc_set_retval(vcpu, hvc_ret_val, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Returns true if the hypervisor has handled the PSCI call, and control should
|
|
* go back to the guest, or false if the host needs to do some additional work
|
|
* (e.g., turn off and update vcpu scheduling status).
|
|
*/
|
|
static bool pvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
|
|
{
|
|
WARN_ON(vcpu->arch.power_off);
|
|
WARN_ON(vcpu->arch.pkvm.power_state != PSCI_0_2_AFFINITY_LEVEL_ON);
|
|
|
|
WRITE_ONCE(vcpu->arch.power_off, true);
|
|
WRITE_ONCE(vcpu->arch.pkvm.power_state, PSCI_0_2_AFFINITY_LEVEL_OFF);
|
|
|
|
/* Return to the host so that it can finish powering off the vcpu. */
|
|
return false;
|
|
}
|
|
|
|
static bool pvm_psci_version(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Nothing to be handled by the host. Go back to the guest. */
|
|
smccc_set_retval(vcpu, KVM_ARM_PSCI_1_1, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool pvm_psci_not_supported(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Nothing to be handled by the host. Go back to the guest. */
|
|
smccc_set_retval(vcpu, PSCI_RET_NOT_SUPPORTED, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool pvm_psci_features(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 feature = smccc_get_arg1(vcpu);
|
|
unsigned long val;
|
|
|
|
switch (feature) {
|
|
case PSCI_0_2_FN_PSCI_VERSION:
|
|
case PSCI_0_2_FN_CPU_SUSPEND:
|
|
case PSCI_0_2_FN64_CPU_SUSPEND:
|
|
case PSCI_0_2_FN_CPU_OFF:
|
|
case PSCI_0_2_FN_CPU_ON:
|
|
case PSCI_0_2_FN64_CPU_ON:
|
|
case PSCI_0_2_FN_AFFINITY_INFO:
|
|
case PSCI_0_2_FN64_AFFINITY_INFO:
|
|
case PSCI_0_2_FN_SYSTEM_OFF:
|
|
case PSCI_0_2_FN_SYSTEM_RESET:
|
|
case PSCI_1_0_FN_PSCI_FEATURES:
|
|
case PSCI_1_1_FN_SYSTEM_RESET2:
|
|
case PSCI_1_1_FN64_SYSTEM_RESET2:
|
|
case ARM_SMCCC_VERSION_FUNC_ID:
|
|
val = PSCI_RET_SUCCESS;
|
|
break;
|
|
default:
|
|
val = PSCI_RET_NOT_SUPPORTED;
|
|
break;
|
|
}
|
|
|
|
/* Nothing to be handled by the host. Go back to the guest. */
|
|
smccc_set_retval(vcpu, val, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool pkvm_handle_psci(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 psci_fn = smccc_get_function(vcpu);
|
|
|
|
switch (psci_fn) {
|
|
case PSCI_0_2_FN_CPU_ON:
|
|
kvm_psci_narrow_to_32bit(vcpu);
|
|
fallthrough;
|
|
case PSCI_0_2_FN64_CPU_ON:
|
|
return pvm_psci_vcpu_on(vcpu);
|
|
case PSCI_0_2_FN_CPU_OFF:
|
|
return pvm_psci_vcpu_off(vcpu);
|
|
case PSCI_0_2_FN_AFFINITY_INFO:
|
|
kvm_psci_narrow_to_32bit(vcpu);
|
|
fallthrough;
|
|
case PSCI_0_2_FN64_AFFINITY_INFO:
|
|
return pvm_psci_vcpu_affinity_info(vcpu);
|
|
case PSCI_0_2_FN_PSCI_VERSION:
|
|
return pvm_psci_version(vcpu);
|
|
case PSCI_1_0_FN_PSCI_FEATURES:
|
|
return pvm_psci_features(vcpu);
