android13/u-boot/drivers/video/drm/inno_video_combo_phy.c

979 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2008-2018 Fuzhou Rockchip Electronics Co., Ltd
*
* Author: Wyon Bi <bivvy.bi@rock-chips.com>
*/
#include <asm/arch/cpu.h>
#include <config.h>
#include <common.h>
#include <errno.h>
#include <dm.h>
#include <div64.h>
#include <asm/io.h>
#include <linux/ioport.h>
#include <linux/iopoll.h>
#include <linux/math64.h>
#include "rockchip_phy.h"
#define USEC_PER_SEC 1000000LL
#define PSEC_PER_SEC 1000000000000LL
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/*
* The offset address[7:0] is distributed two parts, one from the bit7 to bit5
* is the first address, the other from the bit4 to bit0 is the second address.
* when you configure the registers, you must set both of them. The Clock Lane
* and Data Lane use the same registers with the same second address, but the
* first address is different.
*/
#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
SECOND_ADDRESS(second))
/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK BIT(7)
#define BANDGAP_POWER_DOWN BIT(7)
#define BANDGAP_POWER_ON 0
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define LANE_EN_3 BIT(5)
#define LANE_EN_2 BIT(4)
#define LANE_EN_1 BIT(3)
#define LANE_EN_0 BIT(2)
#define POWER_WORK_MASK GENMASK(1, 0)
#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK BIT(2)
#define REG_SYNCRST_RESET BIT(2)
#define REG_SYNCRST_NORMAL 0
#define REG_LDOPD_MASK BIT(1)
#define REG_LDOPD_POWER_DOWN BIT(1)
#define REG_LDOPD_POWER_ON 0
#define REG_PLLPD_MASK BIT(0)
#define REG_PLLPD_POWER_DOWN BIT(0)
#define REG_PLLPD_POWER_ON 0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK BIT(5)
#define REG_FBDIV_HI(x) UPDATE(x, 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define PRE_EMPHASIS_ENABLE_MASK BIT(7)
#define PRE_EMPHASIS_ENABLE BIT(7)
#define PRE_EMPHASIS_DISABLE 0
#define PLL_POST_DIV_ENABLE_MASK BIT(5)
#define PLL_POST_DIV_ENABLE BIT(5)
#define PLL_POST_DIV_DISABLE 0
#define DATA_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define DATA_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
#define LOWFRE_EN_MASK BIT(5)
#define PLL_OUTPUT_FREQUENCY_DIV_BY_1 0
#define PLL_OUTPUT_FREQUENCY_DIV_BY_2 1
/* Analog Register Part: reg0b */
#define CLOCK_LANE_VOD_RANGE_SET_MASK GENMASK(3, 0)
#define CLOCK_LANE_VOD_RANGE_SET(x) UPDATE(x, 3, 0)
#define VOD_MIN_RANGE 0x1
#define VOD_MID_RANGE 0x3
#define VOD_BIG_RANGE 0x7
#define VOD_MAX_RANGE 0xf
/* Analog Register Part: reg1e */
#define PLL_MODE_SEL_MASK GENMASK(6, 5)
#define PLL_MODE_SEL_LVDS_MODE 0
#define PLL_MODE_SEL_MIPI_MODE BIT(5)
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK BIT(0)
#define REG_DIG_RSTN_NORMAL BIT(0)
#define REG_DIG_RSTN_RESET 0
/* Digital Register Part: reg01 */
#define INVERT_TXCLKESC_MASK BIT(1)
#define INVERT_TXCLKESC_ENABLE BIT(1)
#define INVERT_TXCLKESC_DISABLE 0
#define INVERT_TXBYTECLKHS_MASK BIT(0)
#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
#define INVERT_TXBYTECLKHS_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK GENMASK(5, 0)
#define T_LPX_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_ZERO_CNT_HI_MASK BIT(7)
#define T_HS_ZERO_CNT_HI(x) UPDATE(x, 7, 7)
#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_LO_MASK GENMASK(5, 0)
#define T_HS_ZERO_CNT_LO(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_LO_MASK GENMASK(4, 0)
#define T_HS_EXIT_CNT_LO(x) UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_LO_MASK GENMASK(3, 0)
#define T_CLK_POST_CNT_LO(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_MASK BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE 0
#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_CLK_POST_HI_MASK GENMASK(7, 6)
