846 lines
30 KiB
C++
846 lines
30 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ConstantExpression.h"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android-base/parseint.h>
|
|
#include <stdio.h>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
#include "EnumType.h"
|
|
#include "Scope.h" // LocalIdentifier
|
|
|
|
// The macros are really nasty here. Consider removing
|
|
// as many macros as possible.
|
|
|
|
#define OPEQ(__y__) (std::string(mOp) == std::string(__y__))
|
|
#define COMPUTE_UNARY(__op__) if (op == std::string(#__op__)) return __op__ val;
|
|
#define COMPUTE_BINARY(__op__) if (op == std::string(#__op__)) return lval __op__ rval;
|
|
#define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
|
|
#define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
|
|
#define OP_IS_BIN_COMP (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
|
|
#define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
|
|
#define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
|
|
#define SK(__x__) ScalarType::Kind::KIND_##__x__
|
|
#define SHOULD_NOT_REACH() CHECK(false) << __LINE__ << ": should not reach here: "
|
|
|
|
// NOLINT to suppress missing parentheses warnings about __def__.
|
|
#define SWITCH_KIND(__cond__, __action__, __def__) \
|
|
switch(__cond__) { \
|
|
case SK(BOOL): __action__(bool) \
|
|
case SK(UINT8): __action__(uint8_t) \
|
|
case SK(INT8): __action__(int8_t) \
|
|
case SK(UINT16): __action__(uint16_t) \
|
|
case SK(INT16): __action__(int16_t) \
|
|
case SK(UINT32): __action__(uint32_t) \
|
|
case SK(INT32): __action__(int32_t) \
|
|
case SK(UINT64): __action__(uint64_t) \
|
|
case SK(INT64): __action__(int64_t) \
|
|
default: __def__ /* NOLINT */ \
|
|
}
|
|
|
|
namespace android {
|
|
|
|
static inline bool isSupported(ScalarType::Kind kind) {
|
|
return SK(BOOL) == kind || ScalarType(kind, nullptr /* parent */).isValidEnumStorageType();
|
|
}
|
|
|
|
/* See docs at the end for details on integral promotion. */
|
|
ScalarType::Kind integralPromotion(ScalarType::Kind in) {
|
|
return SK(INT32) < in ? in : SK(INT32); // note that KIND_INT32 < KIND_UINT32
|
|
}
|
|
|
|
/* See docs at the end for details on usual arithmetic conversion. */
|
|
ScalarType::Kind usualArithmeticConversion(ScalarType::Kind lft,
|
|
ScalarType::Kind rgt) {
|
|
CHECK(isSupported(lft) && isSupported(rgt));
|
|
// Kinds in concern: bool, (u)int[8|16|32|64]
|
|
if(lft == rgt) return lft; // easy case
|
|
if(lft == SK(BOOL)) return rgt;
|
|
if(rgt == SK(BOOL)) return lft;
|
|
bool isLftSigned = (lft == SK(INT8)) || (lft == SK(INT16))
|
|
|| (lft == SK(INT32)) || (lft == SK(INT64));
|
|
bool isRgtSigned = (rgt == SK(INT8)) || (rgt == SK(INT16))
|
|
|| (rgt == SK(INT32)) || (rgt == SK(INT64));
|
|
if(isLftSigned == isRgtSigned) return lft < rgt ? rgt : lft;
|
|
ScalarType::Kind unsignedRank = isLftSigned ? rgt : lft;
|
|
ScalarType::Kind signedRank = isLftSigned ? lft : rgt;
|
|
if(unsignedRank >= signedRank) return unsignedRank;
|
|
if(signedRank > unsignedRank) return signedRank;
|
|
|
|
// Although there is such rule to return "the unsigned counterpart of
|
|
// the signed operand", it should not reach here in our HIDL grammar.
|
|
CHECK(false) << "Could not do usual arithmetic conversion for type " << lft << "and" << rgt;
|
|
switch(signedRank) {
|
|
case SK(INT8): return SK(UINT8);
|
|
case SK(INT16): return SK(UINT16);
|
|
case SK(INT32): return SK(UINT32);
|
|
case SK(INT64): return SK(UINT64);
|
|
default: return SK(UINT64);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
T handleUnary(const std::string& op, T val) {
|
|
COMPUTE_UNARY(+)
|
|
COMPUTE_UNARY(-)
|
|
COMPUTE_UNARY(!)