|
|
case PSCI_0_2_FN_SYSTEM_RESET:
|
|
case PSCI_0_2_FN_CPU_SUSPEND:
|
|
case PSCI_0_2_FN64_CPU_SUSPEND:
|
|
case PSCI_0_2_FN_SYSTEM_OFF:
|
|
case PSCI_1_1_FN_SYSTEM_RESET2:
|
|
case PSCI_1_1_FN64_SYSTEM_RESET2:
|
|
return false; /* Handled by the host. */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return pvm_psci_not_supported(vcpu);
|
|
}
|
|
|
|
static u64 __pkvm_memshare_page_req(struct kvm_vcpu *vcpu, u64 ipa)
|
|
{
|
|
u64 elr;
|
|
|
|
/* Fake up a data abort (Level 3 translation fault on write) */
|
|
vcpu->arch.fault.esr_el2 = (u32)ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT |
|
|
ESR_ELx_WNR | ESR_ELx_FSC_FAULT |
|
|
FIELD_PREP(ESR_ELx_FSC_LEVEL, 3);
|
|
|
|
/* Shuffle the IPA around into the HPFAR */
|
|
vcpu->arch.fault.hpfar_el2 = (ipa >> 8) & HPFAR_MASK;
|
|
|
|
/* This is a virtual address. 0's good. Let's go with 0. */
|
|
vcpu->arch.fault.far_el2 = 0;
|
|
|
|
/* Rewind the ELR so we return to the HVC once the IPA is mapped */
|
|
elr = read_sysreg(elr_el2);
|
|
elr -=4;
|
|
write_sysreg(elr, elr_el2);
|
|
|
|
return ARM_EXCEPTION_TRAP;
|
|
}
|
|
|
|
static bool pkvm_memshare_call(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u64 ipa = smccc_get_arg1(vcpu);
|
|
u64 arg2 = smccc_get_arg2(vcpu);
|
|
u64 arg3 = smccc_get_arg3(vcpu);
|
|
int err;
|
|
|
|
if (arg2 || arg3)
|
|
goto out_guest_err;
|
|
|
|
err = __pkvm_guest_share_host(vcpu, ipa);
|
|
switch (err) {
|
|
case 0:
|
|
/* Success! Now tell the host. */
|
|
goto out_host;
|
|
case -EFAULT:
|
|
/*
|
|
* Convert the exception into a data abort so that the page
|
|
* being shared is mapped into the guest next time.
|
|
*/
|
|
*exit_code = __pkvm_memshare_page_req(vcpu, ipa);
|
|
goto out_host;
|
|
}
|
|
|
|
out_guest_err:
|
|
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
|
|
return true;
|
|
|
|
out_host:
|
|
return false;
|
|
}
|
|
|
|
static bool pkvm_memunshare_call(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 ipa = smccc_get_arg1(vcpu);
|
|
u64 arg2 = smccc_get_arg2(vcpu);
|
|
u64 arg3 = smccc_get_arg3(vcpu);
|
|
int err;
|
|
|
|
if (arg2 || arg3)
|
|
goto out_guest_err;
|
|
|
|
err = __pkvm_guest_unshare_host(vcpu, ipa);
|
|
if (err)
|
|
goto out_guest_err;
|
|
|
|
return false;
|
|
|
|
out_guest_err:
|
|
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool pkvm_install_ioguard_page(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u64 retval = SMCCC_RET_SUCCESS;
|
|
u64 ipa = smccc_get_arg1(vcpu);
|
|
int ret;
|
|
|
|
ret = __pkvm_install_ioguard_page(vcpu, ipa);
|
|
if (ret == -ENOMEM) {
|
|
/*
|
|
* We ran out of memcache, let's ask for more. Cancel
|
|
* the effects of the HVC that took us here, and
|
|
* forward the hypercall to the host for page donation
|
|
* purposes.