#define T_CLK_POST_HI(x) UPDATE(x, 7, 6)
#define T_TA_GO_CNT_MASK GENMASK(5, 0)
#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_HS_EXIT_CNT_HI_MASK BIT(6)
#define T_HS_EXIT_CNT_HI(x) UPDATE(x, 6, 6)
#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
/* LVDS Register Part: reg00 */
#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
/* LVDS Register Part: reg01 */
#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
#define LVDS_DIGITAL_INTERNAL_DISABLE 0
/* LVDS Register Part: reg03 */
#define MODE_ENABLE_MASK GENMASK(2, 0)
#define TTL_MODE_ENABLE BIT(2)
#define LVDS_MODE_ENABLE BIT(1)
#define MIPI_MODE_ENABLE BIT(0)
/* LVDS Register Part: reg0b */
#define LVDS_LANE_EN_MASK GENMASK(7, 3)
#define LVDS_DATA_LANE0_EN BIT(7)
#define LVDS_DATA_LANE1_EN BIT(6)
#define LVDS_DATA_LANE2_EN BIT(5)
#define LVDS_DATA_LANE3_EN BIT(4)
#define LVDS_CLK_LANE_EN BIT(3)
#define LVDS_PLL_POWER_MASK BIT(2)
#define LVDS_PLL_POWER_OFF BIT(2)
#define LVDS_PLL_POWER_ON 0
#define LVDS_BANDGAP_POWER_MASK BIT(0)
#define LVDS_BANDGAP_POWER_DOWN BIT(0)
#define LVDS_BANDGAP_POWER_ON 0
#define DSI_PHY_RSTZ 0xa0
#define PHY_ENABLECLK BIT(2)
#define DSI_PHY_STATUS 0xb0
#define PHY_LOCK BIT(0)
enum soc_type {
PX30_VIDEO_PHY,
PX30S_VIDEO_PHY,
RK3128_VIDEO_PHY,
RK3368_VIDEO_PHY,
RK3568_VIDEO_PHY,
};
enum phy_max_rate {
MAX_1GHZ,
MAX_2_5GHZ,
};
struct inno_video_mipi_dphy_timing {
unsigned int max_lane_mbps;
u8 lpx;
u8 hs_prepare;
u8 clk_lane_hs_zero;
u8 data_lane_hs_zero;
u8 hs_trail;
};
struct inno_video_mipi_dphy_info {
const struct inno_video_mipi_dphy_timing *inno_mipi_dphy_timing_table;
const unsigned int num_timings;
enum phy_max_rate phy_max_rate;
};
static const
struct inno_video_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1GHz[] = {
{ 110, 0x0, 0x20, 0x16, 0x02, 0x22},
{ 150, 0x0, 0x06, 0x16, 0x03, 0x45},
{ 200, 0x0, 0x18, 0x17, 0x04, 0x0b},
{ 250, 0x0, 0x05, 0x17, 0x05, 0x16},
{ 300, 0x0, 0x51, 0x18, 0x06, 0x2c},
{ 400, 0x0, 0x64, 0x19, 0x07, 0x33},
{ 500, 0x0, 0x20, 0x1b, 0x07, 0x4e},
{ 600, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
{ 700, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
{ 800, 0x0, 0x21, 0x1f, 0x09, 0x29},
{1000, 0x0, 0x09, 0x20, 0x09, 0x27},
};
static const
struct inno_video_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5GHz[] = {
{ 110, 0x02, 0x7f, 0x16, 0x02, 0x02},
{ 150, 0x02, 0x7f, 0x16, 0x03, 0x02},
{ 200, 0x02, 0x7f, 0x17, 0x04, 0x02},
{ 250, 0x02, 0x7f, 0x17, 0x05, 0x04},
{ 300, 0x02, 0x7f, 0x18, 0x06, 0x04},
{ 400, 0x03, 0x7e, 0x19, 0x07, 0x04},
{ 500, 0x03, 0x7c, 0x1b, 0x07, 0x08},
{ 600, 0x03, 0x70, 0x1d, 0x08, 0x10},
{ 700, 0x05, 0x40, 0x1e, 0x08, 0x30},
{ 800, 0x05, 0x02, 0x1f, 0x09, 0x30},
{1000, 0x05, 0x08, 0x20, 0x09, 0x30},
{1200, 0x06, 0x03, 0x32, 0x14, 0x0f},
{1400, 0x09, 0x03, 0x32, 0x14, 0x0f},
{1600, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
{1800, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
{2000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
{2200, 0x13, 0x64, 0x7e, 0x15, 0x0b},
{2400, 0x13, 0x33, 0x7f, 0x15, 0x6a},
{2500, 0x15, 0x54, 0x7f, 0x15, 0x6a},
};
const struct inno_video_mipi_dphy_info inno_video_mipi_dphy_max_1GHz = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1GHz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1GHz),
.phy_max_rate = MAX_1GHZ,
};
const struct inno_video_mipi_dphy_info inno_video_mipi_dphy_max_2_5GHz = {
.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5GHz,
.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5GHz),
.phy_max_rate = MAX_2_5GHZ,
};
struct mipi_dphy_timing {
unsigned int clkmiss;
unsigned int clkpost;
unsigned int clkpre;
unsigned int clkprepare;