|
|
|
|
// bitwise negation of a boolean expression always evaluates to 'true'
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wbool-operation"
|
|
COMPUTE_UNARY(~)
|
|
#pragma clang diagnostic pop
|
|
|
|
// Should not reach here.
|
|
SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val;
|
|
return static_cast<T>(0xdeadbeef);
|
|
}
|
|
|
|
template <class T>
|
|
T handleBinaryCommon(T lval, const std::string& op, T rval) {
|
|
COMPUTE_BINARY(+)
|
|
COMPUTE_BINARY(-)
|
|
COMPUTE_BINARY(*)
|
|
COMPUTE_BINARY(/)
|
|
COMPUTE_BINARY(%)
|
|
COMPUTE_BINARY(|)
|
|
COMPUTE_BINARY(^)
|
|
COMPUTE_BINARY(&)
|
|
// comparison operators: return 0 or 1 by nature.
|
|
COMPUTE_BINARY(==)
|
|
COMPUTE_BINARY(!=)
|
|
COMPUTE_BINARY(<)
|
|
COMPUTE_BINARY(>)
|
|
COMPUTE_BINARY(<=)
|
|
COMPUTE_BINARY(>=)
|
|
// Should not reach here.
|
|
SHOULD_NOT_REACH() << "Could not handleBinaryCommon for "
|
|
<< lval << " " << op << " " << rval;
|
|
return static_cast<T>(0xdeadbeef);
|
|
}
|
|
|
|
// The compiler doesn't know T is at least KIND_INT32, and will instantiate bool
|
|
// version of this function, and will warn about converting the result of '<<'
|
|
// to a boolean.
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wint-in-bool-context"
|
|
template <class T>
|
|
T handleShift(T lval, const std::string& op, int64_t rval) {
|
|
// just cast rval to int64_t and it should fit.
|
|
COMPUTE_BINARY(>>)
|
|
COMPUTE_BINARY(<<)
|
|
// Should not reach here.
|
|
SHOULD_NOT_REACH() << "Could not handleShift for "
|
|
<< lval << " " << op << " " << rval;
|
|
return static_cast<T>(0xdeadbeef);
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
|
|
bool handleLogical(bool lval, const std::string& op, bool rval) {
|
|
COMPUTE_BINARY(||);
|
|
COMPUTE_BINARY(&&);
|
|
// Should not reach here.
|
|
SHOULD_NOT_REACH() << "Could not handleLogical for "
|
|
<< lval << " " << op << " " << rval;
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<ConstantExpression> ConstantExpression::Zero(ScalarType::Kind kind) {
|
|
return ValueOf(kind, 0);
|
|
}
|
|
|
|
std::unique_ptr<ConstantExpression> ConstantExpression::One(ScalarType::Kind kind) {
|
|
return ValueOf(kind, 1);
|
|
}
|
|
|
|
std::unique_ptr<ConstantExpression> ConstantExpression::ValueOf(ScalarType::Kind kind,
|
|
uint64_t value) {
|
|
return std::make_unique<LiteralConstantExpression>(kind, value);
|
|
}
|
|
|
|
ConstantExpression::ConstantExpression(const std::string& expr) : mExpr(expr) {}
|
|
|
|
bool ConstantExpression::isEvaluated() const {
|
|
return mIsEvaluated;
|
|
}
|
|
|
|
LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value,
|
|
const std::string& expr)
|
|
: ConstantExpression(expr) {
|
|
CHECK(!expr.empty());
|
|
CHECK(isSupported(kind));
|
|
|
|
mTrivialDescription = std::to_string(value) == expr;
|
|
mValueKind = kind;
|
|
mValue = value;
|
|
mIsEvaluated = true;
|
|
}
|
|
|
|
LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value)
|
|
: LiteralConstantExpression(kind, value, std::to_string(value)) {}
|
|
|
|
LiteralConstantExpression* LiteralConstantExpression::tryParse(const std::string& value) {
|
|
CHECK(!value.empty());
|
|
|
|
bool isLong = false, isUnsigned = false;
|
|
bool isHex = (value[0] == '0' && value.length() > 1 && (value[1] == 'x' || value[1] == 'X'));
|
|
|
|
auto rbegin = value.rbegin();
|
|
auto rend = value.rend();
|
|
for (; rbegin != rend && (*rbegin == 'u' || *rbegin == 'U' || *rbegin == 'l' || *rbegin == 'L');
|
|
++rbegin) {
|
|
isUnsigned |= (*rbegin == 'u' || *rbegin == 'U');
|
|
isLong |= (*rbegin == 'l' || *rbegin == 'L');
|
|
}
|
|
std::string newVal(value.begin(), rbegin.base());
|
|
CHECK(!newVal.empty());
|
|
|
|
uint64_t rawValue = 0;
|
|
|
|
bool parseOK = base::ParseUint(newVal, &rawValue);
|
|
if (!parseOK) {
|
|
return nullptr;
|
|
}
|
|
|
|
ScalarType::Kind kind;
|
|
|
|
// guess literal type.