|
|
*/
|
|
write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
|
|
return false;
|
|
}
|
|
|
|
if (ret)
|
|
retval = SMCCC_RET_INVALID_PARAMETER;
|
|
|
|
smccc_set_retval(vcpu, retval, 0, 0, 0);
|
|
return true;
|
|
}
|
|
|
|
bool smccc_trng_available;
|
|
|
|
static bool pkvm_forward_trng(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 fn = smccc_get_function(vcpu);
|
|
struct arm_smccc_res res;
|
|
unsigned long arg1 = 0;
|
|
|
|
/*
|
|
* Forward TRNG calls to EL3, as we can't trust the host to handle
|
|
* these for us.
|
|
*/
|
|
switch (fn) {
|
|
case ARM_SMCCC_TRNG_FEATURES:
|
|
case ARM_SMCCC_TRNG_RND32:
|
|
case ARM_SMCCC_TRNG_RND64:
|
|
arg1 = smccc_get_arg1(vcpu);
|
|
fallthrough;
|
|
case ARM_SMCCC_TRNG_VERSION:
|
|
case ARM_SMCCC_TRNG_GET_UUID:
|
|
arm_smccc_1_1_smc(fn, arg1, &res);
|
|
smccc_set_retval(vcpu, res.a0, res.a1, res.a2, res.a3);
|
|
memzero_explicit(&res, sizeof(res));
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Handler for protected VM HVC calls.
|
|
*
|
|
* Returns true if the hypervisor has handled the exit, and control should go
|
|
* back to the guest, or false if it hasn't.
|
|
*/
|
|
bool kvm_handle_pvm_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code)
|
|
{
|
|
u32 fn = smccc_get_function(vcpu);
|
|
u64 val[4] = { SMCCC_RET_NOT_SUPPORTED };
|
|
|
|
switch (fn) {
|
|
case ARM_SMCCC_VERSION_FUNC_ID:
|
|
/* Nothing to be handled by the host. Go back to the guest. */
|
|
val[0] = ARM_SMCCC_VERSION_1_1;
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
|
|
val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
|
|
val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
|
|
val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
|
|
val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
|
|
val[0] = BIT(ARM_SMCCC_KVM_FUNC_FEATURES);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_HYP_MEMINFO);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_SHARE);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_UNSHARE);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_INFO);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_ENROLL);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_MAP);
|
|
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MMIO_GUARD_UNMAP);
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_ENROLL_FUNC_ID:
|
|
set_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vcpu->arch.pkvm.shadow_vm->arch.flags);
|
|
val[0] = SMCCC_RET_SUCCESS;
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID:
|
|
return pkvm_install_ioguard_page(vcpu, exit_code);
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_UNMAP_FUNC_ID:
|
|
if (__pkvm_remove_ioguard_page(vcpu, vcpu_get_reg(vcpu, 1)))
|
|
val[0] = SMCCC_RET_INVALID_PARAMETER;
|
|
else
|
|
val[0] = SMCCC_RET_SUCCESS;
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_INFO_FUNC_ID:
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID:
|
|
if (smccc_get_arg1(vcpu) ||
|
|
smccc_get_arg2(vcpu) ||
|
|
smccc_get_arg3(vcpu)) {
|
|
val[0] = SMCCC_RET_INVALID_PARAMETER;
|
|
} else {
|
|
val[0] = PAGE_SIZE;
|
|
}
|
|
break;
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID:
|
|
return pkvm_memshare_call(vcpu, exit_code);
|
|
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID:
|
|
return pkvm_memunshare_call(vcpu);
|
|
case ARM_SMCCC_TRNG_VERSION ... ARM_SMCCC_TRNG_RND32:
|
|
case ARM_SMCCC_TRNG_RND64:
|
|
if (smccc_trng_available)
|
|
return pkvm_forward_trng(vcpu);
|
|
break;
|
|
default:
|
|
return pkvm_handle_psci(vcpu);
|
|
}
|
|
|
|
smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
|
|
return true;
|
|
}
|