unsigned int clksettle;
unsigned int clktermen;
unsigned int clktrail;
unsigned int clkzero;
unsigned int dtermen;
unsigned int eot;
unsigned int hsexit;
unsigned int hsprepare;
unsigned int hszero;
unsigned int hssettle;
unsigned int hsskip;
unsigned int hstrail;
unsigned int init;
unsigned int lpx;
unsigned int taget;
unsigned int tago;
unsigned int tasure;
unsigned int wakeup;
};
struct inno_video_phy {
struct udevice *dev;
enum phy_mode mode;
const struct inno_video_mipi_dphy_info *mipi_dphy_info;
struct resource phy;
struct resource host;
int lanes;
struct {
u8 prediv;
u16 fbdiv;
unsigned long rate;
} pll;
};
enum {
REGISTER_PART_ANALOG,
REGISTER_PART_DIGITAL,
REGISTER_PART_CLOCK_LANE,
REGISTER_PART_DATA0_LANE,
REGISTER_PART_DATA1_LANE,
REGISTER_PART_DATA2_LANE,
REGISTER_PART_DATA3_LANE,
REGISTER_PART_LVDS,
};
static inline void phy_update_bits(struct inno_video_phy *inno,
u8 first, u8 second, u8 mask, u8 val)
{
u32 reg = PHY_REG(first, second) << 2;
u32 tmp, orig;
orig = readl(inno->phy.start + reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, inno->phy.start + reg);
}
static inline void host_update_bits(struct inno_video_phy *inno,
u32 reg, u32 mask, u32 val)
{
u32 tmp, orig;
orig = readl(inno->host.start + reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, inno->host.start + reg);
}
static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
unsigned long period)
{
/* Global Operation Timing Parameters */
timing->clkmiss = 0;
timing->clkpost = 70000 + 52 * period;
timing->clkpre = 8 * period;
timing->clkprepare = 65000;
timing->clksettle = 95000;
timing->clktermen = 0;
timing->clktrail = 80000;
timing->clkzero = 260000;
timing->dtermen = 0;
timing->eot = 0;
timing->hsexit = 120000;
timing->hsprepare = 65000 + 4 * period;
timing->hszero = 145000 + 6 * period;
timing->hssettle = 85000 + 6 * period;
timing->hsskip = 40000;
timing->hstrail = max(8 * period, 60000 + 4 * period);
timing->init = 100000000;
timing->lpx = 60000;
timing->taget = 5 * timing->lpx;
timing->tago = 4 * timing->lpx;
timing->tasure = 2 * timing->lpx;
timing->wakeup = 1000000000;
}
static const struct inno_video_mipi_dphy_timing *
inno_mipi_dphy_get_timing(struct inno_video_phy *inno)
{
const struct inno_video_mipi_dphy_timing *timings;
unsigned int num_timings;
unsigned int lane_mbps = inno->pll.rate / USEC_PER_SEC;
unsigned int i;
timings = inno->mipi_dphy_info->inno_mipi_dphy_timing_table;
num_timings = inno->mipi_dphy_info->num_timings;
for (i = 0; i < num_timings; i++)
if (lane_mbps <= timings[i].max_lane_mbps)
break;
if (i == num_timings)
--i;
return &timings[i];
}
static void inno_mipi_dphy_max_2_5GHz_pll_enable(struct inno_video_phy *inno)
{
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
CLOCK_LANE_VOD_RANGE_SET_MASK,
CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
}
static void inno_mipi_dphy_max_1GHz_pll_enable(struct inno_video_phy *inno)
{
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
/* Enable PLL and LDO */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
}
static void inno_mipi_dphy_reset(struct inno_video_phy *inno)
{
/* Reset analog */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
/* Reset digital */
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
}
static void inno_mipi_dphy_timing_init(struct inno_video_phy *inno)
{
struct mipi_dphy_timing gotp;
u32 t_txbyteclkhs, t_txclkesc, ui;
u32 txbyteclkhs, txclkesc, esc_clk_div;
u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
const struct inno_video_mipi_dphy_timing *timing;
unsigned int i;
txbyteclkhs = inno->pll.rate / 8;
t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
txclkesc = txbyteclkhs / esc_clk_div;
t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