|
|
if(isLong) {
|
|
if(isUnsigned) // ul
|
|
kind = SK(UINT64);
|
|
else // l
|
|
kind = SK(INT64);
|
|
} else { // no l suffix
|
|
if(isUnsigned) { // u
|
|
if(rawValue <= UINT32_MAX)
|
|
kind = SK(UINT32);
|
|
else
|
|
kind = SK(UINT64);
|
|
} else { // no suffix
|
|
if(isHex) {
|
|
if(rawValue <= INT32_MAX) // rawValue always >= 0
|
|
kind = SK(INT32);
|
|
else if(rawValue <= UINT32_MAX)
|
|
kind = SK(UINT32);
|
|
else if(rawValue <= INT64_MAX) // rawValue always >= 0
|
|
kind = SK(INT64);
|
|
else if(rawValue <= UINT64_MAX)
|
|
kind = SK(UINT64);
|
|
else
|
|
return nullptr;
|
|
} else {
|
|
if(rawValue <= INT32_MAX) // rawValue always >= 0
|
|
kind = SK(INT32);
|
|
else
|
|
kind = SK(INT64);
|
|
}
|
|
}
|
|
}
|
|
|
|
return new LiteralConstantExpression(kind, rawValue, value);
|
|
}
|
|
|
|
void LiteralConstantExpression::evaluate() {
|
|
// Evaluated in constructor
|
|
CHECK(isEvaluated());
|
|
}
|
|
|
|
void UnaryConstantExpression::evaluate() {
|
|
if (isEvaluated()) return;
|
|
CHECK(mUnary->isEvaluated());
|
|
mIsEvaluated = true;
|
|
|
|
mValueKind = mUnary->mValueKind;
|
|
|
|
#define CASE_UNARY(__type__) \
|
|
mValue = handleUnary(mOp, static_cast<__type__>(mUnary->mValue)); \
|
|
return;
|
|
|
|
SWITCH_KIND(mValueKind, CASE_UNARY, SHOULD_NOT_REACH(); return;)
|
|
}
|
|
|
|
void BinaryConstantExpression::evaluate() {
|
|
if (isEvaluated()) return;
|
|
CHECK(mLval->isEvaluated());
|
|
CHECK(mRval->isEvaluated());
|
|
mIsEvaluated = true;
|
|
|
|
bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
|
|
|
|
// CASE 1: + - * / % | ^ & < > <= >= == !=
|
|
if(isArithmeticOrBitflip || OP_IS_BIN_COMP) {
|
|
// promoted kind for both operands.
|
|
ScalarType::Kind promoted = usualArithmeticConversion(integralPromotion(mLval->mValueKind),
|
|
integralPromotion(mRval->mValueKind));
|
|
// result kind.
|
|
mValueKind = isArithmeticOrBitflip
|
|
? promoted // arithmetic or bitflip operators generates promoted type
|
|
: SK(BOOL); // comparison operators generates bool
|
|
|
|
#define CASE_BINARY_COMMON(__type__) \
|
|
mValue = handleBinaryCommon(static_cast<__type__>(mLval->mValue), mOp, \
|
|
static_cast<__type__>(mRval->mValue)); \
|
|
return;
|
|
|
|
SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); return;)
|
|
}
|
|
|
|
// CASE 2: << >>
|
|
std::string newOp = mOp;
|
|
if(OP_IS_BIN_SHIFT) {
|
|
mValueKind = integralPromotion(mLval->mValueKind);
|
|
// instead of promoting rval, simply casting it to int64 should also be good.
|
|
int64_t numBits = mRval->cast<int64_t>();
|
|
if(numBits < 0) {
|
|
// shifting with negative number of bits is undefined in C. In HIDL it
|
|
// is defined as shifting into the other direction.
|
|
newOp = OPEQ("<<") ? std::string(">>") : std::string("<<");
|
|
numBits = -numBits;
|
|
}
|
|
|
|
#define CASE_SHIFT(__type__) \
|
|
mValue = handleShift(static_cast<__type__>(mLval->mValue), newOp, numBits); \
|
|
return;
|
|
|
|
SWITCH_KIND(mValueKind, CASE_SHIFT, SHOULD_NOT_REACH(); return;)
|
|
}
|
|
|
|
// CASE 3: && ||
|
|
if(OP_IS_BIN_LOGICAL) {
|
|
mValueKind = SK(BOOL);
|
|
// easy; everything is bool.
|
|
mValue = handleLogical(mLval->mValue, mOp, mRval->mValue);
|
|
return;
|
|
}
|
|
|
|
SHOULD_NOT_REACH();
|
|
}
|
|
|
|
void TernaryConstantExpression::evaluate() {
|
|
if (isEvaluated()) return;
|
|
CHECK(mCond->isEvaluated());
|
|
CHECK(mTrueVal->isEvaluated());
|
|
CHECK(mFalseVal->isEvaluated());
|
|
mIsEvaluated = true;
|
|
|
|
// note: for ?:, unlike arithmetic ops, integral promotion is not processed.
|
|
mValueKind = usualArithmeticConversion(mTrueVal->mValueKind, mFalseVal->mValueKind);
|
|
|
|
#define CASE_TERNARY(__type__) \
|
|
mValue = mCond->mValue ? (static_cast<__type__>(mTrueVal->mValue)) \
|
|
: (static_cast<__type__>(mFalseVal->mValue)); \
|
|
return;
|
|
|
|
SWITCH_KIND(mValueKind, CASE_TERNARY, SHOULD_NOT_REACH(); return;)
|
|
}
|
|
|
|
void ReferenceConstantExpression::evaluate() {
|
|
if (isEvaluated()) return;
|
|
CHECK(mReference->constExpr() != nullptr);
|
|
|
|
ConstantExpression* expr = mReference->constExpr();
|
|
CHECK(expr->isEvaluated());
|
|
|
|
mValueKind = expr->mValueKind;
|
|
mValue = expr->mValue;
|
|
mIsEvaluated = true;
|
|
}
|
|
|
|
status_t AttributeConstantExpression::validate() const {
|
|
if (mTag == "len") {
|
|
if (!mReference->isEnum()) {
|
|
std::cerr << "ERROR: " << mExpr << " refers to " << mReference->typeName()
|
|
<< " but should refer to an enum." << std::endl;
|
|
return UNKNOWN_ERROR;
|
|
}
|
|
} else {
|
|
std::cerr << "ERROR: " << mExpr << " is not a supported tag" << std::endl;
|
|
return UNKNOWN_ERROR;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
void AttributeConstantExpression::evaluate() {
|
|
if (isEvaluated()) return;
|
|
|
|
CHECK(mTag == "len");
|
|
CHECK(mReference->isEnum());
|
|
|
|
EnumType* enumType = static_cast<EnumType*>(mReference.get());
|
|
mValue = enumType->numValueNames();
|
|
|
|
if (mValue <= INT32_MAX)
|
|
mValueKind = SK(INT32);
|
|
else
|
|
mValueKind = SK(INT64);
|
|
|
|
mIsEvaluated = true;
|
|
}
|
|
|
|
std::unique_ptr<ConstantExpression> ConstantExpression::addOne(ScalarType::Kind baseKind) {
|
|
auto ret = std::make_unique<BinaryConstantExpression>(
|
|
this, "+", ConstantExpression::One(baseKind).release());
|
|
return ret;
|
|
}
|
|
|
|
std::string ConstantExpression::value() const {
|
|
return value(mValueKind);
|
|
}
|
|
|
|
std::string ConstantExpression::value(ScalarType::Kind castKind) const {
|
|
CHECK(isEvaluated());
|
|
return rawValue(castKind) + descriptionSuffix();
|
|
}
|
|
|
|
std::string ConstantExpression::cppValue() const {
|
|
return cppValue(mValueKind);
|
|
}
|
|
|
|
std::string ConstantExpression::cppValue(ScalarType::Kind castKind) const {
|
|
CHECK(isEvaluated());
|
|
std::string literal(rawValue(castKind));
|
|
// this is a hack to translate
|
|
// enum x : int64_t { y = 1l << 63 };
|
|
// into
|
|
// enum class x : int64_t { y = (int64_t)-9223372036854775808ull };
|
|
// by adding the explicit cast.