ui = div_u64(PSEC_PER_SEC, inno->pll.rate);
memset(&gotp, 0, sizeof(gotp));
mipi_dphy_timing_get_default(&gotp, ui);
/*
* The value of counter for HS Ths-exit
* Ths-exit = Tpin_txbyteclkhs * value
*/
hs_exit = DIV_ROUND_UP(gotp.hsexit, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-post
* Tclk-post = Tpin_txbyteclkhs * value
*/
clk_post = DIV_ROUND_UP(gotp.clkpost, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-pre
* Tclk-pre = Tpin_txbyteclkhs * value
*/
clk_pre = DIV_ROUND_UP(gotp.clkpre, t_txbyteclkhs);
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * (2 + value)
*/
lpx = DIV_ROUND_UP(gotp.lpx, t_txbyteclkhs);
if (lpx >= 2)
lpx -= 2;
/*
* The value of counter for HS Tta-go
* Tta-go for turnaround
* Tta-go = Ttxclkesc * value
*/
ta_go = DIV_ROUND_UP(gotp.tago, t_txclkesc);
/*
* The value of counter for HS Tta-sure
* Tta-sure for turnaround
* Tta-sure = Ttxclkesc * value
*/
ta_sure = DIV_ROUND_UP(gotp.tasure, t_txclkesc);
/*
* The value of counter for HS Tta-wait
* Tta-wait for turnaround
* Tta-wait = Ttxclkesc * value
*/
ta_wait = DIV_ROUND_UP(gotp.taget, t_txclkesc);
timing = inno_mipi_dphy_get_timing(inno);
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * (2 + value)
*/
if (inno->mipi_dphy_info->phy_max_rate == MAX_1GHZ) {
lpx = DIV_ROUND_UP(gotp.lpx, t_txbyteclkhs);
if (lpx >= 2)
lpx -= 2;
} else {
lpx = timing->lpx;
}
hs_prepare = timing->hs_prepare;
hs_trail = timing->hs_trail;
clk_lane_hs_zero = timing->clk_lane_hs_zero;
data_lane_hs_zero = timing->data_lane_hs_zero;
wakeup = 0x3ff;
for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
if (i == REGISTER_PART_CLOCK_LANE)
hs_zero = clk_lane_hs_zero;
else
hs_zero = data_lane_hs_zero;
phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
T_LPX_CNT(lpx));
phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
T_HS_PREPARE_CNT(hs_prepare));
if (inno->mipi_dphy_info->phy_max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
T_HS_ZERO_CNT_HI(hs_zero >> 6));
phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
T_HS_ZERO_CNT_LO(hs_zero));
phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
T_HS_TRAIL_CNT(hs_trail));
if (inno->mipi_dphy_info->phy_max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
T_HS_EXIT_CNT_HI(hs_exit >> 5));
phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
T_HS_EXIT_CNT_LO(hs_exit));
if (inno->mipi_dphy_info->phy_max_rate == MAX_2_5GHZ)
phy_update_bits(inno, i, 0x10, T_CLK_POST_HI_MASK,
T_CLK_POST_HI(clk_post >> 4));
phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
T_CLK_POST_CNT_LO(clk_post));
phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
T_CLK_PRE_CNT(clk_pre));
phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
T_WAKEUP_CNT_HI(wakeup >> 8));
phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
T_WAKEUP_CNT_LO(wakeup));
phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
T_TA_GO_CNT(ta_go));
phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
T_TA_SURE_CNT(ta_sure));
phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
T_TA_WAIT_CNT(ta_wait));
}
}
static void inno_mipi_dphy_lane_enable(struct inno_video_phy *inno)
{
u8 val = LANE_EN_CK;
switch (inno->lanes) {
case 1:
val |= LANE_EN_0;
break;
case 2:
val |= LANE_EN_1 | LANE_EN_0;
break;
case 3:
val |= LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
break;
case 4:
default:
val |= LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
break;
}
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, val);
}
static void inno_video_phy_mipi_mode_enable(struct inno_video_phy *inno)
{
struct rockchip_phy *phy =
(struct rockchip_phy *)dev_get_driver_data(inno->dev);