|
|
// Because 9223372036854775808 is uint64_t, and
|
|
// -(uint64_t)9223372036854775808 == 9223372036854775808 could not
|
|
// be narrowed to int64_t.
|
|
if(castKind == SK(INT64) && (int64_t)mValue == INT64_MIN) {
|
|
literal = "static_cast<" +
|
|
ScalarType(SK(INT64), nullptr /* parent */).getCppStackType() // "int64_t"
|
|
+ ">(" + literal + "ull)";
|
|
} else {
|
|
// add suffix if necessary.
|
|
if (castKind == SK(UINT32) || castKind == SK(UINT64)) literal += "u";
|
|
if (castKind == SK(UINT64) || castKind == SK(INT64)) literal += "ll";
|
|
}
|
|
|
|
return literal + descriptionSuffix();
|
|
}
|
|
|
|
std::string ConstantExpression::javaValue() const {
|
|
return javaValue(mValueKind);
|
|
}
|
|
|
|
std::string ConstantExpression::javaValue(ScalarType::Kind castKind) const {
|
|
CHECK(isEvaluated());
|
|
std::string literal;
|
|
|
|
switch(castKind) {
|
|
case SK(UINT64):
|
|
literal = rawValue(SK(INT64)) + "L";
|
|
break;
|
|
case SK(INT64):
|
|
literal = rawValue(SK(INT64)) + "L";
|
|
break;
|
|
case SK(UINT32):
|
|
literal = rawValue(SK(INT32));
|
|
break;
|
|
case SK(UINT16):
|
|
literal = rawValue(SK(INT16));
|
|
break;
|
|
case SK(UINT8):
|
|
literal = rawValue(SK(INT8));
|
|
break;
|
|
case SK(BOOL) :
|
|
literal = this->cast<bool>() ? "true" : "false";
|
|
break;
|
|
default:
|
|
literal = rawValue(castKind);
|
|
break;
|
|
}
|
|
|
|
return literal + descriptionSuffix();
|
|
}
|
|
|
|
const std::string& ConstantExpression::expression() const {
|
|
return mExpr;
|
|
}
|
|
|
|
std::string ConstantExpression::rawValue() const {
|
|
return rawValue(mValueKind);
|
|
}
|
|
|
|
std::string ConstantExpression::rawValue(ScalarType::Kind castKind) const {
|
|
CHECK(isEvaluated());
|
|
|
|
#define CASE_STR(__type__) return std::to_string(this->cast<__type__>());
|
|
|
|
SWITCH_KIND(castKind, CASE_STR, SHOULD_NOT_REACH(); return nullptr; );
|
|
}
|
|
|
|
template<typename T>
|
|
T ConstantExpression::cast() const {
|
|
CHECK(isEvaluated());
|
|
|
|
#define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(mValue));
|
|
|
|
SWITCH_KIND(mValueKind, CASE_CAST_T, SHOULD_NOT_REACH(); return 0; );
|
|
}
|
|
|
|
std::string ConstantExpression::descriptionSuffix() const {
|
|
CHECK(isEvaluated());
|
|
|
|
if (!mTrivialDescription) {
|
|
CHECK(!mExpr.empty());
|
|
|
|
return " /* " + mExpr + " */";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
size_t ConstantExpression::castSizeT() const {
|
|
CHECK(isEvaluated());
|
|
return this->cast<size_t>();
|
|
}
|
|
|
|
bool ConstantExpression::isReferenceConstantExpression() const {
|
|
return false;
|
|
}
|
|
|
|
status_t ConstantExpression::validate() const {
|
|
return OK;
|
|
}
|
|
|
|
std::vector<ConstantExpression*> ConstantExpression::getConstantExpressions() {
|
|
const auto& constRet = static_cast<const ConstantExpression*>(this)->getConstantExpressions();
|
|
std::vector<ConstantExpression*> ret(constRet.size());
|
|
std::transform(constRet.begin(), constRet.end(), ret.begin(),
|
|
[](const auto* ce) { return const_cast<ConstantExpression*>(ce); });
|
|
return ret;
|
|
}
|
|
|
|
std::vector<Reference<LocalIdentifier>*> ConstantExpression::getReferences() {
|
|
const auto& constRet = static_cast<const ConstantExpression*>(this)->getReferences();
|
|
std::vector<Reference<LocalIdentifier>*> ret(constRet.size());
|
|
std::transform(constRet.begin(), constRet.end(), ret.begin(),
|
|
[](const auto* ce) { return const_cast<Reference<LocalIdentifier>*>(ce); });
|
|
return ret;
|
|
}
|
|
|
|
std::vector<const Reference<LocalIdentifier>*> ConstantExpression::getReferences() const {
|
|
return {};
|
|
}
|
|
|
|
std::vector<Reference<Type>*> ConstantExpression::getTypeReferences() {
|
|
const auto& constRet = static_cast<const ConstantExpression*>(this)->getTypeReferences();
|
|