/* Select MIPI mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
/* set px30 pin_txclkesc_0 invert disable */
if (phy->soc_type == PX30_VIDEO_PHY || phy->soc_type == PX30S_VIDEO_PHY)
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x01,
INVERT_TXCLKESC_MASK, INVERT_TXCLKESC_DISABLE);
if (inno->mipi_dphy_info->phy_max_rate == MAX_2_5GHZ)
inno_mipi_dphy_max_2_5GHz_pll_enable(inno);
else
inno_mipi_dphy_max_1GHz_pll_enable(inno);
inno_mipi_dphy_reset(inno);
inno_mipi_dphy_timing_init(inno);
inno_mipi_dphy_lane_enable(inno);
}
static void inno_video_phy_lvds_mode_enable(struct inno_video_phy *inno)
{
u8 prediv = 2;
u16 fbdiv = 28;
u32 val;
int ret;
/* Sample clock reverse direction */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
SAMPLE_CLOCK_DIRECTION_REVERSE |
PLL_OUTPUT_FREQUENCY_DIV_BY_1);
/* Reset LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
/* Select LVDS mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv >> 8));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
/* Enable PLL and Bandgap */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
ret = readl_poll_timeout(inno->host.start + DSI_PHY_STATUS,
val, val & PHY_LOCK, 10000);
if (ret)
dev_err(phy->dev, "PLL is not lock\n");
/* Select PLL mode */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
/* Enable LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_ENABLE);
/* Enable LVDS analog driver */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
}
static void inno_video_phy_ttl_mode_enable(struct inno_video_phy *inno)
{
/* Reset digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
/* Select TTL mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, TTL_MODE_ENABLE);
/* Enable digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_ENABLE);
/* Enable analog driver */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
/* Enable for clk lane in TTL mode */
host_update_bits(inno, DSI_PHY_RSTZ, PHY_ENABLECLK, PHY_ENABLECLK);
}
static int inno_video_phy_power_on(struct rockchip_phy *phy)
{
struct inno_video_phy *inno = dev_get_priv(phy->dev);
/* Bandgap power on */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
/* Enable power work */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_ENABLE);
switch (inno->mode) {
case PHY_MODE_MIPI_DPHY:
inno_video_phy_mipi_mode_enable(inno);
break;
case PHY_MODE_VIDEO_LVDS:
inno_video_phy_lvds_mode_enable(inno);
break;
case PHY_MODE_VIDEO_TTL:
inno_video_phy_ttl_mode_enable(inno);
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_video_phy_power_off(struct rockchip_phy *phy)
{
struct inno_video_phy *inno = dev_get_priv(phy->dev);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_DISABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_DISABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
return 0;
}
static unsigned long inno_video_phy_pll_round_rate(unsigned long prate,
unsigned long rate,
u8 *prediv, u16 *fbdiv)
{
unsigned long best_freq = 0;
unsigned long fref, fout;
u8 min_prediv, max_prediv;
u8 _prediv, best_prediv = 1;
u16 _fbdiv, best_fbdiv = 1;
u32 min_delta = 0xffffffff;
/*
* The PLL output frequency can be calculated using a simple formula:
* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
* PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
*/
fref = prate / 2;
if (rate > 1000000000UL)
fout = 1000000000UL;
else
fout = rate;
/* 5Mhz < Fref / prediv < 40MHz */
min_prediv = DIV_ROUND_UP(fref, 40000000);
max_prediv = fref / 5000000;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
tmp = (u64)fout * _prediv;
do_div(tmp, fref);
_fbdiv = tmp;
/*
* The all possible settings of feedback divider are
* 12, 13, 14, 16, ~ 511
*/
if (_fbdiv == 15)
continue;
if (_fbdiv < 12 || _fbdiv > 511)
continue;