std::vector<Reference<Type>*> ret(constRet.size());
|
|
std::transform(constRet.begin(), constRet.end(), ret.begin(),
|
|
[](const auto* ce) { return const_cast<Reference<Type>*>(ce); });
|
|
return ret;
|
|
}
|
|
|
|
std::vector<const Reference<Type>*> ConstantExpression::getTypeReferences() const {
|
|
return {};
|
|
}
|
|
|
|
status_t ConstantExpression::recursivePass(const std::function<status_t(ConstantExpression*)>& func,
|
|
std::unordered_set<const ConstantExpression*>* visited,
|
|
bool processBeforeDependencies) {
|
|
if (mIsPostParseCompleted) return OK;
|
|
|
|
if (visited->find(this) != visited->end()) return OK;
|
|
visited->insert(this);
|
|
|
|
if (processBeforeDependencies) {
|
|
status_t err = func(this);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
for (auto* nextCE : getConstantExpressions()) {
|
|
status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
for (auto* nextRef : getReferences()) {
|
|
auto* nextCE = nextRef->shallowGet()->constExpr();
|
|
CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
|
|
status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
if (!processBeforeDependencies) {
|
|
status_t err = func(this);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
status_t ConstantExpression::recursivePass(
|
|
const std::function<status_t(const ConstantExpression*)>& func,
|
|
std::unordered_set<const ConstantExpression*>* visited, bool processBeforeDependencies) const {
|
|
if (mIsPostParseCompleted) return OK;
|
|
|
|
if (visited->find(this) != visited->end()) return OK;
|
|
visited->insert(this);
|
|
|
|
if (processBeforeDependencies) {
|
|
status_t err = func(this);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
for (const auto* nextCE : getConstantExpressions()) {
|
|
status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
for (const auto* nextRef : getReferences()) {
|
|
const auto* nextCE = nextRef->shallowGet()->constExpr();
|
|
CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
|
|
status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
if (!processBeforeDependencies) {
|
|
status_t err = func(this);
|
|
if (err != OK) return err;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
ConstantExpression::CheckAcyclicStatus::CheckAcyclicStatus(
|
|
status_t status, const ConstantExpression* cycleEnd,
|
|
const ReferenceConstantExpression* lastReference)
|
|
: status(status), cycleEnd(cycleEnd), lastReference(lastReference) {
|
|
CHECK(cycleEnd == nullptr || status != OK);
|
|
CHECK((cycleEnd == nullptr) == (lastReference == nullptr));
|
|
}
|
|
|
|
ConstantExpression::CheckAcyclicStatus ConstantExpression::checkAcyclic(
|
|
std::unordered_set<const ConstantExpression*>* visited,
|
|
std::unordered_set<const ConstantExpression*>* stack) const {
|
|
if (stack->find(this) != stack->end()) {
|
|
CHECK(isReferenceConstantExpression())
|
|
<< "Only reference constant expression could be the cycle end";
|
|
|
|
std::cerr << "ERROR: Cyclic declaration:\n";
|
|
return CheckAcyclicStatus(UNKNOWN_ERROR, this,
|
|
static_cast<const ReferenceConstantExpression*>(this));
|
|
}
|
|
|
|
if (visited->find(this) != visited->end()) return CheckAcyclicStatus(OK);
|
|
visited->insert(this);
|
|
stack->insert(this);
|
|
|
|
for (const auto* nextCE : getConstantExpressions()) {
|
|
auto err = nextCE->checkAcyclic(visited, stack);
|
|
if (err.status != OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (const auto* nextRef : getReferences()) {
|
|
const auto* nextCE = nextRef->shallowGet()->constExpr();
|
|
CHECK(nextCE != nullptr) << "Local identifier is not a constant expression";
|
|
auto err = nextCE->checkAcyclic(visited, stack);
|
|
|
|
if (err.status != OK) {
|
|
if (err.cycleEnd == nullptr) return err;
|
|
|
|
// Only ReferenceConstantExpression has references,
|
|
CHECK(isReferenceConstantExpression())
|
|
<< "Only reference constant expression could have refereneces";
|
|
|
|
// mExpr is defined explicitly before evaluation
|
|
std::cerr << " '" << err.lastReference->mExpr << "' in '" << mExpr << "' at "
|
|
<< nextRef->location() << "\n";
|
|
|
|
if (err.cycleEnd == this) {
|
|
return CheckAcyclicStatus(err.status);
|
|
}
|
|
return CheckAcyclicStatus(err.status, err.cycleEnd,
|
|
static_cast<const ReferenceConstantExpression*>(this));
|
|
}
|
|
}
|
|
|
|
CHECK(stack->find(this) != stack->end());
|
|
stack->erase(this);
|
|
return CheckAcyclicStatus(OK);
|
|
}
|
|
|
|
void ConstantExpression::setPostParseCompleted() {
|
|
CHECK(!mIsPostParseCompleted);
|
|
mIsPostParseCompleted = true;
|
|
}
|
|
|
|
void ConstantExpression::surroundWithParens() {
|
|
mExpr = "(" + mExpr + ")";
|
|
}
|
|
|
|
std::vector<const ConstantExpression*> LiteralConstantExpression::getConstantExpressions() const {
|
|
return {};
|
|
}
|
|
|
|
UnaryConstantExpression::UnaryConstantExpression(const std::string& op, ConstantExpression* value)
|
|
: ConstantExpression(op + value->mExpr), mUnary(value), mOp(op) {}
|
|
|
|
std::vector<const ConstantExpression*> UnaryConstantExpression::getConstantExpressions() const {
|
|
return {mUnary};
|
|
}
|
|
|
|
BinaryConstantExpression::BinaryConstantExpression(ConstantExpression* lval, const std::string& op,
|
|
ConstantExpression* rval)
|
|
: ConstantExpression(lval->mExpr + " " + op + " " + rval->mExpr),
|
|
mLval(lval),
|
|
mRval(rval),
|
|
mOp(op) {}
|
|
|
|
std::vector<const ConstantExpression*> BinaryConstantExpression::getConstantExpressions() const {
|
|
return {mLval, mRval};
|
|
}
|
|
|
|
TernaryConstantExpression::TernaryConstantExpression(ConstantExpression* cond,
|
|
ConstantExpression* trueVal,
|
|
ConstantExpression* falseVal)
|
|
: ConstantExpression(cond->mExpr + "?" + trueVal->mExpr + ":" + falseVal->mExpr),
|
|
mCond(cond),
|
|
mTrueVal(trueVal),
|
|
mFalseVal(falseVal) {}
|
|
|
|
std::vector<const ConstantExpression*> TernaryConstantExpression::getConstantExpressions() const {
|
|
return {mCond, mTrueVal, mFalseVal};
|
|
}
|
|
|
|
ReferenceConstantExpression::ReferenceConstantExpression(const Reference<LocalIdentifier>& value,
|
|
const std::string& expr)
|
|
: ConstantExpression(expr), mReference(value) {
|
|
mTrivialDescription = mExpr.empty();
|
|
}
|
|
|
|
bool ReferenceConstantExpression::isReferenceConstantExpression() const {
|
|
return true;
|
|
}
|
|
|
|
std::vector<const ConstantExpression*> ReferenceConstantExpression::getConstantExpressions() const {
|
|
// Returns reference instead
|
|
return {};
|
|
}
|
|
|
|
std::vector<const Reference<LocalIdentifier>*> ReferenceConstantExpression::getReferences() const {
|
|
return {&mReference};
|
|
}
|
|
|
|
AttributeConstantExpression::AttributeConstantExpression(const Reference<Type>& value,
|
|
const std::string& fqname,
|
|
const std::string& tag)
|
|
: ConstantExpression(fqname + "#" + tag), mReference(value), mTag(tag) {}
|
|
|
|
std::vector<const ConstantExpression*> AttributeConstantExpression::getConstantExpressions() const {
|
|
// Returns reference instead
|
|
return {};
|
|
}
|
|
|
|
std::vector<const Reference<Type>*> AttributeConstantExpression::getTypeReferences() const {
|
|
return {&mReference};
|
|
}
|
|
|
|
/*
|
|
|
|
Evaluating expressions in HIDL language
|
|
|
|
The following rules are mostly like that in:
|
|
http://en.cppreference.com/w/cpp/language/operator_arithmetic
|
|
http://en.cppreference.com/w/cpp/language/operator_logical
|
|
http://en.cppreference.com/w/cpp/language/operator_comparison
|
|
http://en.cppreference.com/w/cpp/language/operator_other
|
|
|
|
The type of literal is the first type which the value
|
|
can fit from the list of types depending on the suffix and bases.