tmp = (u64)_fbdiv * fref;
do_div(tmp, _prediv);
delta = abs(fout - tmp);
if (!delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
break;
} else if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
min_delta = delta;
}
}
if (best_freq) {
*prediv = best_prediv;
*fbdiv = best_fbdiv;
}
return best_freq;
}
static unsigned long inno_video_phy_set_pll(struct rockchip_phy *phy,
unsigned long rate)
{
struct inno_video_phy *inno = dev_get_priv(phy->dev);
unsigned long fin, fout;
u16 fbdiv = 1;
u8 prediv = 1;
fin = 24000000;
fout = inno_video_phy_pll_round_rate(fin, rate, &prediv, &fbdiv);
dev_dbg(phy->dev, "fin=%lu, fout=%lu, prediv=%u, fbdiv=%u\n",
fin, fout, prediv, fbdiv);
inno->pll.prediv = prediv;
inno->pll.fbdiv = fbdiv;
inno->pll.rate = fout;
return fout;
}
static int inno_video_phy_set_mode(struct rockchip_phy *phy,
enum phy_mode mode)
{
struct inno_video_phy *inno = dev_get_priv(phy->dev);
switch (mode) {
case PHY_MODE_MIPI_DPHY:
case PHY_MODE_VIDEO_LVDS:
case PHY_MODE_VIDEO_TTL:
inno->mode = mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_video_phy_probe(struct udevice *dev)
{
struct inno_video_phy *inno = dev_get_priv(dev);
struct rockchip_phy *tmp_phy;
struct rockchip_phy *phy;
int ret;
phy = calloc(1, sizeof(*phy));
if (!phy)
return -ENOMEM;
tmp_phy = (struct rockchip_phy *)dev_get_driver_data(dev);
dev->driver_data = (ulong)phy;
memcpy(phy, tmp_phy, sizeof(*phy));
inno->dev = dev;
inno->mipi_dphy_info = phy->data;
if (soc_is_px30s())
inno->mipi_dphy_info = &inno_video_mipi_dphy_max_2_5GHz;
inno->lanes = ofnode_read_u32_default(dev->node, "inno,lanes", 4);
ret = dev_read_resource(dev, 0, &inno->phy);
if (ret < 0) {
dev_err(dev, "resource \"phy\" not found\n");
return ret;
}
ret = dev_read_resource(dev, 1, &inno->host);
if (ret < 0) {
dev_err(dev, "resource \"host\" not found\n");
return ret;
}
phy->dev = dev;
return 0;
}
static const struct rockchip_phy_funcs inno_video_phy_funcs = {
.power_on = inno_video_phy_power_on,
.power_off = inno_video_phy_power_off,
.set_pll = inno_video_phy_set_pll,
.set_mode = inno_video_phy_set_mode,
};
static struct rockchip_phy px30_inno_video_phy_driver_data = {
.soc_type = PX30_VIDEO_PHY,
.funcs = &inno_video_phy_funcs,
.data = &inno_video_mipi_dphy_max_1GHz,
};
static struct rockchip_phy px30s_inno_video_phy_driver_data = {
.soc_type = PX30S_VIDEO_PHY,
.funcs = &inno_video_phy_funcs,
.data = &inno_video_mipi_dphy_max_2_5GHz,
};
static struct rockchip_phy rk3128_inno_video_phy_driver_data = {
.soc_type = RK3128_VIDEO_PHY,
.funcs = &inno_video_phy_funcs,
.data = &inno_video_mipi_dphy_max_1GHz,
};
static struct rockchip_phy rk3368_inno_video_phy_driver_data = {
.soc_type = RK3368_VIDEO_PHY,
.funcs = &inno_video_phy_funcs,
.data = &inno_video_mipi_dphy_max_1GHz,
};
static struct rockchip_phy rk3568_inno_video_phy_driver_data = {
.soc_type = RK3568_VIDEO_PHY,
.funcs = &inno_video_phy_funcs,
.data = &inno_video_mipi_dphy_max_2_5GHz,
};
static const struct udevice_id inno_video_phy_ids[] = {
{
.compatible = "rockchip,px30-video-phy",
.data = (ulong)&px30_inno_video_phy_driver_data,
},
{
.compatible = "rockchip,px30s-video-phy",
.data = (ulong)&px30s_inno_video_phy_driver_data,
},
{
.compatible = "rockchip,rk3128-video-phy",
.data = (ulong)&rk3128_inno_video_phy_driver_data,
},
{
.compatible = "rockchip,rk3368-video-phy",
.data = (ulong)&rk3368_inno_video_phy_driver_data,
},
{
.compatible = "rockchip,rk3568-video-phy",
.data = (ulong)&rk3568_inno_video_phy_driver_data,
},
{}
};
U_BOOT_DRIVER(inno_video_combo_phy) = {
.name = "inno_video_combo_phy",
.id = UCLASS_PHY,
.of_match = inno_video_phy_ids,
.probe = inno_video_phy_probe,
.priv_auto_alloc_size = sizeof(struct inno_video_phy),
};