|
|
|
|
suffix decimal bases hexadecimal bases
|
|
no suffix int32_t int32_t
|
|
int64_t uint32_t
|
|
int64_t
|
|
uint64_t
|
|
|
|
u/U uint32_t (same as left)
|
|
uint64_t
|
|
|
|
l/L int64_t int64_t
|
|
|
|
ul/UL/uL/Ul uint64_t uint64_t
|
|
|
|
|
|
Note: There are no negative integer literals.
|
|
-1 is the unary minus applied to 1.
|
|
|
|
Unary arithmetic and bitwise operators (~ + -):
|
|
don't change the type of the argument.
|
|
(so -1u = -(1u) has type uint32_t)
|
|
|
|
Binary arithmetic and bitwise operators (except shifts) (+ - * / % & | ^):
|
|
1. Integral promotion is first applied on both sides.
|
|
2. If both operands have the same type, no promotion is necessary.
|
|
3. Usual arithmetic conversions.
|
|
|
|
Integral promotion: if an operand is of a type with less than 32 bits,
|
|
(including bool), it is promoted to int32_t.
|
|
|
|
Usual arithmetic conversions:
|
|
1. If operands are both signed or both unsigned, lesser conversion rank is
|
|
converted to greater conversion rank.
|
|
2. Otherwise, if unsigned's rank >= signed's rank, -> unsigned's type
|
|
3. Otherwise, if signed's type can hold all values in unsigned's type,
|
|
-> signed's type
|
|
4. Otherwise, both converted to the unsigned counterpart of the signed operand's
|
|
type.
|
|
rank: bool < int8_t < int16_t < int32_t < int64_t
|
|
|
|
|
|
Shift operators (<< >>):
|
|
1. Integral promotion is applied on both sides.
|
|
2. For unsigned a, a << b discards bits that shifts out.
|
|
For signed non-negative a, a << b is legal if no bits shifts out, otherwise error.
|
|
For signed negative a, a << b gives error.
|
|
3. For unsigned and signed non-negative a, a >> b discards bits that shifts out.
|
|
For signed negative a, a >> b discards bits that shifts out, and the signed
|
|
bit gets extended. ("arithmetic right shift")
|
|
4. Shifting with negative number of bits is undefined. (Currently, the
|
|
parser will shift into the other direction. This behavior may change.)
|
|
5. Shifting with number of bits exceeding the width of the type is undefined.
|
|
(Currently, 1 << 32 == 1. This behavior may change.)
|
|
|
|
Logical operators (!, &&, ||):
|
|
1. Convert first operand to bool. (true if non-zero, false otherwise)
|
|
2. If short-circuited, return the result as type bool, value 1 or 0.
|
|
3. Otherwise, convert second operand to bool, evaluate the result, and return
|
|
the result in the same fashion.
|
|
|
|
Arithmetic comparison operators (< > <= >= == !=):
|
|
1. Promote operands in the same way as binary arithmetic and bitwise operators.
|
|
(Integral promotion + Usual arithmetic conversions)
|
|
2. Return type bool, value 0 or 1 the same way as logical operators.
|
|
|
|
Ternary conditional operator (?:):
|
|
1. Evaluate the conditional and evaluate the operands.
|
|
2. Return type of expression is the type under usual arithmetic conversions on
|
|
the second and third operand. (No integral promotions necessary.)
|
|
|
|
*/
|
|
|
|
} // namespace android
|
|
|